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Abstract. In modern mobile message-based communication, malicious
apps can illicitly access transferred messages via data leakage attacks.
Existing defenses are overly restrictive, as they block all suspicious apps,
malicious or not, from receiving messages. As a solution, we present
a communication model that allows untrusted-but-not-malicious apps
to receive messages. Our model—hidden transmission and polymorphic
delivery (HTPD)—transmits sensitive messages in an encrypted enve-
lope and delivers them polymorphically. Depending on the destination’s
trustworthiness, HTPD delivers either no data, raw data, or encrypted
data. Homomorphic and convergent encryption allows untrusted destina-
tions to securely operate on encrypted data deliveries. We realize HTPD
as PoliCC, a plug-in replacement of Android Inter-Component Commu-
nication middleware. PoliCC mitigates three classic Android data leak-
age attacks, and allows untrusted apps to operate on delivered messages.
Our evaluation shows that PoliCC enables mobile apps to securely and
flexibly exchange communication messages, with low performance and
programming effort overheads.

1 Introduction

An essential part of modern mobile platforms is inter-app communication1, which
is typically message-based: apps send and receive various kinds of messages, some
of which may contain sensitive data. When a malicious app accesses sensitive
data, data leakage occurs. To prevent data leakage, modern mobile platforms
(e.g., Android and iOS) customize their communication models to control how
apps access message data. However, these models remain vulnerable to data
leakage, commonly exploited by attacks that include interception, eavesdrop-
ping, and permission escalation. These attacks leak volumes of sensitive data,
as has been documented both in the research literature [11,13,21,34,40] and in
vulnerability reporting repositories (e.g., CVE) [2, 3, 10].

To prevent data leakage, state-of-the-art approaches fall into two general cat-
egories: (1) taint message data to track and analyze its data flow [8,20], and (2)
track call chains, as guided by a permission restriction policy for sending/re-
ceiving data [12, 18, 22]. Although these approaches2 strengthen the security of
message-based communication, their high false positive rates often render them

1 In Android, it is also called inter-component communication (ICC).
2 All of them target Android, due to its open-sourced codebase, which can be examined

and modified.



impractical for realistic communication scenarios. Once any app in a call chain or
data flow is identified as “malicious,” even as a false positive, they can no longer
receive any messages. Although “untrusted” may not be “malicious”, these data
flow monitoring approaches block all untrusted-but-not-malicious destinations.
In addition, mobile users may change app permissions at any point, thus also
causing false positives. With high false-positive rates, these prior approaches lack
flexibility required to secure message-based communication, without blocking
untrusted-but-not-malicious destinations from operating on delivered messages.

In this paper, we present HTPD, a novel model that improves the security
of message-based communication. The model combines two key mechanisms: (1)
hidden transmission of messages and (2) their polymorphic delivery.

Mechanism (1) serializes a message object with additional information (e.g.,
data integrity or routing information) as an encrypted binary stream, and then
hides the resulting stream as the data field of another message used for transmis-
sion. Intercepting the transmitted message would not leak its hidden content to
interceptors. In the meantime, it cannot be tampered with undetectably either:
before delivering the message to a destination, the model retrieves the message’s
hidden content, using it to verify the message’s integrity and destination.

Mechanism (2) steps away from the standard message delivery, in which
the delivered message data is presented identically to all destinations, having
so-called monomorphic semantic. Instead, depending on the destination’s trust-
worthiness at runtime, the delivered message data is presented either in no form,
raw form, or encrypted form, thus having polymorphic semantic. No data is pre-
sented for misrouted messages or when the message’s integrity cannot be verified.
Raw data is presented to destinations whose trustworthiness can be established.
Encrypted data is presented to all other destinations. However, the received
encrypted data can still be used in limited computational scenarios, due to ho-
momorphic encryption (HE) and convergent encryption (CE), which preserve
certain arithmetic and comparison properties of ciphertext, respectively.

To the best of our knowledge, our approach is the first to apply HE and
CE to the design of message-based communication models. Homomorphic and
convergent operations on sensitive data provide the middle ground between per-
mitting access to raw data and denying access altogether. The primary barrier
to widespread adoption of HE and CE has been their heavy performance over-
head. The resulting escalation in execution time has rendered these encryption
techniques a poor fit for intensive computational workloads of large statistical
analyses and machine learning. In contrast, our work demonstrates that HE and
CE can effectively solve long-standing problems in the design of mobile message-
based communication. Because mobile communication rarely involves large com-
putational workloads, the inclusion of HE and CE provides the required security
and flexibility benefits, without noticeable deterioration in user experience.

To reify our model, we developed PoliCC, an Android middleware3 that
plug-in replaces Android inter-component communication (ICC). PoliCC mit-
igates interception, eavesdropping, and permission escalation attacks, without

3 Similarly to prior works, we target Android as the dominant open-source platform.
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preventing untrusted-but-not-malicious apps from operating on delivered mes-
sage data. Although our design trades performance for security, our evaluation
shows that, PoliCC effectively mitigates these attacks while adding at most
40.4ms and 2mW overheads, as compared to the Android ICC counterpart.

This paper contributes:
(1) HTPD—a novel model that strengthens the security of message-based

communication via hidden transmission and polymorphic delivery. This model
retains the protection of prior models, but eliminates their unnecessary restric-
tions, so untrusted-but-not-malicious destinations can perform useful operations
on the delivered message data.

(2) The first successful application of homomorphic and convergent encryp-
tion to the design of mobile message-based communication, offering operations
on encrypted sensitive data as the middle ground between permitting access to
raw data and denying access altogether.

(3) PoliCC—a reification of HTPD that plug-in replaces Android ICC,
mitigating interception, eavesdropping, and permission escalation attacks, with-
out preventing untrusted-but-not-malicious apps from operating on delivered
data. Through its plug-and-play integration with the Android system, PoliCC
requires only minimal changes to existing apps.

(4) An experimental evaluation that shows how PoliCC prevents the afore-
mentioned attacks carried out against benchmarks and real apps, while incurring
low performance and programming effort overheads.

2 Threat Model
By following our model, message-based communication can prevent data leak-
age, so it would not be exploited by interception, eavesdropping, and permission
escalation attacks. Our model can strengthen any message-based communica-
tion, but our reference implementation is Android-specific. We generally define
each of the aforementioned attacks, and present examples of their real-world
occurrences in Android apps.
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Fig. 1. Examples of Attacks

2.1 Examples of Data Leakage Attacks

Interception: Figure 1-a demonstrates an interception attack: source S is trans-
ferring data to destination D, with U intercepting the transferred data. Another
common name of this attack is man-in-the-middle.

In Android, apps can communicate with each other via inter-component com-
munication (ICC). Using ICC, a source app sends an Intent4 to user-permitted

4 In ICC, Intent objects serve as data delivery vehicles.

3



destination apps: with explicit Intents, only specific destinations can receive
data; with implicit Intents, any destination that registers a certain Intent Fil-
ter5 can receive data. As defined in Common Attack Pattern Enumeration and
Classification (CAPEC) [1], an interception attack occurs when malicious apps
inappropriately receive an implicit Intent by declaring a certain Intent Filter [5].
These attacks have been detected in many real-world Android apps [16], which
even be used in some developer tools for benign purposes. For example, a devel-
oper tool, Intent Intercept, intercepts the transferred Intent to help developers
in debugging ICC-based communication [4].

Eavesdropping: Figure 1-b demonstrates an eavesdropping attack: source S broad-
casts data to destination D, but U (i.e., eavesdropper) can also receive the data.
In Android, when an app broadcasts Intents, any app can receive them by declar-
ing a certain Intent Filter. Consider a real eavesdropping attack reported in CVE,
when WiFi is switched, the Android system broadcasts an Intent that contains
detailed WiFi network information (e.g., network name, BSSID, IP address, and
DNS server). However, having declared the corresponding Intent Filter, any ap-
plications can receive this Intent and disclose the sensitive information [3].

Permission Escalation: Figure 1-c demonstrates a permission escalation attack:
source S has been granted sufficient permissions to access sensitive data, but
destination D has not. When S sends its sensitive data to D, D’s permission is
escalated. In Android, to access sensitive user data (e.g., GPS, contacts, and
SMS), apps must secure the required permissions. As previously reported, at-
tackers can force apps, with dissimilar permissions, to communicate sensitive
data to other apps, thus leaking it to the destinations [10,36]. For example, if an
app has GPS permissions, it can send its obtained user geolocation information
to any app that has no such permissions, which may cause sensitive data leakage.

2.2 Untrusted Data Processing

The aforementioned attacks that exploit data leakage share the same root cause:
a destination illicitly accesses and discloses or tampers with sensitive message
data. However, blocking all suspicious message transmissions may paralyze apps’
legitimate operations. Consider the scenario from the eavesdropping attack above:
if, having received a message containing the device’s IP address, an untrusted
app uses the received IP only for legitimate operations (e.g., host IP verification),
is it reasonable to block all such message transmissions to strengthen security?

A more flexible solution could use homomorphic encryption (HE) and con-
vergent encryption (CE), currently most commonly used for sending sensitive
data to the cloud for processing by untrusted providers. Using HE/CE schemes,
data owners encrypt and send their data to the cloud server. The cloud server
operates on and returns the encrypted results to the data owner. Only the data
owner, possessing the secret key, can decrypt the results. In the case above, an

5 Intent Filter declares expected Intent properties (action/category)

4



untrusted app can still receive the IP address’s encrypted version to verify its
host address, without accessing the raw IP address. By means of HE/CE, HTPD
enables untrusted apps to operate on sensitive data without data leakage.

2.3 Assumptions and Scope

To counteract the threats, our design is subject to the following constraints:
(1) Assumptions: Trustworthiness. Since HTPD relies on apps’ trustwor-
thiness to determine whether to expose no data, raw data, or encrypted data, we
assume that application trustworthiness can be reliably configured or calculated.
Further, attackers cannot change the involved apps’ trustworthiness. As an ab-
stract metric of how to expose the data, the trustworthiness can be represented
as many specific forms, such as permissions in the above example attacks (§ 3.1).
(2) Scope: Message-based data leakage vulnerabilities. HTPD’s focus
is message-based data leakage vulnerabilities. That is, the vulnerabilities should
(a) cause data leakage, and (b) occur during message transmission. Hence, other
attacks, such as denial of service (DoS)6 that target data transmission (not data
leakage), stealing data by breaking the system (not during message transmis-
sion), are out of scope. Also, since attacking key management to obtain decryp-
tion keys is an orthogonal issue, we consider it out of our scope. To mitigate this
issue, HTPD should be used with proven key management schemes/systems.

3 The HTPD Model

We present the HTPD model and its application to Android ICC in turn next.

3.1 Definitions

(1) Source/Destination. In message-based communication, a source sends mes-
sages, and a destination receives messages. In mobile platforms, apps can be
both source and destination.
(2) Sending and Receiving Points. We use the term a sending point to describe
an API function, invoked by a source and passed message data, that starts
transmitting messages. A receiving point is a callback API function, through
which a destination retrieves the transferred message data.
(3) Trustworthiness. Trustworthiness measures the degree to which an app can
be trusted. We use this metric to define how an app can access message data.
An app whose trustworthiness is established can access raw message data; oth-
erwise, encrypted data or no data. Trustworthiness can be measured in different
ways: (a) data integrity (i.e., to detect data tampering) and destination ex-
aminations (i.e., to detect misrouting). For example, if the received message
fails such examinations, the destination app should not access the raw data.
(b) apps’ permissions and the relationship between apps’ permission sets. For

6 Although DoS is not our focus, one of PoliCC’s features mitigates them (see § 6.4).
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example, if a source app’s permission set is larger than that of a destination
app, messages transmitted between them may become vulnerable to permission
escalation attacks, causing data leakage (§ 2.1). (c) reputation score. For ex-
ample, if an app’s reputation score in app markets [26] is low, then allowing it
to access raw data may cause data leakage. HTPD can be parameterized with
various measures of trustworthiness, as required for a given scenario of message-
based communication. In particular, to determine an app’s trustworthiness, our
HTPD’s reification uses both (a) and (b).

original msg
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msgtransmission

msg
wrapper msg
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Source

trustworthiness
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transmission
msg
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msg
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Fig. 2. HTPD Transmission Mechanisms

3.2 Transmission Mechanisms

Figure 2 depicts HTPD’s hidden transmission and polymorphic delivery mech-
anisms. When a source starts transmitting a message (step 1), the message’s
data field is inserted with some extra information (e.g., custom routing) (step
2). After that, the message is serialized (step 3) and encrypted (step 4) to a
binary stream, which becomes the data field of a newly created wrapper mes-
sage. Hence, the original message is hidden within the wrapper message, which
becomes the transmission message (step 5).

Next, the transmission message is dispatched via the system’s standard com-
munication channel (step 6). Once the transmission message arrives to its receiv-
ing point, its data field is extracted, decrypted, and deserialized into the original
message (steps 7,8). Then, the extracted extra information is used to examine
the destination’s trustworthiness (e.g., data integrity, app permissions), which
determines in which form the message data can be accessed. In the cases of failed
integrity checks or misrouted deliveries, HTPD would not disclose any data. If
the destination’s trustworthiness is established, HTPD reveals the raw form of
the original message’s data; otherwise, it encrypts the data into its homomorphi-
cally or convergently encrypted form (step 11). Due to its polymorphic delivery,
the final received message is referred to as “polymorphic message” (step 12).

3.3 HTPD in Practice

To reify HTPD, we developed PoliCC, a plug-in replacement of Android ICC.
By mitigating Android ICC’s data leakage vulnerabilities, PoliCC prevents
the aforementioned attacks ( § 2.1). Following the definitions above, apps serve
as message source/destination, whose sending/receiving points are managed by
PoliCC (as shown in Figure 3). PoliCC retains Intent objects as ICC transmis-
sion vehicles, but hides the original Intent object within a so-called Host Intent
object, whose data field stores the original Intent object’s encrypted serialized
version.
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To guide its polymorphic delivery, PoliCC computes the destination app’s
trustworthiness: (a) the delivered message’s routing information7, and (b) how
the permission sets of the source and destination apps relate to each other.
PoliCC delivers no data from messages identified as tampered with or mis-
routed; it delivers raw data to destinations whose permission sets are equal to
or exceed those of source apps; and it delivers homomorphically or convergently
encrypted data to all other destinations.

Consider how PoliCC prevents the attacks described in § 2.1: Preventing
Interception Attacks. As shown in Figure 3, an interception attack can be
carried out at the receiving point ·: an untrusted app U becomes the final
delivery destination by declaring a certain Intent Filter, or at point ¸ before the
receiving point: with Android ICC, U intercepts the transferred data.

In the first case, having received the transferred Intent, U would be able to
retrieve the contained raw data only if U’s permission set equals to or exceeds
that of the source app. Otherwise, the received data would be homomorphically
or convergently encrypted, so it would not be leaked. In the second case, U would
receive a Host Intent, containing only the encrypted and thus inaccessible original
Intent. At this point, tampering with the Host Intent’s routing information would
be easily detected through data integrity and destination examinations at ·.

Preventing Eavesdropping Attacks. As discussed in § 2.1, an eavesdropping
attack occurs when the Android system broadcasts an IP address (i.e., string
value), received by both a trusted app D and an untrusted app U. Without suf-
ficient permissions, U would receive the IP address as a convergently8 encrypted
string. Since convergent encryption makes it possible to compare encrypted val-
ues for equality, U can verify the host address by convergently encrypting the
host address and comparing the result with the received data.

Preventing Permission Escalation Attacks. As discussed in § 2.1, an esca-
lation attack occurs when a source app with GPS permissions obtains and sends
user geolocation information to a destination without these permissions. With-
out the geolocation permissions, destination D would be delivered geolocation

7 In Android ICC, routing information can be used for both data integrity and desti-
nation examinations (detailed in § 5.2).

8 Convergent encryption is applied to string data.
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(i.e., numeric value) as a homomorphically9 encrypted numeric value, so no per-
missions would be escalated. If D forwards the delivered ciphertext to malware
M to decrypt the ciphertext, M’s permission set would have to be equal or greater
than the union of permission sets of the source app and D, a hard-to-satisfy
requirement for the granted permissions to access raw geolocations.

4 PoliCC Design

We describe the design choice/architecture/permission policies in the following.

4.1 Design Choices

PoliCC follows several design choices that we made by consulting prior studies.
(1) Why Intents? As its message delivery vehicle, PoliCC retains Intents to
facilitate integration with existing apps, protecting their Intents from leakage.
Prior Finding: Apps commonly store data in Intent’s extended data field [38].
(2) Why Focus on Integer and String? PoliCC supports operating on
encrypted strings and integer values. Prior Finding:Android API methods that
manipulate Integer and String values (i.e., putString and putInt) are among the
top 10 mostly used [32].
(3) Why Activity and Broadcast Communication? PoliCC supports
startActivity and sendBroadcast, whose data flow allows multiple destinations.
Prior Finding: The startActivity ICC method is the most frequently used [41].

4.2 System Architecture

Figure 4 shows PoliCC’s architecture. Via the Android ICC, a Source App sends
a regular Intent object (step 1). The sending flow is redirected via an Xposed
hook that forwards (step 2) the sent Intent object to PoliCC Module, which
initiates a protection procedure (i.e., the sending point). The forwarded Intent is
inserted with the source app’s package name as another extended data field (i.e.,
its transmission history is recorded for permission examinations § 5.2), and is
then serialized and encrypted (via AES) into a byte array, with the result placed
in a Host Intent object, thereby concealing the original Intent. It is the Host
Intent object that continues its transmission through the Android ICC (step 3).

Right before delivering the Host Intent (i.e., the receiving point), PoliCC’s
another Xposed hook redirects (step 4) the Intent to PoliCC Module, which ex-
tracts the original Intent data and reconstructs the original Intent (Re-encapsulation).
PoliCC then collects the routing information and the permission sets for both
source and destination apps, passing them to the Routing info & Permission

Examination. The routing information determines, via Routing info Examination,
whether to return no data. The relationship between the permissions of the
source and destination apps determines, via Permission Examination, whether

9 Homomorphic encryption is applied to numeric data.

8



to homomorphically or convergently encrypt the Intent’s data. Finally, PoliCC
delivers the Polymorphic Intent object to the Destination App (step 5). There
is no separate Polymorphic Intent type. Rather, these entities are normal Intent
objects, whose content has been protected.

Source
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Destination 
App

POLICC
Module

Intent Polymorphic
Intent

Android ICC

Sending
Point

Receiving
Point

Serialize & 
Deserialize

Routing info & 
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Encrypt & 
Decrypt

Host Intent2

3

5

Configuration Notify

1

4

Fig. 4. PoliCC Architecture

User-configured (via Configuration)
custom keys encrypt the de-
cryption keys of homomorphic/-
convergent encryption, persisting
them in Android private stor-
age [27]. Note that, by rely-
ing on Android’s private stor-
age, we treat key management as
orthogonal to our design, which
can straightforwardly integrate
more elaborate key management
schemes as system services. In ad-
dition, by configuring PoliCC to
notify of the transmission infor-
mation (e.g., source/destination,
permissions, data types, actions)
(Notify), the user can stop the
delivery of any PoliCC Intents.

With the design choices above, consider how our architecture secures the
Android ICC while enabling untrusted data processes. To transmit messages se-
curely, PoliCC provides Host and Polymorphic Intents for ICC’s data transmis-
sion flow of both Activity and Broadcast. The Host Intent acts as a transmission
vehicle over the Android ICC; it hides the original Intent’s data and routing infor-
mation. The Polymorphic Intent delivers data polymorphically: only destination
apps with sufficient permissions can access raw Intent data. To allow untrusted
apps to operate on sensitive data securely, PoliCC provides arithmetic and
comparison operations on ciphertext, enabled by homomorphic and convergent
encryption: Variant of Elgamal encryption10 [17] for int/Integer/BigInteger
values and convergent encryption (combines SHA256 with AES) for String val-
ues. So int/Integer/BigInteger variables become HEInteger objects, and String

ones become encrypted String objects.

4.3 Permission Policies

As discussed in § 3.3, PoliCC uses Android app permissions and the relationship
between the permission sets of the source/destination apps as the trustworthi-
ness measure that determines whether to deliver raw data or encrypted data11.

10 As fully homomorphic encryption is slow, its partial variant achieves a practical
performance security tradeoff.

11 Because the “no data” delivery is caused by failed data integrity checks rather than
permissions, we detail it in § 5.2.

9



Hence, we design PoliCC as a policy-based middleware: an extensible set of
policies governs data access and Intent routing.→ indicates the From-To Intent
transmission relationship within or across devices. E.g., {I | (S → D)t} indicates
that the source app S sends the Intent I to the destination app D at time t.

P (S)t denotes the permission set of app S at time t. If the user changes P (S)
at runtime, P (S)t 6= P (S)t+1. Hence, PoliCC always dynamically analyzes
permissions, reading the latest permissions for all apps. Further, I denotes the
original Intent, and IEN denotes that its data has been encrypted. We define
the PoliCC policies as follows:
(1) Encryption & Decryption Policies.

When D receives I (or IEN ) from S, if the permission set of S is a subset
of or equal to that of D, I’s (or IEN ’s) data remains unencrypted; encrypted
otherwise:

If {I or IEN | (S → D)t},
– iff P (S)t ⊆ P (D)t, return I
– otherwise, return IEN

(2) Permission Transitivity. Whether a destination app receives I or IEN is
determined by the transitive closure of the permission relationships between the
encountered apps in that Intent’s transmission chain:

If {I | ((S → D1)t → D2)t+1},
– iff (P (S)t+1 ∪ P (D1)t+1) ⊆ P (D2)t+1, return I
– otherwise, return IEN

5 Implementation

We describe PoliCC’s hidden transmission and polymorphic delivery.

5.1 Hidden Transmission

To seamlessly integrate hidden transmission into Android ICC, we had to de-
termine: (1) where to place the sending/receiving points, and (2) how to pack
message data into its delivery vehicle.
(1) Hook Mechanism. For PoliCC to take control over the delivery of In-
tent objects, the hook mechanism taps into the Android ICC. ICC commences
by invoking the standard Android APIs, startActivity to start an activity and
sendBroadcast to send a broadcast, so we use them as “sending points.” Simi-
larly, ICC ends up the final delivery by invoking performLaunchActivity for the
activity and deliverToRegisteredReceiverLocked for the broadcast, so we use
them as “receiving points.” PoliCC intercepts the sending and receiving points
by hooking into these API methods. Then, PoliCC’s custom code is injected to
execute before or after the intercepted API methods, thus performing HTPD’s
transmission strategies.
(2) Host Intent. A Host Intent is derived from an original Intent by retain-
ing the routing information (e.g., action, category) but removing the extended
data (i.e., the data inserted via putExtra). Instead, the only pieces of extended
data in Host Intent are serialized and encrypted representations of the original

10



Intent. This implementation strategy is non-intrusive, thus requiring no changes
to the source app’s Intent API. Specifically, our implementation intercepts the
built-in Intent transmission procedure at the points right before an Intent is dis-
patched (i.e., sending points) and delivered (i.e., receiving points). At the sending
point, a Host Intent is constructed, replacing the original Intent; at the receiving
point, the Host Intent’s content is extracted, decrypted, and deserialized into the
original Intent, which is then polymorphically delivered to the destination app
(see § 5.2). Notice that this strategy makes it possible to transmit Host Intents
through the built-in Intent transmission channels. Because these two intercep-
tion points cannot be bypassed, the Host Intents would always be constructed at
the sending point, and the original Intent would always be reconstructed at the
receiving point. In essence, PoliCC can straightforwardly detect any tampering
with the routing information of a Host Intent.

5.2 Polymorphic Delivery

To seamlessly integrate polymorphic delivery into Android ICC, we had to de-
termine: (1) how to link trustworthiness (i.e., routing info and permission rela-
tionships) to delivery strategies (i.e., no data, raw data, or encrypted data), and
(2) if it is possible to bypass our secure delivery mechanism and how to defend
against it. We solve these problems as follows.
(1) Examining Routing Info and Permissions. As described above, in the
sending point, PoliCC re-encapsulates the original Intent object, retaining its
routing information. The inserted source app’s information is checked as follows:

a) to check the routing information, having intercepted the Intent in the re-
ceiving point, PoliCC extracts the routing information from both the Host and
original Intents and compares them for equality (i.e., integrity check). Then, it
checks whether the current destination is reachable through the original Intent’s
routing information (i.e., destination examination). If any of these checks fails,
the Intent object may have been tampered with, causing PoliCC to deliver no
data to the destination app.

b) to check the permission relationships between the source and destination
apps, from the original Intent, PoliCC extracts the inserted source app in-
formation. Note that, before sending or forwarding an Intent (i.e., the sending
point), PoliCC appends the current source app’s package name into the In-
tent’s data field, thus keeping track of the Intent’s transmission history. At the
receiving point, PoliCC computes the union of the permissions granted to all
source apps, through which the Intent has passed in that transmission. Next,
PoliCC obtains the destination app’s permissions via the Android API. The
results are compared based on the permission transitivity policy (see § 4.3): if the
destination app’s permissions are not equal to or exceed the union of the source
permissions set, PoliCC delivers the homomorphically/convergently encrypted
data to the destination app.
(2) Defense against Encryption Bypassing Attack. When forwarding a
polymorphic Intent with encrypted data to a sufficiently permitted destination
app (see policies in § 4.3), PoliCC decrypts the contained data. To that end,
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a special field, isEncrypted, reflects whether the extended data of a Polymor-
phic Intent has been encrypted, so as to prevent the encryption of ciphertext.
However, malware can attempt to bypass the encryption process by maliciously
setting the isEncrypted field of an unencrypted Intent to “true,” an occurrence
that we call an encryption bypassing attack.

To defend against this attack, PoliCC provides a simple but effective de-
fense: when the isEncrypted field is set to “true”, PoliCC first decrypts the data
and then encrypts it again. However, decrypting unencrypted data produces an
unusable value, out of which the original Intent data cannot be recovered12.
Hence, this design effectively defends against the attacks that tamper with the
isEncrypted field, albeit rendering the transferred data unusable as a result of
invalid data attacks. Our design contends with the possibility of Intent data be-
coming damaged in such cases, as the main objective is to defend against data
leakage attacks.

5.3 Computing with Encrypted Data

As discussed above, Intent’s String data become convergently encrypted String

objects, and int/Integer/BigInteger data become homomorphically encrypted
HEInteger objects in order to allow untrusted-but-not-malicious apps to operate
on ciphertext.

6 Evaluation

we seek to answer the following questions: Q1. Effectiveness: How effectively
does PoliCC reduce the threats? Q2. Cost: What is the performance overhead
of PoliCC on top of the Android ICC? Q3. Effort: How much additional
programming effort is required to use PoliCC instead of Android ICC?

6.1 Environment Setup

Because PoliCC is implemented on top of the Xposed framework, our evalua-
tion uses this framework’s latest version (XposedBridge version-82 and Xposed
Installer-3.1.5). Besides, to make use of as many Android latest features as pos-
sible, while guaranteeing the compatibility of Android apps, we use the Android
Nougat (7.x) and Lollipop (5.x), currently run by 28.2% (the first highest per-
centage among the 8 most popular Android versions [25]) and 17.9% (the fourth
highest percentage) of Android devices. These Android releases as well as the
latest one are vulnerable to all the aforementioned attacks. In all experiments,
the devices are: Nexus 6 with Android 7.1.1, Moto X with Android 5.1, and
Moto G2 with Android 5.1.1.

12 With PoliCC’s encryption implementation, decrypting unencypted data destroys
the original data, which may not be the case for other encryption implementations.
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6.2 Evaluation Design

Q1. Effectiveness. As discussed in § 2, PoliCC plug-in replaces ICC to se-
cure its message-based communication against interception, eavesdropping, and
permission escalation attacks. To evaluate PoliCC’s security mechanisms, we
simulated the attacks, discussed in § 2.1, and conducted a case study with three
real-world apps, discussed in turn next:
(1) Reproducing Attacks. To test how effectively PoliCC defends apps
against the attacks described in § 2.1, we had to reproduce these attacks with
real apps. Unfortunately, several of the apps, mentioned in the CVE entries de-
scribing the attacks, are not open-sourced, while the target attacks would be
impossible to trigger in a black-box fashion. Hence, we had to recreate the de-
scribed apps on our own.

(a) To reproduce the interception attack on message-based communication at
the receiving point, we created: source app S, destination app D, and interceptor
app U. S invokes startActivity(Intent) to send an implicit Intent to D. However,
by registering the same Intent Filter, the untrusted app U receives the same
Intent object as well. To reproduce the interception attack on message-based com-
munication before the receiving point, we implemented another interceptor app
U2, which intercepts the sent Intent objects before they arrive at the receiving
point, to misroute their delivery by tampering with their routing information.
Without loss of generality, we assumed that the end-user had designated the
destination apps as our untrusted apps U and U2.

(b) To reproduce the eavesdropping attack, we created source and desti-
nation apps (i.e., S and D), with the same system-level permissions, and IP

Verification app V with no such permissions. S invokes sendBroadcast(Intent)

to broadcast an Intent to be received by D. The Intent object contains an IP ad-
dress. However, by registering the same Intent Filter, V can receive the same
Intent object as well.

(c) To reproduce the permission escalation attack, we created GC, a geo-

location collecting app, permitted to obtain geolocations from the GPS sen-
sor, and DE, a distance estimating app, forbidden to read geolocations. To
process the obtained geolocations, GC invokes startActivity(Intent) to directly
send an explicit Intent to DE. DE receives the Intent, retrieves the contained
geolocation, and estimates the distance of user movement.

We simulated the above attacks using Android ICC and PoliCC, and then
compared the respective outcomes. To determine whether PoliCC’s polymor-
phic delivery correctly responds to changes in app permissions, we carried out
each attack scenario with sufficient and insufficient permissions. More impor-
tantly, to illustrate that apps with insufficient permissions can still execute use-
ful operations, we reused the IP Verification V and distance estimater (DE)
apps from the attack scenarios (b)(c) above to check if their original operations
(i.e., verify host IP–V, estimate distance of movement–DE) can still be executed.
(2) A case study with real-world apps. We also evaluated how effective
PoliCC was at mitigating the aforementioned attacks in three open-source,
real-world apps: Intent Intercept [4] (a debugging app), Mylocation [23]

13



(a GPS app), and QKSMS [37] (a messaging app). By registering numerous In-
tent Filters, Intent Intercept intercepts implicit Intents and examines their
data fields. Having the geolocation permissions (ACCESS_COARSE_LOCATION and
ACCESS_FINE_LOCATION), Mylocation can obtain the user’s geolocation and share
it with other apps via an implicit Intent with the ACTION_SEND action. Using its
Intent Filter for the ACTION_SEND action, QKSMS can receive the Intents con-
taining this action. However, QKSMS has no geolocation permissions. In our case
studies, we always used Mylocation as the source and QKSMS as the destination.
Q2. Cost. To determine whether PoliCC’s performance overhead is acceptable,
we compare the respective execution time and energy consumption13 taken to
deliver Intent data from the source to the destination app by PoliCC and the
Android ICC. Our measurements (a) exclude prompting the user to approve
the Intent transmission; (b) fix the length of intent data items (32 bytes for
the String objects); (c) repeat all executions 20 times and then compute the
average execution time; (d) trigger startActivity/startBroadcast 100 times in
5 minutes, measuring the amount of energy consumed by the participating apps
and the system; and (e) fix the experimental device (i.e., Moto G2) to compare
PoliCC with the Android ICC. Besides, we isolate the time PoliCC takes to
deliver Intents to identify the performance bottlenecks.
Q3. Effort. To confirm PoliCC’s portability, we test it on combinations of
devices that run the Lolipop and Nougat Android framework versions. To esti-
mate PoliCC’s programming effort, we measure the uncommented lines of code
(ULOC) required to modify the original source app’s ICC code that sends an
Intent to a destination app to (a) access the Intent data, and (b) retrieve and
use homomorphically/convergently encrypted data.

6.3 Results

Q1. Effectiveness.

Table 1. Effectiveness of PoliCC

Attacks Permission
Data Retrieved Successful Defense Operations
ICC PoliCC ICC PoliCC ICC PoliCC

Interception
—at receiving point

insufficient raw encrypted × X - -
sufficient raw raw × × - -

Interception
—before receiving point

- raw no data × X - -

Eavesdropping
insufficient raw encrypted × X X X
sufficient raw raw × × X X

Permission Escalation
insufficient raw encrypted × X X X
sufficient raw raw × × X X

(1) Reproducing Attacks. Table 1 summarizes the outcomes of reproducing
each of the attacks: (a) For the interception attack on message-based communica-

13 We measure energy consumption with PowerTutor 1.4 [35].
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tion at the receiving point (i.e., row “Interception—at receiving point”), whether
the interceptor app U’s permissions are sufficient or not, Android ICC always de-
livers the Intent’s raw data to U, thus leaking sensitive data to an untrusted party.
In contrast, if U’s permission set is smaller than that of the source app (i.e., in-
sufficient permissions), PoliCC delivers encrypted Intent data, thus successfully
preventing the attack. For the interception attack on message-based communica-
tion before the receiving point (i.e., row “Interception—before receiving point”),
after U2 tampers with the Host Intent’s routing information, PoliCC’s exami-
nation fails delivering no data to the destination app, thus repelling the attack.

(b) For the eavesdropping attack, whether the IP Verifi- cation V’s per-
missions are sufficient or not, the Android ICC always delivers a raw IP address,
thus leaking the data to V. In contrast, when V’s permission set is smaller than
that of the source app, PoliCC delivers convergently encrypted IP address. Al-
though V cannot access the raw data, it can still validate the host IP using the
received encrypted IP address (column “Operations”).

(c) For the permission escalation attack, similar to the attacks above, the
Android ICC always delivers an explicit Intent with a raw geolocation to the
distance estimater (DE), so the attack succeeds in exfiltrating the sensitive
geolocation. In contrast, PoliCC Intent data’s encryption status is determined
by the source/destination permission relationship. When DE has insufficient per-
missions, PoliCC delivers homomorphically encrypted longitude and latitude
values, so their raw values are not leaked. More importantly, DE can still perform
its distance estimation operation to approximate the distance by computing with
the encrypted values.

In summary, the Android ICC leaves the data vulnerable to all three attacks,
while PoliCC prevents these attacks and still preserves the ability of untrusted
destination apps to operate on the received encrypted message data.

(2) Case study with real-world apps.

Case 1 (interception): (a) QKSMS acts as the malicious app that intercepts the
implicit Intents sent by Mylocation. In the original setup, QKSMS always obtains
the raw geolocation value. With PoliCC, since QKSMS lacks the geolocation per-
missions, it obtains only a homomorphically encrypted geolocation. With the
geolocation permissions added to QKSMS’s manifest file, it is the end-user who
determines the app’s data access by granting or declining the geolocation per-
missions, so QKSMS obtains the raw or encrypted geolocation values, respectively.

(b) Intent Intercept acts as the malicious app that intercepts the implicit
Intents. The app is configured to always obtain the implicit Intents sent by
Mylocation. However, as it lacks GPS permissions, Intent Intercept can only
access geolocation data that is homomorphically encrypted, so the raw geoloca-
tions are never leaked.

Case 2 (eavesdropping): To execute an eavesdropping attack, Mylocation
sends the same Intent as in Case 1 via an added sendBroadcast. QKSMS receives
this Intent via an added broadcast receiver, registered for the ACTION_SEND ac-
tion. In the original setup, QKSMS always obtains the raw geolocation, irrespec-
tive of whether the end-user grants/declines the geolocation permissions. With
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PoliCC, it is the end-user who determines the app’s data access by granting
or declining the geolocation permissions, so QKSMS obtains the raw or encrypted
geolocation values, respectively.

Case 3 (permission escalation): To execute a permission escalation attack,
Mylocation creates an explicit Intent containing a geolocation, sending it to
an added Activity in QKSMS. In the original setup, this permission escalation
attack always succeeds. With PoliCC, the attack always fails, as long as QKSMS
has no geolocation permissions.

Q2. Cost. Table 2 (at the top) shows PoliCC’s overheads. Specifically, PoliCC’s
startActivity increases T by 28.3ms, Eapp by 0.8J, and ∆Esys by 1mW; send-
Broadcast increases T by 40.4ms, Eapp by 0.5J, ∆Esys by 2mW, as compared to
the Android ICC counterparts. Table 2 (at the bottom) breaks down the execu-
tion time per each PoliCC procedure. In both startActivity and sendBroadcast,
the Sending/Receiving Points perform similarly: these procedures’ hook and re-
encapsulation mechanisms are fixed for all operations.

Since PoliCC increases T by 40.4ms (43.2 - 2.8 in sendBroadcast column) at
most, its execution time overheads are in line with other related solutions (e.g.,
[29]’s performance overhead is ≈39ms), with the total latency much lower than
the Android response time limit (5000 ms [24]). Also, since PoliCC increases
Eapp by 0.8J (8.7 - 7.9 in sendActivity column) and ∆Esys by 2mW (20 -
18) at most, its energy consumption overheads are negligible. It is PoliCC’s
protection mechanisms (i.e., re-encapsulation, encryption/decryption) that incur
these performance and energy overheads.

Table 2. PoliCC’s Overheads (milliseconds–ms, Joules–J, milliwatt–mW)

ICCs
startActivity
(T / Eapp / ∆Esys)*

sendBroadcast
(T / Eapp / ∆Esys)*

Android ICC 57.0 ms / 7.9 J / 37 mW↑ 2.8 ms / 5.3 J / 18 mW↑
PoliCC 85.3 ms / 8.7 J / 38 mW↑ 43.2 ms / 5.8 J / 20 mW↑

Operations Sending Point Receiving Point

startActivity 28.2 ms 13.5 ms
sendBroadcast 28.8 ms 9.5 ms

* T : execution time (ms); Eapp: energy consumed by source/destination apps (J);
∆Esys: additional system energy consumed by ICCs (mW).

Q3. Effort. We first confirm PoliCC’s portability by testing its operations on
three Android devices/versions: Nexus 6/Android 7.1.1, Moto X/Android 5.1,
and Moto G2/Android 5.1.1 by running our subject apps on these devices in
different combinations. This test has not revealed any deployment and opera-
tional issues. For source apps, the PoliCC API is indistinguishable from that
of the Android ICC as well as for sufficiently permitted destination apps, as the
delivered Polymorphic Intents return raw data. With insufficient permissions,
additional code is required in destination apps to handle the delivered homo-
morphically/convergently encrypted data.
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Nevertheless, the extra programming effort is small, as Table 3 demonstrates:
in the source apps, PoliCC requires no deviation from the familiar Android ICC
API (column “Send”). In the destination apps, the code for retrieving, using,
and creating int/Integer/BigInteger and String objects require extra lines of
code (columns “Retrieve”, “Use”, and “Create”): (a) For BigInteger and String

objects (columns “BigInt.” and “Str.”), due to the inheritance hierarchies of
their operations, the code for retrieving them is indistinguishable between the
Android ICC and PoliCC (column “Retrieve”). To use the retrieved String

object, 1 extra LOC is required to separate its convergently encrypted value. To
use the retrieved BigInteger object, 1 extra LOC is required to check whether
the data is homomorphically encrypted (column “Use”). (b) For int/Integer
values (columns “int”/“Int.”), their original receiving and operating methods are
replaced with HEInteger’s methods (add, subtract, and multiply), taking 4 extra
LOCs at most (columns “Retrieve” and “Use”). Finally, it takes 3 extra LOC
to create homomorphically and convergently encrypted int/Integer/BigInteger
and String values (column “Create”).

Table 3. PoliCC’s Extra Prog. Effort (ULOC)

Send
Retrieve Use Create

int/Int./BigInt. Str. int/Int./BigInt. Str. int/Int./BigInt. Str.

0 1/1/0 0 4/4/1 1 3/3/3 3

6.4 Discussion

PoliCC’s HTPD implementation may suffer from false positives/negatives if
app permissions are granted incorrectly. This limitation can be mitigated by no-
tifying users of potential security attacks. As an extra feature (§ 4.2), PoliCC’s
Notify module can be configured to report the transmission information (e.g.,
source/destination, permissions, data types, actions) to the user, who can then
stop the delivery of any PoliCC Intents. Further, the Notify module can also
mitigate the denial of service attacks: it can detect and block notifications floods
from any source app. PoliCC performs Hook mechanism via Xposed. Note
that we use Xposed to create a viable proof of concept to be able to evaluate
PoliCC’s security-enhancing properties. To commercially deploy HTPD, one
can fully integrate it and its mechanisms with any Android release and other
mobile platforms, despite the peculiarities of our reference implementation.

7 Related Work

Data flow & ICC calls Monitoring. Most of the existing solutions coun-
teract data leakage attacks by monitoring the data flow or ICC calls. Taint-
Droid [20] traces data flows by labeling sensitive data and transitively applying
labels as the data propagates through program variables, files, and interprocess
messages. If any tainted data is to leave the system via a sink (e.g., network
interface), the system notifies the user about the coming data leakage. Flow-
Droid [8] applies static taint analysis to check if any app lifecycle contains data
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leaks. XManDroid [12] tracks and analyzes the ICC data transferred in Intent
objects at runtime to enforce the app’s compliance with the defined permis-
sion policy. QUIRE [18] enables users to examine and terminate the chain of
requests associated with an ICC call. ComDroid [16] statically analyzes *.dex
binaries of Android apps to log potential component vulnerabilities. Besides,
ComDroid tracks how an Intent object changes moving from its source to des-
tination. Other state-of-the-art Intent vulnerabilities detectors (e.g., IccTa [31],
DINA [6], DroidRA [33], SEALANT [30], IntentScope [28]) further improve the
above methods for monitoring data flows & ICC calls. However, their reliance on
overly restrictive policies prevents them from supporting Android application-
specific data flows, also causing false-positives when data flows change unpre-
dictably. In contrast, HTPD model systematically defends against data leakage
attacks, requiring neither data flow nor call chain tracking.
Encryption. Homomorphic encryption enables computational operations on
ciphertext, with some prior applications to mobile cloud computing. Carpov
et al. [14] use homomorphic encryption to preserve the privacy of cloud-based
health data. Drosatos et al. [19] use homomorphic encryption to preserve the
privacy of crowd-sourced data accessed via the cloud. Besides, homomorphic
encryption also can be used to compute the proximity of users in mobile so-
cial networks: Carter et al. [15] use homomorphic encryption to find common
locations and friends via private set intersection operations that preserve user
privacy. Convergently encrypted ciphertext can be compared, so this encryption
can securely identify duplicated records. Bennett et al.’s convergent encryption-
based encoding scheme allows boolean searches on ciphertext [9]. Anderson et
al. apply convergent encryption to securely de-duplicate the number of backup
files [7]. Wilcox-O’Hearn et al. apply convergent encryption to build a secure
distributed storage [39]. PoliCC brings homomorphic / convergent encryption
to mobile computing to secure message-based communication while enabling
untrusted apps to execute useful operations.

8 Conclusions
We have presented HTPD, hidden transmission and polymorphic delivery, a
novel message-based communication model that secures message-based commu-
nication while allowing untrusted apps to operate on the received message data.
As a reference implementation of HTPD, PoliCC plug-in replaces and extends
Android ICC to defend against common data leakage attacks, while also pro-
viding a uniform API for transmitting Intents. Our evaluation confirms that
PoliCC effectively prevents interception, eavesdropping, and permission esca-
lation attacks, with low performance costs and programming effort overheads.
In addition, we hope that our work would lead to HE and CE becoming widely
accepted in the design space of mobile message-based communication.
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