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Abstract Using cloud-based services can improve the performance, reliability,
and scalability of a software application. However, transitioning an application
to use cloud-based services is difficult, costly, and error-prone. The required
re-engineering effort includes migrating to the cloud the functionality to be
accessed as remote cloud-based services and re-targeting the client code ac-
cordingly. In addition, the client must be able to detect and handle the faults
raised in the process of invoking the services. As a means of streamlining this
transitioning, we developed a set of refactoring techniques—automated, IDE-
assisted program transformations that eliminate the need to change programs
by hand. In particular, we show how a programmer can extract services, add
fault tolerance functionality, and adapt client code to invoke cloud services via
refactorings integrated with a modern IDE. As a validation, we have applied
our approach to automatically transform two third-party Java applications to
use cloud-based services. We have also applied our approach to re-engineer a
suite of services operated by General Electric to use cloud-based resources to
better satisfy the GE business requirements.

Keywords cloud computing - services - refactoring - service extraction -
fault-tolerance - program transformation.

1 Introduction

One of the foundations of cloud computing is Software-as-a-Service (SaaS), a
computing paradigm in which clients access a piece of remote, cloud-hosted
functionality through a public interface. To take advantage of cloud-based ser-
vices, centralized software applications must be re-engineered, so that a portion
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of their functionality is hosted in the cloud. One may want to replace an exist-
ing application functionality with an equivalent cloud-based service for a vari-
ety of reasons, both business and technical. Replacing a locally implemented
functionality with a remotely maintained service reduces the maintenance bur-
den. A service provider can more effectively improve quality and reduce costs
by leveraging the economies of scale, when the same service is used by multiple
clients. A service may have access to computing resources that are superior to
the resources of a local machine. Services often conglomerate other services,
thus offering additional benefits. For example, if a service persists user data, it
is likely to offer backup and restoration facilities not common outside of large
server infrastructures.

Using cloud-based services has become a common avenue for leveraging
remote computing resources, with the benefits that include reduced costs, in-
creased automation, greater flexibility, and enhanced mobility [3]. Despite all
the benefits of leveraging cloud-based resources, transitioning a centralized
application to effectively use remote services requires extensive changes to
the application’s source code. In addition, the possibility of partial failure re-
quires that proper fault handling functionality be added to any application
that invokes services remotely. As a result, programmers manually transition
applications to use cloud-based services, changing code in difficult, costly, and
error-prone ways. Therefore, there is great potential benefit in automating
these changes and making the automation available to the software engineer-
ing community.

A popular technique for automating common program transformations is
called a refactoring. Defined generally, a refactoring is a semantics preserving
program transformation performed under programmer control [10]. In other
words, refactoring is automated: a programmer determines if a refactoring
should be performed and then engages a refactoring engine that transforms the
code automatically. In this article, we advocate the vision of using refactoring
as a means of facilitating the transitioning to cloud-based services. We argue
that transitioning an application to take advantage of cloud-based services
preserves the application’s semantics in the sense that the overall functionality
does not change. Executing some functionality in the cloud does not change
the semantics from the end user’s perspective.

This article presents a set of refactoring techniques that facilitate the pro-
cess of transforming centralized applications to use cloud-based services. These
techniques automate the program transformations required to (1) render por-
tions of functionality of a centralized applications as cloud-based services and
re-target the application to access the services remotely; (2) handle failures
that can be raised in the process of invoking a cloud-based service; and (3)
switch a service client to use an alternate, equivalent cloud-based service. These
refactoring techniques—collectively named Cloud Refactoring—have been con-
cretely implemented in the context of the Eclipse IDE and added to its refac-
toring engine.

To validate Cloud Refactoring, we applied its constituent refactoring tech-
niques to transform two centralized, monolithic Java applications to use cloud-
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based services. We also applied Cloud Refactoring to re-engineer a commercial
application used by General Electric (GE) to use cloud-based services in an
effort to demonstrate how refactoring can help realize the GE strategic vision
to take advantage of cloud computing.

Our results indicate that Cloud Refactoring can be a powerful tool for the
programmer charged with the task of transitioning a centralized application to
one that uses cloud-based services. Not only can Cloud Refactoring transform
code with a high degree of automation, but it can also properly account for the
demands of distributed execution. Thus, Cloud Refactoring represents a ro-
bust and pragmatic approach that can reduce maintenance costs and increase
programmer productivity.

The rest of this article is structured as follows. Section 2 motivates our
approach and then introduces the main technologies discussed in this article.
Section 3 describes the new refactoring techniques. Section 4 reports our ex-
periences of applying Cloud Refactoring to third-party applications. Section
5 compares our approach to the existing state of the art. Finally, Section 6
presents future work directions and concluding remarks.

2 Motivation and Technical Background

In this section, we introduce an example that motivates this research and then
provide a technical background our approach uses.

2.1 Motivating Example

Consider JNotes !, a third-party diary and project management application
written to run on a single desktop machine. Our goal is to refactor JNotes into
a cloud-based application, with the server part deployed on a remote server
and the client part accessed from a mobile device. This transformation offers
several advantages. All the JNotes documents and calendars can be saved at
the remote server, whose file system can be regularly backedup and replicated,
so that data consistency will not suffer from a failure of the client’s file system.
Furthermore, through a simple change in server deployment, JNotes can be
made into a collaborative application, with multiple clients sharing the same
server components.

A major technical impediment to realizing the transitioning outlined above
is that maintenance programmers have to change the application’s source code
by hand. JNotes is a typical centralized application that comprises a collection
of Java classes. Splitting JNotes into the service and client parts, deploying the
services in the cloud, and having the parts communicate with each other reli-
ably can quickly turn into a complex programming undertaking. Furthermore,
the resulting cloud-based application is likely to contain software imperfec-
tions, commonly introduced when manipulating code by hand.

1 http://memoranda.sourceforge.net



4 Young-Woo Kwon, Eli Tilevich

Although software frameworks have been introduced to ease rendering
classes as Web services, the classes must adhere to a rigid set of architectural
conventions. Thus, it is unlikely that these frameworks can help transition
arbitrary classes to Web services. As an example, consider JAX-WS [11], a
framework that represents a significant industry effort to simplify the devel-
opment and deployment of Web services. With JAX-WS, a programmer can
export a standard Java class as a Web service by annotating the class with
@WebService and the the class’s methods with @iebMethod. A code genera-
tion tool that comes with JAX-WS reads these annotations and creates all the
required supporting harness to exposes and deploy the annotated methods as
XML-based Web services.

However, this service extraction model simply renders existing methods
as Web services without any consideration for the resulting performance and
reliability. To ensure good performance and high reliability, the classes that
are to become Web services may need to be restructured first. For example,
a service may need to use only a subset of the class’s fields, thus requiring
splitting the class into client and server partitions.

Consider moving class FileStorage to the cloud as a means of saving all
the JNotes documents in a shared cloud storage. With JAX-WS;, the program-
mer can transform the entire class with all its methods into a Web service.
Unfortunately, this “all or nothing” inflexible distribution model may fall short
of meeting the needs of realistic applications. For example, some functional-
ity in FileStorage pertains to local file paths, and as such should not be
moved to the cloud. That is, the functionality tied to the client environment
cannot be moved. More specifically, the programmer needs to split methods
storeResourcesList(...) and openResourcesList(..) from the rest of the
class before it is transformed into a remote service.

The refactoring approach that we advocate here enables the required level
of flexibility when transforming classes into remote services. Our Eztract Ser-
vice refactoring takes as input a class name and a set of methods that are to
be rendered as a remote service. This refactoring then transforms the given
methods into remote service methods, leaves the remaining methods on the
client, rewrites all communication between the original and remote methods
into remote service calls.

Because centralized and distributed applications have different failure modes,
simply rendering a subset of a centralized application remote does not preserve
the semantics. Distributed applications are subject to partial failure, in which
its different components (client, server, or network) may fail independently
from each other. Although one cannot handle all the possible failures in a dis-
tributed application, some failures have well-known handling strategies. Thus,
to better preserve the original execution semantics, the Fxtract Service refac-
toring also adds client-side fault tolerance functionality as specified by the
programmer. For example, the programmer may specify that an unsuccessful
attempt to reach a service be repeated a given number of times. In our ap-
proach, the programmer can specify and configure the fault tolerance strategies
to apply by means of an XML-based domain-specific language.
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Finally, a service application may need to use more than one service im-
plementation for a given functionality. For example, in the case when one
service implementation is not available, the client should switch to using a
different service, whose method interface is different from that used by the
original service implementation. Thus, the client code will need to be adapted
to use different service interfaces. The Adapt Service Interface refactoring au-
tomates the transformations required to be able to switch the client to using
an equivalent service exposed through an incompatible service interface.

2.2 Technical Background

In the following discussion, we provide an overview of the cloud and service
computing technologies used in this article.

2.2.1 Cloud Computing and Services

Cloud computing provisions resources on-demand through three main virtual-
ization approaches: (1) infrastructure virtualization—provisioning computing
power, storage, and machine (e.g., Amazon EC2); (2) platform virtualization—
provisioning operating systems, application servers, and databases (e.g., Ama-
zon S3); (3) software virtualization—provisioning complete Web-based appli-
cations (e.g., Salesforce.com). The main benefits of cloud computing in-
clude elasticity, scalability, and availability. From the software development
perspective, however, taking advantage of cloud computing requires that the
programmer follow a strict set of architectural and design guidelines.

Service Oriented Architecture (SOA) provides uniform access to a variety
of computing resources across multiple application domains. Loosely coupled
services may be co-located in the same address space or be geographically
dispersed across the network. Among the software engineering advantages of
services are strong encapsulation, loose coupling, ease of reusability, and stan-
dardized discovery. In addition, due to the strong separation between service
interfaces and implementations, service developers have the flexibility to mix
any middleware platforms and applications as well as to switch service in-
frastructures without affecting service clients. It is these desirable software
engineering properties that made SOA a widely used paradigm for realizing
cloud computing solutions.

2.2.2 OSGi Framework as a Cloud Computing Platform

Open Service Gateway Initiative (OSGi) [25]—a service implementation and
provisioning infrastructure—has been embraced by numerous industry and re-
search stakeholders, organized into the OSGi Alliance 2. As a service platform,

2 Open-source OSGi implementations include Apache Felix (http://felix.apache.org/
site/index.html) and Knopflerfish (http://www.knopflerfish.org). Among large commer-
cial OSGi projects are the Spring Framework (http://www.springsource.org/) and the
Eclipse IDE (http://www.eclipse.org/equinox/).
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OSGi can render any Java class as a service bundle. OSGi manages published
bundles, allowing them to use each other’s services through public interfaces.
OSGi manages the lifecycle of a bundle (i.e., moving between install, start,
stop, update, and delete stages) and allows it to be added and removed at
runtime.

OSGi has made substantial inroads into the domain of cloud computing.
Some enterprises have adopted OSGi as the platform for realizing their private
clouds [26]. In light of these developments, a consortium of major industry
and academia stakeholders has issued the Request for Proposal (RFP) 133
[24], which codifies how OSGi should be leveraged as a platform for cloud
computing.

3 Our Approach: Cloud Refactoring

The goal of our approach is to alleviate the code transformation hurdles in-
volved in adapting existing applications to take advantage of cloud-based ser-
vices. To reduce development efforts/costs and increase programmer produc-
tivity, we have expressed as refactorings several common program transfor-
mations that programmers perform when adapting applications to use cloud-
based resources. Although our approach is not fully automatic, programmers
only determine if the source code should be transformed. The actual transfor-
mations are performed by a refactoring engine. In the following discussion, we
first give an overview of our approach and then detail its individual parts.

3.1 Approach Overview

Our approach focuses on those common program transformations occurring
when using cloud-based services that are well-amenable to be expressed as a
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refactoring. In particular, we focus on three software re-engineering scenarios.
One scenario involves moving some of a centralized application’s functionality
to the cloud. The second scenario involves adding fault tolerance functionality
to the client to handle the faults raised during the invocation of a cloud-based
service. The third scenario involves switching an application to use an alternate
cloud-based service exposed through a different service interface.

Figure 1 shows how the constituent components of our approach fit to-
gether. The two main parts of our approach are The Recommendation Engine
and The Refactoring Engine. The recommendation engine uses static and dy-
namic program analysis techniques to infer class coupling; this optional com-
ponent can inform the programmer about which classes can be converted into a
cloud-based service. The two refactoring techniques of the refactoring engine
are intended be used a la carte. By integrating the engine with the Eclipse
IDE, our approach makes it possible to use the new refactoring techniques
indistinguishably from the existing ones. Furthermore, some of the existing,
widely used refactoring techniques can be quite useful for applications that
use cloud-based services. For example, Extract Service refactoring can be used
to move a method to a class prior to converting that class to a cloud-based
service.

3.2 Service Recommendation

To make sure that moving functionality to the cloud does not render the
application unusable due to exploding latency costs, programmers should use
service components rather than individual objects as a distribution boundary.
Because few existing applications consist of service components, programmers
should first ensure that an intended service is not tightly coupled with the rest
of the application. For example, they can apply a Facade pattern that exposes
some tightly coupled functionality through a crude-grained interface.

Nevertheless, it may be difficult to determine which functionality is a good
candidate to be exposed as a cloud-based service. To that end, our approach
provides a recommender tool that computes the coupling metrics for all the
classes in an application and then displays the classes that are least tightly
coupled. Accessing the functionality represented by these classes from a remote
cloud-based service should impose only a limited performance penalty on the
refactored application.

Figure 2 shows the process diagram for identifying classes that can be
converted into cloud-based services. Our approach leverages two recommenda-
tion mechanisms: profiling- and clustering-based recommenders. The profiling-
based recommender engages a static program analysis and runtime monitor-
ing to collect program information. By combining the class coupling metrics
collected through both static analysis and runtime monitoring, the recom-
mendation algorithm then suggests a subset of an application that can be
transformed to cloud-based services. The profiling-based recommender sorts
application classes based on their execution duration and frequencies, so that
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Fig. 2 Service recommendation process.

the programmer can know what classes are computation-intensive and how fre-
quently they are accessed. The clustering-based recommender clusters classes
with similar functionality, thus identifying class clusters whose functionality
can be naturally exposed as a cloud-based service. Because the clustering-
based recommender groups classes based on their functionality, the program-
mer can avoid duplicating a functionality in the cloud by selecting candidates
for cloud-based service from different clusters.

Note that these recommendation mechanisms are provided as a tool that
can inform the programmer about the properties of the applications about to
undergo a refactoring. The programmer is ultimately responsible for deciding
which classes should be transformed into cloud-based services and even if the
transformation should take place to begin with. This design choice is in line
with the automated nature of our refactoring techniques. In the following
discussion, we describe our two recommendation mechanisms in detail.

3.2.1 Profiling-based Recommendation

In essence, the recommender strives to find a distribution strategy that would
not render the application unusable due to the drastically increased latencies
of invoking tightly coupled methods across the network. Because the recom-
mender only takes the coupling metrics into consideration, it cannot produce a
recommendation that is guaranteed to always exhibit a superior performance.
Other factors, such as business logic and system resources used, can impact
the performance drastically. As a result, the programmer can only use the
recommender as a tool to explore the coupling metrics of the refactored appli-
cation rather than as an absolute arbiter that determines which functionality
is to be extracted into remote services.

Figure 3 shows our service recommendation algorithm that operates on a
class relation graph. Given a graph, the algorithm calculates a service utility



Cloud Refactoring: Automated Transitioning to Cloud-Based Services 9

INPUT: A class relation graph, CRG
OUTPUT: A set CS = {c1,c2,...,cn} of possible remote classes

classes <— calculateUtility(C RG);
destinations «— edgesOutOf(class);

while (destinations # () do
class «— destinations.next();
utility <— class.getUtility();
coupling «— class.getCoupling();
if (utility > util_threshold && coupling < coup_threshold) then
CS.add(class);
end if
destinations <— edgesOutOf(class);
end while

Fig. 3 Profiling-based service recommendation algorithm

value for each class in the program, a rank that expresses how fit a class is
to be rendered as a cloud-based service. Specifically, the algorithm uses the
service utility function defined as follows:

N;

T;
F(i) = WegX — — + W, .
@)= > {Wax W X N AX (No, o N

MAX(To, ., Tn) }

i€edges
where N, T, and W denote execution number, execution time, and weight
to each measurement metric, respectively. If W, is larger than Wj, classes
related to business logic will be suggested. Conversely, if Wy is larger than
W, frequently accessed classes will be suggested. Then, we defined our own
coupling metrics as follows:

> (eiNey)

CP(i,j) = CC(i,5) + CR(,5) = Zofhops T Sei5s;

where CP, CC and CR denote coupling, class connectivity, and class rela-
tion values. Class connectivity, CC', denotes how the given two classes are
closely connected. If class x; has lower hops to go class x;, they are strongly
connected. If x; and z, are directly connected, CC(i,j) is 1. Otherwise,
CC(i,j) = m. Class relation, CR, denotes how the given two classes
are related. If class z; creates, reads, writes, and invokes only class x;, class
x; is tightly related to class z;. CR is computed using the number of in/out
edges from the given class to other classes. Then, the algorithm described tra-
verses the graph from the root to the leaf nodes and then suggests cloud-based
service candidates based on the calculated service utility values. Based on this
suggestion, programmers can then choose classes that are suitable candidates
for cloud migration.

3.2.2 Spectral Clustering-based Recommendation

The second recommender clusters related classes together. In recent years,
spectral clustering has become one of the most widely used clustering algo-
rithms. Spectral clustering techniques make use of the spectrum of the simi-
larity matrix of the data to perform dimensionality reduction for clustering in
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INPUT: A class relation graph, CRG
OUTPUT: A set CS = {c1,c2,...,cn} of possible remote classes

cluster Num <— 2; //initialize the number of clusters
while (true) do

SIM <— constructSimilarityMatrix(C RG);

cluster <— buildCluster(SIM, cluster Num);

if (cluster = 0) then exit; end if

while (cluster # () do
class <— cluster.next();
if (class is accessed from other clusters) then
CRG.remove(class);
CS.add(class);
end if
end while

clusterNum <— clusterNum + 1; //increase the number of clusters
end while

Fig. 4 Clustering-based service recommendation algorithm.

fewer dimensions. Given a set of data points z1,...,z, and similarity S(¢,7)
between all pairs of data points z; and x;, the similarity matrix is defined as
S. If the similarity S(i,j) between the corresponding data points z; and xz;
is positive, two vertexes are connected. The similarity matrix is computed as
follows:

S(i,7) = CC(4,5) + CR(3,5) + D(i,5) + L(4,5) + T(3,7)

where CC, CR, D, L and T denote class connectivity, class relation, class
distance, library usage, and type similarity, respectively. We use the same
formula to compute CC' and CR, which are defined above. Class distance,
D(i,7) is calculated using the Levenshtein distance algorithm [16]. If z; and
x; have the same package name, these classes are considered more similar to
each other that classes in different packages. With respect to library usage, L
shows how the relationship between two classes in terms of the similarity of the
libraries they use. Using the same library indicates a similarity in functionality.
If 2; and x; use the same libraries, their L(4, j) is 1. Otherwise, their L(7, ) is
0. Finally, type similarity, 7', denotes the similarity of classes in terms of their
types. If the classes implement the same interfaces or inherit from the same
super class, their T'(¢,7) is 1. Otherwise, their T'(¢,7) is 0.

Figure 4 shows the clustering-based service recommendation algorithm,
which is parameterized with a class relation graph. First, the graph’s simi-
larity matrix is constructed. Since each node of the graph has method/class
information, the similarity between each pair of classes is calculated accord-
ing to their similarity metrics. Then, a recursive spectral clustering algorithm
continuously partitions the similarity matrix until it reaches the base case (the
partition size equals 1).
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3.2.8 Constraints on Extracting Cloud-Based Services

Not all classes can be easily migrated into remote, cloud-based services. Var-
ious constraints make it impossible to refactor some classes for cloud-based
execution. These constraints pertain to the use of local resources, parameter
passing, and serialization. Classes that make use of local resources, such as
databases, disk files, and sensors cannot be moved to be executed by a dif-
ferent host. In our refactoring approach, we assume that the programmer is
aware of such local resource usage and would not try to migrate the affected
classes to the cloud. Our refactoring techniques can only pass by-copy param-
eters, which includes primitive and read-only parameters. The classes whose
methods contain other types of parameters cannot be transformed into cloud-
based services; our recommenders identify and exclude such classes. Finally,
OSGi requires that non-primitive remote method parameters be serializable
and attempts to automatically serialize them.

Next, we describe two refactoring techniques that form the foundation of
Cloud Refactoring: 1) Extract Service and 2) Adapt Service Interface.

3.3 Cloud Refactoring—1) Extract Service

Extract Service refactoring automates the program transformations required
to transform regular classes into remote services. A typical Fxtract Service
refactoring performs the following four program transformations: 1) rewrite a
class making all its methods into remote service methods, 2) partition class
methods into service methods and regular methods, rewriting all the commu-
nication between the two into remote service calls, 3) re-target all clients of
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the original class to access its functionality in the cloud by means of remote
service calls, and 4) add fault handling functionality to client code.

3.8.1 Transforming Program Code to Extract Services

Figure 5 shows local classes A and B can be transformed by means of the Eztract
Service refactoring, so that B becomes a fault tolerant cloud-based service. At
the server side, class B is exposed via a generated interface IB and class B
becomes wrapped into an instance of class WrapperB. The exposed service
interface IB can be invoked via standard service protocols (e.g., HTTP-SOAP,
REST, etc). At the client side, class A imports the service via interface IB,
with the original class B at the client being replaced with a generated proxy
class. This example demonstrates the transformation of all the methods in
a class into cloud-based services. If only a subset of the methods are to be
transformed into services, additional transformations are necessary.

Client Server

Remote

Calls Proxy of

Wrapper,
B

I Implements

V

Interface IB

Fig. 6 Splitting a proxy into two parts.

To split a class, the refactoring engine takes as input its name and then
either a set of fields or methods to move to the cloud. If the refactoring input
is specified by means of fields, the selected fields and the methods accessing
them are moved to the cloud. If the refactoring input is specified in terms of
methods, the selected methods and the fields accessed by them are moved to
the cloud. Figure 6 shows how the refactoring engine splits class B to redirect
all the invocations to class B to the cloud-based service interface IB and the
local object LB. Figure 7 shows an automatically generated proxy class, which
redirects all the invocations to class B to the cloud-based service interface IB
and the local object LB.

3.3.2 Handling Service Faults

Whether some functionality is accessed locally or remotely across the network
should not change the application’s functionality if not for the presence of
partial failure. Unlike in a centralized application, components of cloud-based
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public class B { /* Re—targeted methods x/
private IB proxy; public String foo(int il, int i2) {
private LB local; return proxy.foo(il, i2);

}
public B() {
proxy = (IB) getService(IB.class); /* Remaining methods %/
local = new LB(); public void bar() { local.bar() }

}

Fig. 7 Generating a proxy class.

services can fail independently, making such failures difficult to diagnose and
handle. Such failures must be handled effectively not only to ensure the over-
all application utility and safety, but to preserve the semantics of the original
centralized applications. Thus, any refactoring technique that separates any
functionality to be accessed remotely must take the issue of remote failures
into consideration. In our approach, the Extract Service refactoring automati-
cally adds well-known fault tolerance strategies configured through a domain-
specific language.

Because it would be impossible to handle all possible errors, our refactoring
approach focuses on well-known strategies for handling common faults, such
as network volatility, service outages, and internal service errors. The gen-
erated fault tolerance functionality includes both detection and handling. A
fault can be detected via timeout mechanism, exception handling, or runtime
execution monitoring. Then, the detected faults should be properly handled to
keep continuing the required functionality. Figure 8 shows these fault-handling
procedures. First, a service administrator needs to provide fault tolerance de-
scriptions written in Fault-Tolerance Description Language (FTDL) [8,14], a
domain-specific language we have developed earlier for expressing fault han-
dling strategies. These descriptions parameterize a fault handling component
that detects the specified faults and then counteracts their effect by executing
the specified handling strategies. The refactoring engine inserts all the required
fault handling code into proxy classes.

g Application
Cloufi ?ervice Hardening
Administrator Component Fault Tolerance

l Runtime System

Fault Tolerance 1t DI .
Description Interpreter  —p 4|—'> Fault Diagnosis
v

Strategy Manager

Hardening
Components

Fig. 8 Overview of fault handling.
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<ftdl>
<service uri=[remote address| method=[method name|/>
<condition>
<timeout>[0—9]*< /timeout>
<exception>[exception types|</exception>
< /condition>
<strategy>
<!— attributions for the retry strategy ——>
<retry numRetries=[0—9]* backoffInterval=[0—9]x
backoffType=["exponential" | "linear"] />

<!— attributions for the sequential strategy ——>
<sequential numRetries=[0—9]* backoffInterval=[0—9]x
backoffType=["exponential” | "linear"] >
<service uri=[http://remote] />

< /sequential>
<!— attributions for the user defined strategy ——>

<defined>
<handling name=[fault handling name| />

< /defined>
< /strategy>
</ftdl>

Fig. 9 FTDL constructs.

Fault Tolerance Description Language

One of the key novelties of our refactoring approach is using a domain-specific
language to configure a refactoring engine to synthesize fault tolerance func-
tionality. In our previous work [8,14], we explored how remote services can
be made resilient against failures using domain-specific languages—Hardening
Policy Language (HPL) [14] and Fault Tolerance Description Language (FTDL)
[8]. In this work, we combined the features of these two languages—language
constructs from FTDL and a runtime system from HPL— to create a refactor-
ing transformation that automatically adds fault tolerance functionality. Fig-
ure 9 shows how FTDL is used by the refactoring infrastructure. The FTDL
design has striven to combine expressiveness and ease of use. The specific de-
sign goals of FTDL have included: Ezpressiveness—a programmer should be
able to express any kind of fault easily, with the resulting code being easy
to understand, maintain, and evolve; Ezxtensibility—it should be possible to
integrate existing fault tolerance strategies with FTDL strategies; Platform In-
dependence—FTDL strategies should be service platform independent, with
the same strategy capable to counteract a fault raised by any service imple-
mentation.
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Fault Tolerance Strategies

Traditionally, fault handling functionality in services computing tends to follow
well-defined patterns. To render services reliable, representative approaches
replicate SOAP web services [6,9,18], introduce transactional processing [19],
and add fault handling code to server and client sides of a service-oriented
application [27,33].

Our approach focuses on client-side fault handling for the faults caused
by network volatility, service outages, and internal service errors. The first
step in handling a fault is detecting it. The fault conditions can be detected
via timeout mechanism, exception handling, or runtime execution monitoring.
In the context of service-oriented applications, the following fault tolerance
strategies are used quite commonly:

Retry The strategy that is arguably employed most widely is Retry, which,
for a given number of times, reattempts to invoke a service in response to a
failure.

Sequential Another common strategy is Sequential, which is also known as
passive replication. This strategy iterates through different endpoints of a ser-
vice when encountering a failure. For instance, when experiencing a timeout
in response to invoking the service endpoint at a.com/foo, b.com/foo can be
invoked next. This strategy, thus, increases the probability that some invoca-
tion will finally succeed. The term passive replication refers to the fact that
this strategy does not kick in until a failure occurs.

Parallel An example of a more complex strategy is Parallel, which actively
replicates a service, to invoke endpoints concurrently as a mechanism to coun-
teract potential service unavailability. For example, both endpoints a.com/foo
and b.com/foo would be invoked simultaneously. As a form of speculative
parallel execution, this strategy proceeds with the first successfully executed
request.

Composite Because a single strategy may not be sufficient, software designers
often combine multiple strategies. For example, all the heretofore described
strategies can be combined into composite strategies.

Generating Foult Handling Code

Figure 10 shows the fault handling functionality in a generated proxy class.
Specifically, this proxy handles all the raised exceptions by passing them to
method notify() in class FaultHandler. The fault handler is our light-weight
fault-handling runtime that can execute fault-handling strategies. The runtime
can execute both the standard fault tolerance strategies as well as the combina-
tions of thereof. The standard strategies include retry, sequential, and parallel.
These strategies can be combined in arbitrary ways into composite strategies
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public class B {

/* Fault handling code */
public String foo(int i1, int i2) {
try {
return proxy.foo(il, i2);
} catch(CloudServiceException e) {
return FaultHandler.notify(new Fault(...));

public class MyFaultHandling implements FaultListener {
public Object faultNotified(Object service, Method m, Object[] params) {
//retry the failed service invocation

Fig. 10 Automatically generated fault handling code.

by writing a simple FTDL script. To specialize fault handling even further,
one can implement any required fault-handling strategy by implementing in-
terface FaultListener. The fault tolerance strategies can be reused across
applications and can serve as building blocks for custom strategies.

The lightweight runtime system depicted in Figure 11 consists of a fault
diagnosis module and a strategy manager. The fault diagnosis module catches
raised exceptions or failures. The strategy manager associates exceptions with
fault tolerance strategies. In response to detecting an exception, the manager
initiates the handling strategy as configured by a given FTDL script. A strat-
egy implementation is simply a sequence of corrective actions whose execution
counteracts the effect of experiencing the fault. These actions are implemented
as part of a library. In our prior work, we have demonstrated the effectiveness
of this approach to improve the reliability of OSGi-based systems [14,15].

3.4 Cloud Refactoring—2) Adapt Service Interface

Cloud-based services expose their functionality through a set of public inter-
faces. It is also common that the same business functionality is offered by
more than one service provider. For various business and technical reasons,
an application may need to choose between multiple service providers for the
same functionality. For example, multiple services may need to be consulted
to check whether the information they provide is consistent. Multiple service
implementation can also be used for fault-tolerance purposes.

Services providing equivalent functionality are likely to have different ser-
vice interfaces. One option is to treat the invocation of different equivalent
services as unrelated. This way, the client code required to invoke the ser-
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Fig. 11 Fault tolerant runtime system.

vices is replicated for each service. Another option is to systematically adapt
one service’s client-side interface bindings for another service interface. This
adaptation is automated by means of the Adapt Service Interface refactoring.

The Adapt Service Interface refactoring automates the transformations re-
quired to apply the adapter pattern. Figure 12 shows how one service’s client
bindings can be adapted to use another service. As the first step, a programmer
should specify the differences between the original and adapted service inter-
faces. That is, the programmer uses our refactoring browser to map interface
method names to each other. Based on this method name mapping, the refac-
toring engine generates a skeletal implementation of the required adapter. The
programmer can then fill in this skeletal implementation with the adaptation
logic. For example, parameters can be simply reordered, missing parameters
provided, and extra parameters omitted.

Service 1
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Fig. 12 Procedure of service adaptation.
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As a specific example, consider switching the remote service invocations of
interface IB described in Section 3.3 to interface NewIB:

public interface NewIB {
String newFoo(int, int, int);

}

To switch services, our approach requires that the programmer provides the
original and adapted service interfaces. If the adapted service interface is not
available locally, the refactoring engine can automatically create one from a
WSDL document. Because most web services describe their operations as a
WSDL document, a Java interface describing the operations can be retrieved.
As mentioned above, programmers parameterize the refactoring engine by
mapping to each other the original and adapted service interfaces. Figure 13
shows how the adaptation code switches the old service invocations to an-
other service’s implementation. Figure 14 shows the automatically generated
adapter class. In this example, method foo() is being redirected to method
newFoo(). The refactoring engine generates an adapter class AdapterB which
is a singleton. If the adapted service methods differ in terms of their parameter
numbers or types, the programmer needs to write code to adapt the parame-
ters and/or return value. This part of the approach is manual, as parameter
adaptation is highly application-specific and thus cannot be automated.

3.5 Implementing Cloud Refactoring

Figure 15 shows the main components of the refactoring tool, which were
developed using several state-of-the-art software tools and libraries such as
Eclipse plug-ins, OSGi, and Soot Java analysis framework. The refactoring
tool consists of three components—1) GUI, 2) recommendation engine, and 3)

public class B implements IB { // Prozy class
public String foo (int il, int i2) {
try {
if (AdapterB.v().isAvailable()) { // Redirected service invocation
return AdapterB.v().foo(il, i2);

else { // Original service invocation
return rService.foo(il, i2);

} catch(CloudServiceException e) {
return FaultHandler.notify (new Fault(...));

Fig. 13 Automatically generated proxy class for service adaptation.
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public class AdapterB extends Adapter {
NewB rService;
AdapterB instance; //Singleton

private AdapterB() {
//Service retrieval from 0SGi remote service.
rService= ..

¥

public static AdapterB v() {

if(instance == null) instance = new AdapterB();
Method Foo() ——» newFoo() return instance;
}
intil intil :
Parameters | inti2 ><: inti2 public boolean isAvailable() {
L return (rService != null);
inti3 }
Return value | String ——m int
public String foo(int i1, int i2) {
int i3; //TODO: provide a value for i3
Object rl = rService.newFoo(i2, i1, i3);
String result = rl; //TODO: provide type cast for ril

return result;

¥

Fig. 14 Generating an adapter class from interface differences.

refactoring engine. The GUI part was implemented within the Eclipse-IDE’s
refactoring menus, so that a programmer can easily modify our refactoring and
extend the refactored application within the Eclipse-IDE. The recommenda-
tion engine was implemented using a static program analysis framework—the
Soot Java analysis framework, which manipulates and optimizes Java byte-
code. The static analyzer and trace analyzer compute relationships between
classes and the service recommender suggests service candidates via the editors
and wizards of the eclipse IDE. Lastly, the refactoring engine has a series of
code generators including proxy/wrapper generators for remote communica-
tions, interface generator for exposing services, adapter generator for switching
a service interface.

3.6 Discussion

Next we discuss some of the advantages and limitations of using refactoring
to transition applications to use cloud-computing resources.

3.6.1 Advantages

By automating the required program transformations, a refactoring is more
likely to preserve the correctness of a modified program than when a pro-
grammer modifies the code by hand. Our cloud refactoring techniques also
generate new code used by the modified code. For example, our refactoring
engine generates several kinds of proxy classes used at the client. Generating
code automatically also helps preserve program correctness. Our recommen-
dation engine also informs the programmer about the parts of the centralized
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Fig. 15 Service refactoring tool’s components.

program that can be moved to the cloud while minimizing the incurred perfor-
mance overhead. Our runtime library features several fault tolerance mecha-
nism implementations that can be used out of the box, thereby increasing the
probability that the resulting application will be capable of handling partial
failure.

3.6.2 Limitations

A refactoring may not be a proper approach for transforming all kinds of
software applications to cloud-based services. First, transforming tightly cou-
pled applications without incurring a significant performance overhead may
require deep architectural changes that are not supported by our refactoring
techniques. Ensuring good performance requires that remote communication
be crude-grained and infrequent. In addition, cloud-based communication is
inherently unidirectional: client talks to server but not vice versa. If the orig-
inal application does not follow this communication pattern, its architecture
needs to be changed before our refactoring techniques can be applied.

Second, to improve accuracy, the recommendation systems require special
application-specific parameters. Based on the accuracy of the provided param-
eters, the recommendation system will show different results. Therefore, the
programmer can experiment with different parameters to obtain a recommen-
dation that is most aligned with the business requirements in place.

Third, our refactoring techniques do not make any provision for a situation
when a newly extracted cloud service is used by multiple clients. Then the
application logic would have to be modified accordingly to ensure a consistent
and efficient access by multiple clients.

Lastly, our fault handling strategies cannot cover all the possible failure
cases. In some scenarios, the programmer may need to implement some failure
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handling strategy by hand, outside the framework provided by our refactoring
infrastructure.

3.7 Motivation for Cloud Refactoring

An important question is what motivates enterprises to move software compo-
nents to execute remotely in the cloud, thus necessitating the cloud refactoring
techniques presented here. One motivation for leveraging cloud resources is to
improve performance efficiency by processing large volumes of data in parallel
(e.g., using Hadoop). However, this work is motivated by a different set of
business cases for using cloud-based resources.

For many business applications, using remote cloud-based service is in-
evitable, even if the resulting performance efficiency would remain the same
or even deteriorate. For example, some shared functionality may need to be
shared between multiple clients (e.g., a local accounting component that has to
be shared between multiple financial applications). As another example, some
functionality may need to be moved into the cloud to take advantage of the
cloud provider’s data backup and replication services (e.g., a local database-
dependent component can be moved to a cloud service along with its database
files to guarantee long-term data integrity). Finally, companies may consoli-
date some replicated functionality and expose it as a cloud service to reduce
the software maintenance efforts. Because services are exposed through a pub-
lic service interface, the service’s implementation can change at will without
perturbing its clients, as long as the service interface remains fixed.

All these scenario represent a clear need for the cloud refactoring tech-
niques discussed in this article, even though the refactored (i.e., cloud-based)
versions of these applications are unlikely to show any increase in performance
efficiency. However, unless the invocation of cloud services is in the critical per-
formance paths of these applications, the overall performance impact of cloud
refactoring is likely to remain insignificant. From the business perspective, mi-
grating services to the cloud can reduce the overall software development costs
and can even enable companies to break into new markets, as software-as-a-
product (SaaP) can be easily reused and repurposed.

4 Evaluation

To evaluate the applicability of our Cloud Refactoring techniques, we applied
them to two third-party applications to help transition them to cloud-based
execution.
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4.1 Micro Benchmark: Clustering-Based Recommendation

To evaluate the effectiveness of our recommendation approach, we applied the
clustering-based recommendation to seven third-party applications and one
our own application.

— Crypto [7]: Java implementation of the Unix crypt utility.

— Compress [7]: Java implementation of the Unix compression utility.

— Dictionary: our own application using the Lucene search engine library 3
to search definitions, find synonyms, and suggest corrects for misspelled
words.

— JAligner*: an open source Java implementation for biological local pairwise
sequence alignment.

— Barecue®: an open source Java library to create barcodes.

— JNotes: an open source Java management tool for memos, events and
projects.

— PMD6: an open source Java program for potential problems like bugs, dead
code, suboptimal code, overcomplicated expressions, and duplicate code.

— Weka [12]: an open source Java data mining software implementing a col-
lection of machine learning algorithms.

Table 1 shows the benchmark results. Each column represents the num-
ber classes, the number of suggested remote services, the number of selected
remote services, and the number of adaptable remote services. The first refac-
toring suggested possible remote services, and we manually selected appro-
priate remote services. The all suggested classes can be cloud-based services,
however, we selected appropriate classes for the reason of the performance,
call-by-reference, and meaning of features. Then, the last column shows how
many refactored services can be adopted to the third-party services. We found
few public Web services through public Web service repositories and manually
investigated how the refactored services can be adapted to the new services.

Based on the micro benchmark result, we selected two applications to show
refactoring procedures. In the next discussion, we show two case studies—
JAligner and JNotes.

4.2 Case Study I-—DNA Sequence Alignment—JAligner

As the first case study, we applied our refactoring techniques to JAligner—a
third-party bioinformatics pairwise sequence alignment tool written to run as a
standalone application on a single machine. JAligner takes as input two DNA
sequences and computes their similarity metrics. We successfully refactored
the application to use a fault tolerant cloud-based service and then switched
the alignment functionality to use an equivalent third-party service.

3 http://lucene.apache.org/java/docs/index.html
4 http://jaligner.sourceforge.net

5 http://barbecue.sourceforge.net

6 http://pmd.sourceforge.net
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Table 1 The experimental results.

# suggested # selected # adaptable
Name # classes remote remote remote ratio
services services services

Crypto 5 4 4 3 80 %
Compress 7 3 3 0 43 %
Dictionary 7 3 3 1 43 %
JAligner 39 8 5 1 12.8 %
Barecue 56 1 1 0 1.7 %
JNotes 164 9 8 0 4.8 %
PMD 597 27 3 0 0.5 %
Weka 1243 14 7 0 0.5 %

4.2.1 Extracting Remote Service

While the clustering-based recommender suggested 8 classes as potential re-
mote services, the profiling-based recommender suggested 4 classes:

— Class Commons: returns basic informations about the application.

— Class SequenceParser: parses the given DNA sequence and returns a
Sequence object.

— Class SmithWatermanGotoh: aligns two DNA sequences.

— Class Example: returns example DNA sequences.

Although all the recommended classes can be refactored to cloud-based
services, in this study we selected only one class—class SmithWatermanGotoh,
which implements the main functionality of JAligner. For performance rea-
sons, classes Commons and SequenceParser should not be transformed into
cloud-based services. Moreover, because class Example forms its own clus-
ter, it should not be moved to the cloud. As the first step, the refactoring
engine generated interface ISmithWatermanGotoh, which is exposed by under-
lying middleware, and class WrapperSmithWatermanGotoh, a wrapper class of
SmithWatermanGotoh, as well as some OSGi specific files. The following code
snippet shows the automatically generated Java interface, which is exposed
through remote OSGi services” After the refactoring engine finishes transform-
ing all the code, the newly created service implementation can be deployed in
the cloud and accessed remotely.

public interface ISmithWatermanGotoh {
public Alignment align(
Sequence s1, Sequence s2, Matrix m, float o, float e);

For the client execution, the refactoring engine re-targets client code to the
cloud-based service. To that end, it generates a proxy class— SmithWatermanGotoh
and OSGi specific files such as remote service configuration files. The gener-
ated interface is used for importing the exposed Web service. Through this

7 The services are exposed through Apache CXF-DOSGi.
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<ftdl>
<service uri="http://192.168.0.1/SmithWatermanGotoh" method="align"/>
<condition>
<timeout>1000< /timeout>
< /condition>
<strategy>
<sequential numRetries="10" backoffInterval="1000"
backoftType="1inear">
<service uri="http://192.168.0.2/SmithWatermanGotoh" />
< /sequential>
< /strategy>
</ftdl>

Fig. 16 FTDL description to handle network volatility.

refactoring, the client is wrapped into a standard OSGi bundle and then uses
the Smith-Waterman alignment service over the network. Figure 16 shows the
FTDL description to handle network volatility.

4.2.2 Adapt Service Interface

We switched the extracted through refactoring remote service—Smith-Waterman
alignment service—to a third-party Web service provided by European Bioin-
formatics Institute (EBI®). EBI provides several bioinformatics Web services,
including local and global alignment services. We selected Waterman-Eggert
algorithm and then adapted the client to use this service.

<portType name="water"> <operation name="runAndWaitFor">
<input message="runAndWaitFor" />
<output message="runAndWaitForResponse" />

</operation> </portType>

<complexType name="runAndWaitFor"> <sequence>
<element name="aSequence" type="SeqInput"/>
<element name="bSequence" type="SeqInput"/>
<element name="gapopen" type="float"/>
<element name="gapextend" type="float"/>
</sequence> </complexType>

<complexType name="SeqInput"> <sequence>
<element name="direct_data" type="string"/>
<element name="usa" type="string"/>
<element name="format" type="string"/>
</sequence> </complexType>

Fig. 17 WSDL contract of the EBI’s service.

8 http://www.ebi.ac.uk/soaplab/
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Figure 17 shows the WSDL document that describes the Web service
specification. First, based on this WSDL document, we created a Java inter-
face Water and its return/argument types such as class RunAndWaitFor and
RunAndWaitForResponse. Figure 18 depicts the automatically generated new
service interface and other necessary classes. Then, the refactoring generates
the skeleton of adapter classes. The only manual part of this refactoring is
for the programmer to write code that maps different parameters and return
values (e.g., class Sequence and class SeqInput). As a result, when an un-
changed existing client invokes the old service interface, the adapter intercepts
the invocation and redirects it to the new service.

public interface SmithWaterMan {
public RunAndWaitForResponse runAndWaitFor(RunAndWaitFor msg );

public class RunAndWaitFor {
SeqInput aSequence, bSequence;
float gapopen, gapextend;

public class SeqInput{
String direct_data, usa, format;
}

Fig. 18 Generated interface and classes.

4.3 Case Study II—JNotes

As the second case study, we selected JNotes, our motivating example appli-
cation. We refactored JNotes to used cloud-based services by means of Extract
Service. As discussed in Section 2, we moved class FileStorage to the cloud
by splitting it into two classes. In this example, we left resource saving func-
tionality at the local machine and moved other functionality to the server.
Figure 19 shows a proxy class that splits the original class into remote and
local parts.

4.4 GE Portfolio Analysis Service

We demonstrate how our approach can benefit real companies that want to
take advantage of cloud computing. We applied the FEzxtract Service refac-
toring to Portfolio Analysis Tool, a real-world application developed by GE
Global Research Center and GE Energy to analyze world economy scenarios
and predicts how they may affect their customers’ billing and costs. The ap-
plication was developed using standard Web technologies that included the
Spring framework and Java servlets.



26 Young-Woo Kwon, Eli Tilevich

public class FileStorage implements Storage {
IFileStorage proxy;
LFileStorage local;

public FileStorage() {
proxy = (IFileStorage) Activator.v (). getService(IFileStorage.class);
local = new LFileStorage();

}

/* Re—targeted methods x/
public void openEventsManager() {
try {
proxy.openEventsManager();
} catch(CloudServiceException e) {
return FaultHandler.notify (new Fault(...));
}
}

public void openProjectManager() {
try {
proxy.openProjectManager();
} catch(CloudServiceException e) {
return FaultHandler.notify(new Fault(...));
}
}

//more remote methods

/* Remaining methods */
public ResourcesList openResourcesList(Project prj) {
return local.openResourcesList(prj);

}

public void storeResourcesList(ResourcesList rl, Project prj) {
local .storeResourcesList(rl, prj);

//more local methods

Fig. 19 Generated proxy class.

In particular, Portfolio Analysis Tool 1) calculates billing and costs using
hundreds of parameters that are maintained through a DBMS, 2) provides
several complex financial components which are computation-intensive func-
tionality, and 3) contains several common functionality that can be reused
across multiple applications. Therefore, moving some key components of this
application to the cloud would simplify maintenance—the infrastructure (i.e.,
a Web server, an application server, a DBMS, etc.) does not need to be main-
tained separately for each installation. Moreover, commonly accessed services
can be effectively reused.

The recommendation tool of the Extract Service refactoring suggested sev-
eral cloud-based services that can be extracted from the original application.
Then, we used our refactoring engine to extract cloud-based services, with the



Cloud Refactoring: Automated Transitioning to Cloud-Based Services 27

server components deployed in a private cloud environment and the client code
transformed to access the cloud-based services remotely.

5 Related Work

The presented Cloud Refactoring techniques are related to program partition-
ing, software clustering, migrating application to services, and fault handling
techniques. Next, we compare and contrast our techniques to the most relevant
approaches in each of these categories.

One line of research has explored coarse grained program partitioning.
The programmer, by means of a GUI, designates different parts of a central-
ized application, typically at a class or object granularity, to run on different
network nodes. The resulting distribution specification then parameterizes a
compiler-based tool that automatically rewrites the centralized application for
distributed execution. To introduce distribution, a partitioning tool may need
to both change the structure of the application (e.g., to introduce a proxy
indirection) and add middleware functionality (e.g., to replace local calls with
remote ones). In the Java world, recent automatic partitioning tools include
Addistant [31], Pangaea [29], and J-Orchestra [32]. Addistant and J-Orchestra
partition programs at a class granularity; Pangaea can partition at the individ-
ual object level. J-Orchestra addresses the challenges of partitioning programs
safely in the presence of unmodifiable code that comes as part of their runtime
systems.

Several prior research efforts aim at decomposing software systems into
subsystems using clustering techniques [23]. The Bunch tool [23] uses a variety
of clustering algorithms (e.g., hill climbing, genetic, etc.) to modularize existing
systems; it extracts modules based on their dependence graph and calculates
the resulting modularity quality. Clustering can be based on structural data
(e.g., dependence graphs) and non-structural data (e.g., names, comments,
behavior, etc.) [2]. Combining structural and non-structural clustering can
improve the resulting modularity [1].

Much research has gone into decomposing the large, legacy systems into sub
systems by assistance of the above clustering techniques. Such decomposition
was performed for better understanding to the systems or maintenance for
very large systems. However, in recent research, there was an attempt to adopt
data mining techniques for partitioning into distributed applications or service
oriented applications, including RuggedJ [22]. RuggedJ adopted a classification
techniques which determines classes’ types and locates them distributed nodes
such as server /client.

In addition, our approach is related to migrating legacy systems toward
objects [20] and services [5]. The module dependence graph has recently been
shown to be effective at guiding the migration toward services [17]; loosely-
coupled modules become service components. In addition, a model-based ap-
proach has been proposed to extract UML from legacy code and to use proxy
wrappers as service interfaces [21].
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Commonly used approaches to recover from failure include termination
[28], restarting [30], micro-rebooting [4], and checkpoint-restart [13]. Although
traditionally such approaches have been integrated with system design, our ap-
proach can expose them as a fault strategy configured through FTDL. There-
fore our approach can increase the resiliency against faults even further.

6 Conclusion

In this article, we have presented Cloud Refactoring, a set of semantics preserv-
ing transformations that can help migrate a centralized application to using
cloud-based services. We realized Cloud Refactoring in the context of a mod-
ern IDE, enhancing its refactoring engine. Cloud Refactoring comprises two
main refactoring techniques: FExtract Service and Adapt Service Interface. The
Extract Service refactoring renders a portion of a centralized application’s
functionality as a remote cloud-based service, rewriting the client code and
enhancing it with the required fault-tolerance strategies. The Adapt Service
Interface refactoring automates the transformations needed to switch a service
client to use an alternate, equivalent cloud-based service. We have evaluated
Cloud Refactoring by transforming third-party applications to cloud-based
services, including an application used by General Electric. Our experiences
indicate that refactoring can become a valuable tool in the toolset of soft-
ware developers charged with the challenges of migrating applications to take
advantage of cloud-based resources.

Acknowledgements GE Global Research has provided realistic cloud migration scenarios
that motivated some of the refactoring techniques discussed in the article. This research is
supported by the National Science Foundation through the Grant CCF-1116565.
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