
ER-𝜋 : Exhaustive Interleaving Replay for
Testing Replicated Data Library Integration

Provakar Mondal and Eli Tilevich
Software Innovations Lab, Virginia Tech, USA

{provakar,tilevich}@cs.vt.edu

Abstract
Modern replicated data systems often rely on libraries inte-
grated with application code. These replicated data libraries
exchange asynchronous messages, whose execution order-
ings are non-deterministic, allowing any message interleav-
ing to occur during system execution. Testing the integration
of application code with library code requires considering
all possible interleavings, whose detection and simulation
pose significant challenges for application developers. In this
paper, we present ER-𝜋 , a middleware system, designed to
detect and replay possible interleavings in replicated data
systems. ER-𝜋 identifies potential interleavings for a given
code segment and applies four novel pruning techniques to
reduce the complexity of the problem space. Subsequently,
it replays the remaining interleavings to perform the speci-
fied integration testing tasks. To assess the applicability and
efficacy of ER-𝜋 , we integrated it with third-party replicated
data libraries across various programming languages. Our
experiments demonstrate ER-𝜋 ’s capability to replicate 12
known bugs and uncover 5 types of common misconcep-
tions associated with replicated data libraries. Given that
integration testing is essential for ensuring correctness and
robustness, the design of ER-𝜋 holds promise in extending
these testing benefits to the realm of replicated data systems.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging.

Keywords: ReplicatedData System, Integration Testing,Mid-
dleware Service, Exhaustive Replay

ACM Reference Format:
Provakar Mondal and Eli Tilevich. 2025. ER-𝜋 : Exhaustive Inter-
leaving Replay for Testing Replicated Data Library Integration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware 2025, December 15–19, 2025, Nashville, USA
© 2025 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In Proceedings of 26th ACM/IFIP International Middleware Confer-
ence (Middleware 2025). ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
As the demand for replicated data systems keeps increasing,
the software development infrastructure features expressive
and intuitive libraries that provide robust and versatile con-
flict resolution. These libraries follow some consistency pro-
tocol, amongwhich Eventual Consistency has becomewidely
used [58]. Application developers integrate these third-party
libraries into their applications to manage replicated data.
As a result, developers focus on application business logic,
while relying on the libraries for replicated data manage-
ment. Integration testing is required to test the correctness
of interactions between the application and the library.
With their eventual consistency for managing replicated

data, powerful third-party libraries may give application de-
velopers a false sense of confidence. The developers may
incorrectly assume that because the replicated data library
(RDL)1 guarantees eventual consistency, the interactions
across the library and the developer-provided application
logic will be correct. However, consistency is not synony-
mous with correctness, so subtle bugs can arise from sce-
narios that include wrong usage of the RDLs, incorrect as-
sumptions in application logic, incorrect synchronization,
or ill-conceived data models on top of the library [24]. Fur-
thermore, a recent study has revealed that application devel-
opers may misunderstand certain properties of third-party
RDLs [57]. Consequently, interactions between RDLs and
application code can contain subtle bugs.
Such subtle bugs can only be detected by exhaustively

testing the system across possible interleavings [38]. Fur-
thermore, integration testing is needed to ensure that the
application code interacts correctly with the underlying data
library. Certain bugs such as destructive data races, con-
sistent with incorrect results can manifest themselves only
during specific interleavings [44]. To fix a reported bug, de-
velopers should be able to reproduce it [40]. Reproducing
bugs in replicated data systems requires tools that provide
an exhaustive replay of possible interleavings.
In this paper, we present Exhaustive Replay of Possible

Interleavings or ER-𝜋 for short, a middleware service that
enables applications to perform integration testing with all

1Hereafter, we refer to the Replicated Data Library as RDL
1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Middleware 2025, December 15–19, 2025, Nashville, USA Provakar Mondal and Eli Tilevich

possible interleavings of interactions with the RDL. Having
been applied to the application, ER-𝜋 determines the events
invoked from the RDL via language-specific proxying. Us-
ing the constraints applicable to the particular RDL being
used, ER-𝜋 applies four novel pruning algorithms to reduce
the number of interleaving to replay. ER-𝜋 persists the re-
sulting interleavings and executes them without requiring
any modification to the RDL. To ensure the current order of
events in each interleaving, ER-𝜋 uses a distributed locking
mechanism. The majority of ER-𝜋 ’s functionality is language
agnostic, including the generation of exhaustive interleav-
ings, their pruning, and coordinating their execution using a
distributed lock. We have applied ER-𝜋 to 5 open-source ex-
isting applications that use RDLs to maintain their data. Our
approach has successfully reproduced 12 priorly reported
bugs and found 5 types of library usage misconceptions, thus
demonstrating the effectiveness and usefulness of ER-𝜋 . By
describing ER-𝜋 ’s design, implementation, and evaluation,
this paper makes the following contributions:

1. A novel integration testing approach that verifies if the
distributed application logic correctly interacts with
an RDL; the approach determines and executes the
possible interleavings of distributed events raised by
invoking the library functions.

2. Four novel pruning algorithms that reduce the num-
ber of possible interleavings by applying the unique
execution constraints of replicated data systems.

3. An implementation of our approach as ER-𝜋 , a mid-
dleware framework that interfaces with applications
code to detect and replay the possible interleavings of
the distributed events. ER-𝜋 features

a) a language-independent part that works with
RDLs implemented in compiled, interpreted, and
managed languages.

b) a library of test functions, through which pro-
grammers can execute various tests.

4. An empirical evaluation of ER-𝜋 that shows its ef-
fective application across several third-party RDLs,
its ability to reproduce previously reported bugs, and
identify key known misconceptions about integrating
the RDLs with application code.

The rest of the paper is organized as follows: Section 2
describes the background andmotivates the problem; Section
3 explains the pruning algorithms of ER-𝜋 to reduce problem
space; Section 4 presents our system design and workflow;
Section 5 describes the technologies to build and apply ER-𝜋
to the evaluation subjects; Section 6 presents our evaluation
results, demonstrating the effectiveness and usefulness of
ER-𝜋 for integration testing; Section 7 describes the related
state of the art; and finally Section 8 concludes the paper
with future work plans.

2 Background and Motivation
In this section, we first provide the background of replicated
data systems and systematic testing with different interleav-
ings. Then we motivate the need for exhaustive replaying
with possible interleavings for eventual consistent replicated
data systems.

2.1 Replicated Data System
Data replication creates and maintains multiple copies of
the same data (known as replicas) in different locations as a
way of ensuring data availability, low latency, and avoiding
a single point of failure [37]. Modern users typically possess
multiple computing devices, including smartphones, tablets,
smartwatches, and desktop computers, through which they
often access the same data, which can also be shared with
other users. As a result, this data needs to be replicated
across multiple devices, each of which might modify the
data replicas independently. Network disconnections and
faults often make it impossible to synchronize all the up-
dates immediately. As a result, eventual consistency proto-
cols have become a pragmatic and effective approach for
managing replicated states in modern distributed applica-
tions. Amazon’s DynamoDB [19], Microsoft’s Azure Cosmos
DB [46], Apache Hadoop [51], etc. are examples of platforms
that provide data replication support. Among the family
of algorithms for optimistic data replication, Conflict-Free
Replicated Data Types (CRDTs) [45], Explicitly Consistent
Replicated Objects (ECROs) [17], Mergeable Replicated Data
Types (MRDTs) [27] are some popular solutions.

2.2 Testing Interleavings in Distributed Systems
Our work is an example of a distributed model checker
(DMCK), a tool that interleaves the non-deterministic events
to push the target system into unexplored states, thus re-
vealing hard-to-find bugs [50]. Interleavings represent the
different possible sequences in which events can occur and
how they interact with one another. Testing different inter-
leavings helps uncover potential race conditions, deadlocks,
or inconsistencies that may arise due to the concurrent exe-
cution of events within the distributed environment [34].

Replica R1
intercepts

Replica R2
intercepts

e1
e2

e3

e4

Events: {e1,e2,e3,e4}

Explored
e1,e2,e3,e4
e2,e1,e3,e4

........

Todo-explore
e3,e4,e1,e2
e4,e3,e1,e2

........

Figure 1. Typical DMCK’s Work Strategy
Figure 1 shows how a basic model checker can work with

a replicated data system comprising the replicas, R1 and R2.
By interception, the checker detects the events executed in
a particular workload. In this example, the events executed
during the intercepting time are e1, e2, e3, and e4. In the

2

ER-𝜋 : Exhaustive Interleaving Replay for Testing Replicated Data Library Integration Middleware 2025, December 15–19, 2025, Nashville, USA

Resident BResident A Resident AResident B

evII : report(ph) evIII : remove(otb) evIV : transmit

Interleaving1
evI, sync(evI), evII, sync(evII), evIII, sync(evIII), evIV

Interleaving2
evI, sync(evI), evII, sync(evII), evIII, evIV, sync(evIII)

evI : report(otb)

Figure 2.Motivating Example: Events and Interleavings

absence of any path reduction algorithm, a model checker
can use Depth-First Search (DFS) for path exploration, and
it will return 4! interleavings to explore for four events. The
checker’s server will keep track of which interleavings have
been explored and which are still on the to-do list to explore.
Before running a new interleaving, the checker will restart
the workload, so that no interleaving can affect others. The
developers can decide which global properties to check (e.g.,
replicas’ states, consistency, memory usage, etc.). After exe-
cuting each interleaving, the checker runs the specified test
functions to determine any property violations.

2.3 Motivating Example
Dr. Strange: I went forward in time to view alternate futures. To see

all the possible outcomes of the coming conflict.
Star Lord: How many did you see?
Dr. Strange: Fourteen million, six hundred and five.
Iron Man: How many did we win?
Dr. Strange: [long beat] One!

Movie: [Avengers: Infinity War] [39]
As mentioned in Section 1, eventual consistency does not

eliminate the need for integration testing, which must con-
sider all possible interleavings. Consider a town’s adminis-
tration providing a free mobile app for residents to report
issues that need fixing. The app allows users to report a
problem (with geolocation) and remove a reported problem
once it has been fixed. Reported issues are represented as a
replicated set to avoid duplicate entries.

Imagine two residents using the app simultaneously: Res-
ident A reports an overturned trash bin, and Resident B
reports a pothole. Each app user holds a replica, and all prob-
lems, added or removed, are synchronized across replicas.
Then, Resident B observes that a custodian has fixed the
trash bin reported by Resident A and removes the over-
turned trash bin issue from the set of problems. When resi-
dents stop using the app, they can transmit their set of prob-
lems to the municipality for fixing. Let’s assume Resident
A transmits this set of problems to the municipality.

This scenario, depicted in Figure 2, involves seven dis-
tributed events: (1) 𝑒𝑣𝐼 : reporting an overturned trash bin
(otb in the figure) by Resident A; (2) 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼): synchroniza-
tion of 𝑒𝑣𝐼 to Resident B; (3) 𝑒𝑣𝐼 𝐼 : reporting a pothole (ph in
the figure) by Resident B; (4) 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼): synchronization of
𝑒𝑣𝐼 𝐼 to Resident A; (5) 𝑒𝑣𝐼 𝐼 𝐼 : removing the overturned trash
bin report of 𝑒𝑣𝐼 by Resident B; (6) 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼 𝐼): synchroniza-
tion of 𝑒𝑣𝐼 𝐼 𝐼 to Resident A; and (7) 𝑒𝑣𝐼𝑉 : transmitting the
set of reported problems to the municipality by Resident
A. Suppose the app developers assumed, based on the erro-
neous assumption—“multiple replicas in different regions
mathematically resolve to the same state without coordina-
tion” [26]—that eventual consistency makes further conflict
resolution unnecessary. However, without coordination, de-
pending on the event order, the municipality may receive a
set of problems that either include (1) only the pothole or
(2) both issues, while the correct outcome is (1). Specifically,
Resident A can transmit the list of identified problems be-
fore or after synchronizing the update from Resident B
about the fixed trash bin. Consider two possible interleav-
ings, only the first of which leads to the correct outcome:
(1) 𝑒𝑣𝐼 , 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼), 𝑒𝑣𝐼 𝐼 , 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼), 𝑒𝑣𝐼 𝐼 𝐼 , 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼 𝐼), 𝑒𝑣𝐼𝑉 ; (2)
𝑒𝑣𝐼 , 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼), 𝑒𝑣𝐼 𝐼 , 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼), 𝑒𝑣𝐼 𝐼 𝐼 , 𝑒𝑣𝐼𝑉 , 𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼 𝐼).

The incorrect outcome arises not because something is
amiss with the RDL or the application logic, but rather how
these two interact following the erroneous assumption. De-
tecting such design flaws requires testing the system against
all possible event interleavings. By expressing our motivat-
ing example as a test case and defining a test invariant that
only the pothole issue is transmitted, we can identify the
interleavings that violate the invariant (e.g., Interleaving2).
Our middleware system—ER-𝜋—solves this problem by

determining possible interleavings of the events. For exam-
ple, in theory, the seven events of the motivating example
can interleave in 7! = 5040 ways. However, for this exam-
ple, ER-𝜋 ’s pruning algorithms reduce the possible number
of interleavings to 19, thus reducing the problem space by
⌊ 504019 ⌋ = 265 times. We provide the details of this particular
pruning scenario in Section 3.1. As the factorial function is
fast growing, the search space increases rapidly with more
events (i.e., 10 events result in over 3.6 million interleavings).
Hence, ER-𝜋 ’s four pruning algorithms are required to re-
duce the search space and make exhaustive replay practical.
After determining possible interleavings and with the given
test invariants, ER-𝜋 exhaustively tests the invariants against
all interleavings, reporting any violations found.

3 ER-𝜋 ’s Pruning Algorithms
In this section, we describe ER-𝜋 ’s pruning algorithms de-
signed to reduce the number of interleavings to replay. These
algorithms consider the constraints specific to the nature
of RDL. To understand how pruning works in action, let us
revisit the pruning in the motivating example.

3

Middleware 2025, December 15–19, 2025, Nashville, USA Provakar Mondal and Eli Tilevich

3.1 Pruning in Motivating Example
Recall that the example in Section 2.3 mentions pruning the
number of interleavings to replay from 5040 to 19. One prun-
ing strategy of ER-𝜋 is grouping the sync events with the
corresponding update events, as synchronization causally
depends on updates. To interleave the synchronization event
before the update event would be unreasonable. Grouping
(𝑒𝑣𝐼,𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼)), (𝑒𝑣𝐼 𝐼,𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼)), and (𝑒𝑣𝐼 𝐼 𝐼,𝑠𝑦𝑛𝑐 (𝑒𝑣𝐼 𝐼 𝐼))
creates three paired events, so with the remaining one, the
total number of events become four, which interleave in
4! = 24 ways. Now, interleaving 𝑒𝑣𝐼𝑉 into the first position
would always cause the empty set of problems to be sent to
the municipality. With 𝑒𝑣𝐼𝑉 in the first position, the follow-
ing three events can interleave 3! = 6 ways, each of which
causes the empty set. So, instead of considering them indi-
vidually, they can be merged into a single interleaving, thus
pruning 6 − 1 = 5 more interleavings. As a result, the final
number of interleavings becomes 24 − 5 = 19, which should
be quite manageable to replay exhaustively.
We equip ER-𝜋 with four pruning methods. For initial

pruning, ER-𝜋 applies Event Grouping and Replica Spe-
cific pruning. Upon generating and executing the interleav-
ings one by one, application developers can discover some
properties of the events by analyzing their effects. Then,
parameterized by developers, ER-𝜋 applies Event Indepen-
dence and Failed Ops pruning to reduce the problem space
further. In the following subsection, we present each of the
pruning algorithms in the following format: (1) the intuition
for the pruning, (2) an example, and (3) the pseudo-code of
the implementation.

3.2 Event Grouping
Intuition: ER-𝜋 groups together send sync request

event with execute sync request event in the (same
sender, receiver) pair as the second event is followed by
the first event and the second event will not occur if the
first event has not taken place. Interleaving them in different
orders would be wasteful: only if a replica has sent a sync
request, the receiver replica would be able to execute it then.
Furthermore, ER-𝜋 can group events if explicitly directed to
do so by the user.

Example: Consider the example depicted in Figure 3. Be-
tween two replicas, A and B, there are eight events in total.
In theory, these events can interleave in 8! = 40320 ways.
However, as one can see from the Figure, 𝑒𝑣3 denotes send-
ing a synchronization request from replica A to replica B,
and 𝑒𝑣4 indicates that replica B executes the sync request.
Similarly, 𝑒𝑣7 sends a sync request from replica B to A, and
in 𝑒𝑣8, replica A executes the corresponding synchroniza-
tion. With the event-grouping algorithm in action, ER-𝜋 will
group 𝑒𝑣3 with 𝑒𝑣4 and 𝑒𝑣7 with 𝑒𝑣8, thus reducing the total
number of events to six. Pruning based on event grouping
alone would reduce the number of interleaving by 8!

6! = 56

Replica A Replica B

ev1

ev3

ev6

ev8

ev2

ev4
ev5

ev7

Sync Req

Sync R
eq

Event Grouping

Replica A Replica B

ev1

ev5

ev6

ev2

ev3
ev4

Sync Req

Sync R
eq

Figure 3. Grouping Events to Reduce Their Total #

times. Algorithm 1 shows the step-by-step pseudo-code that
applies the event-grouping pruning logic.

Algorithm 1: Event Group Pruning
Input: 𝑒𝑣𝑒𝑛𝑡𝑠: events to interleave
Input: 𝑠𝑝𝑒𝑐_𝑔𝑟𝑜𝑢𝑝: developers’ specified groups
Output: 𝐺𝐼 : interleavings based on grouping

1 𝑒𝑣𝑒𝑛𝑡𝑠 ← 𝑟𝑒𝑎𝑑_𝑒𝑣𝑒𝑛𝑡𝑠 ()
2 𝑠𝑝𝑒𝑐_𝑔𝑟𝑜𝑢𝑝 ← 𝑟𝑒𝑎𝑑_𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑒𝑑_𝑔𝑟𝑜𝑢𝑝𝑠 ()
3 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠 = [] // list of tuple

4 𝐺𝐼 = [] // list of group-by pruned interleavings

5 forall (𝑒𝑣𝑒𝑛𝑡𝑖 , 𝑒𝑣𝑒𝑛𝑡 𝑗) ∈ 𝑒𝑣𝑒𝑛𝑡𝑠 do
6 if (𝑒𝑣𝑒𝑛𝑡𝑖 ≡ 𝑠𝑦𝑛𝑐_𝑟𝑒𝑞 ∧ 𝑒𝑣𝑒𝑛𝑡 𝑗 ≡ 𝑒𝑥𝑒𝑐_𝑠𝑦𝑛𝑐)∨

(𝑒𝑣𝑒𝑛𝑡 𝑗 ≡ 𝑠𝑦𝑛𝑐_𝑟𝑒𝑞 ∧ 𝑒𝑣𝑒𝑛𝑡𝑖 ≡ 𝑒𝑥𝑒𝑐_𝑠𝑦𝑛𝑐) then
7 𝑓 𝑟𝑜𝑚𝑖 ← 𝑒𝑣𝑒𝑛𝑡𝑖 .𝑓 𝑟𝑜𝑚𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝐼𝑑

8 𝑡𝑜𝑖 ← 𝑒𝑣𝑒𝑛𝑡𝑖 .𝑡𝑜𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝐼𝑑

9 𝑓 𝑟𝑜𝑚 𝑗 ← 𝑒𝑣𝑒𝑛𝑡 𝑗 .𝑓 𝑟𝑜𝑚𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝐼𝑑

10 𝑡𝑜 𝑗 ← 𝑒𝑣𝑒𝑛𝑡 𝑗 .𝑡𝑜𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝐼𝑑

11 if 𝑓 𝑟𝑜𝑚𝑖 = 𝑓 𝑟𝑜𝑚 𝑗 & 𝑡𝑜𝑖 = 𝑡𝑜 𝑗 then
12 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ({𝑒𝑣𝑒𝑛𝑡𝑖 , 𝑒𝑣𝑒𝑛𝑡 𝑗 })

13 forall (𝑒𝑣𝑒𝑛𝑡𝑚, 𝑒𝑣𝑒𝑛𝑡𝑛) ∈ 𝑠𝑝𝑒𝑐_𝑔𝑟𝑜𝑢𝑝 do
14 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ({𝑒𝑣𝑒𝑛𝑡𝑚, 𝑒𝑣𝑒𝑛𝑡𝑛})

/* grouping by developers’ specified info */

15 𝐺𝐼 = 𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑒𝑣𝑒𝑛𝑡𝑠, 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠)
16 return 𝐺𝐼

3.3 Replica Specific
Intuition: Replica-specific exploration refers to ascertain-

ing a behavior specific to a particular replica. To facilitate
such exploration, ER-𝜋 groups together those events exe-
cuted at other replicas that have no impact on the state of the
explored replica. If developers want to do integration testing
for a particular replica, then the events executed at other
replicas without impacting the tested replica can be grouped.
In such scenarios, the interleavings, which are permutations
of the grouped events, can be removed from the total number
of interleavings.

Example: Consider exploring the behavior of replica B,
as depicted in the example in Figure 4. In replicated data

4

ER-𝜋 : Exhaustive Interleaving Replay for Testing Replicated Data Library Integration Middleware 2025, December 15–19, 2025, Nashville, USA

Replica A Replica B

evp
evq
evr
evs

Interleavingn

Replica A Replica B

evp

evr
evq
evs

Interleavingn+1

Replica A Replica B

evq

evr
evp
evs

Interleavingn+2

Figure 4. Replica B-specific Pruning

systems, a replica can only see the impact of updates at the
other replicas only having synchronized the update requests
from these replicas. In this example, the occurrence of the
events 𝑒𝑣𝑝 , 𝑒𝑣𝑞 , 𝑒𝑣𝑟 , and 𝑒𝑣𝑠 at replica A would not impact
replica B if these events are interleaved after the last sync
request from replica A to replica B. In such interleavings,
considering a different order of these four events would
be wasteful. Hence, the interleavingn, interleavingn+1, and
interleavingn+2 can be merged. With this pruning, ER-𝜋 can
reduce the total number of interleavings by 4! − 1 = 23.
Algorithm 2 shows the step-by-step pseudo-code that applies
replica-specific pruning logic.

Algorithm 2: Replica-specific Pruning
Input: 𝐼𝐿𝑠 : list of existing interleavings
Input: 𝑟𝐼𝐷 : specific replica ID
Output: 𝑅𝐼 : interleavings pruned by replica-specific

1 𝐼𝐿𝑠 ← 𝑟𝑒𝑎𝑑_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 ()
2 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠 = [] // a list

3 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = {}
/* a map, (key,value) ≡ (indices,interleaving) */

4 𝑅𝐼 = [] // list of replica-specific interleavings

5 forall 𝑖𝑙 ∈ 𝐼𝐿𝑠 do
6 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← 𝑖𝑛𝑑𝑒𝑥_𝑖𝑛_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔(𝑟𝐼𝑑, 𝑖𝑙)
7 if 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ∉ 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 then
8 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖𝑛𝑑𝑖𝑐𝑒𝑠] = []
9 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖𝑛𝑑𝑖𝑐𝑒𝑠] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑙)

10 forall (𝑖𝑑𝑥, 𝑖𝑙) ∈ 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 do
11 𝑒𝑣𝑠 ← 𝑒𝑣𝑒𝑛𝑡𝑠_𝑎𝑓 𝑡𝑒𝑟_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 (𝑖𝑙, 𝑖𝑑𝑥)

/* remaining events to interleave at other

replicas after 𝑖𝑑𝑥 in the interleaving 𝑖𝑙 */

12 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑣𝑠)
13 𝑅𝐼 = 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 (𝐼𝐿𝑠, 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑒𝑣𝑒𝑛𝑡𝑠)

/* exclude replica-specific interleavings from

existing interleavings list */

14 return 𝑅𝐼

3.4 Event Independence
Intuition: ER-𝜋 groups together events whose impact

on replicated states has been determined to be independent.
Considering their interleavings would be wasteful, as long as
one can ascertain that no events between their occurrences
have any impact on them. As ER-𝜋 starts executing the ini-
tially generated interleavings one by one, developers can
apply this pruning algorithm dynamically by adding infor-
mation about the newly discovered mutually independent
events. Such dynamic pruning would be reasonable to apply
in the case of a large number of initial interleavings that take
a long time to replay.

.elem𝛼 elem𝛽 elem𝛾

idx𝛼 idx𝛽 idx𝛾

ev𝛼 ev𝛽 ev𝛾

If Explored: {...ev𝛼 , ev𝛽 , ev𝛾 ...}
Consider Explored: {...ev𝛼 , ev𝛾 , ev𝛽 ...}
Consider Explored: {...ev𝛽 , ev𝛼 , ev𝛾 ...}

Figure 5. Event Independence Pruning

Example: Consider a list data structure in Figure 5, events
𝑒𝑣𝛼 , 𝑒𝑣𝛽 , and 𝑒𝑣𝛾 modify elements 𝑒𝑙𝑒𝑚𝛼 , 𝑒𝑙𝑒𝑚𝛽 , and 𝑒𝑙𝑒𝑚𝛾 ,
respectively. The list indices they modify are different, 𝑖𝑑𝑥𝛼 ,
𝑖𝑑𝑥𝛽 , and 𝑖𝑑𝑥𝛾 respectively. Consider that, by running sev-
eral interleavings, a developer determines that these three
events are executed independently having no impact on each
other. Let’s assume in an interleaving, the logical timestamps
of these three events are 𝑡𝛼 , 𝑡𝛽 , and 𝑡𝛾 respectively and (𝑡𝛼 <
𝑡𝛽 < 𝑡𝛾). Further, no other intermediate events can affect any
of these three events. As a result, the interleavings, in which
only the order of these three events changes (other events
interleave in the same order) can be merged into a single
interleaving. Hence, with this pruning logic, if there are 𝑘
interleavings, each of which only the independent events
interleave in a different order, ER-𝜋 considers the 𝑘 interleav-
ings as a single one, thus reducing the interleavings number
by 𝑘 − 1. For this above example, as there are three indepen-
dent events, with this pruning logic, ER-𝜋 can reduce the
number of interleavings by 3!−1 = 5. Algorithm 3 shows the
step-by-step pseudo-code that applies event-independent-
based pruning logic.

3.5 Failed Ops
Intuition: The constraints of some replicated data struc-

tures can cause some of their update operations to fail if
they have been preceded by certain other update operations.
Consider two replicas trying to add the same element to a
replicated set; the constraints of the set data structure would

5

Middleware 2025, December 15–19, 2025, Nashville, USA Provakar Mondal and Eli Tilevich

Algorithm 3: Event-Independence Pruning
Input: 𝐼𝐿𝑠: list of existing interleavings
Input: 𝐼𝐸𝑣𝑠: list of independent events
Output: 𝐸𝐼 : interleavings pruned by event-independency

1 𝐼𝐿𝑠 ← 𝑟𝑒𝑎𝑑_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 ()
2 𝐼𝐸𝑣𝑠 ← 𝑟𝑒𝑎𝑑_𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑒𝑣𝑒𝑛𝑡𝑠 ()
3 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 = [] // a list

4 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = {}
/* a map, (key,value) ≡ (indices,interleaving) */

5 𝐸𝐼 = [] // list of event-independent interleavings

6 forall 𝑖𝑙 ∈ 𝐼𝐿𝑠 do
7 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑒𝑣𝑒𝑛𝑡𝑠_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 (𝐼𝐸𝑣𝑠, 𝑖𝑙)
8 if 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ∉ 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 then
9 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖𝑛𝑑𝑖𝑐𝑒𝑠] = []

10 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖𝑛𝑑𝑖𝑐𝑒𝑠] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑙)
11 forall (𝑖𝑑𝑥, 𝑖𝑙) ∈ 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 do
12 𝑖𝑛𝑑𝑒𝑥_𝑓 𝑖𝑟𝑠𝑡 ← 𝑖𝑑𝑥 [0]
13 𝑖𝑛𝑑𝑒𝑥_𝑙𝑎𝑠𝑡 ← 𝑖𝑑𝑥 [𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑑𝑥) − 1]
14 𝐸𝑣𝑠 ← 𝐸𝑣𝑒𝑛𝑡𝑠 (𝑖𝑙, 𝑖𝑛𝑑𝑒𝑥_𝑓 𝑖𝑟𝑠𝑡, 𝑖𝑛𝑑𝑒𝑥_𝑙𝑎𝑠𝑡)

/* events to interleave during the first and last

independent events in the interleaving 𝑖𝑙 */

15 if ∀𝑒𝑣 ∈ 𝐸𝑣𝑠, � 𝑖𝑒𝑣 ∈ 𝐼𝐸𝑣𝑠 : 𝑅(𝑒𝑣, 𝑖𝑒𝑣) then
/* in between events that don’t impact on the

independent events */

16 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑙)

17 𝐸𝐼 = 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 (𝐼𝐿𝑠, 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠)
/* exclude independent events-based interleavings from

existing interleavings list */

18 return 𝐸𝐼

allow only one of them to succeed. As a result, if it can be
determined that a certain conflicting update has been suc-
cessfully executed, ER-𝜋 excludes the conflicting successor
events from further consideration.

𝑡𝑘−2

𝑒𝑣𝑒𝑛𝑡𝑘−2

𝑡𝑘−1

𝑒𝑣𝑒𝑛𝑡𝑘−1

𝑡 ′
𝑘

𝑟𝑒𝑚𝑜𝑣𝑒 (𝜖)

𝑡 ′′
𝑘

𝑎𝑑𝑑 (𝛼)

𝑡 ′′′
𝑘

𝑟𝑒𝑚𝑜𝑣𝑒 (𝜎)

𝑡𝑘

{𝛼, 𝛽,𝛾 }

If Explored: {...𝑟𝑒𝑚𝑜𝑣𝑒 (𝜖), 𝑎𝑑𝑑 (𝛼), 𝑟𝑒𝑚𝑜𝑣𝑒 (𝜎)...}
Consider Explored: {...𝑟𝑒𝑚𝑜𝑣𝑒 (𝜖), 𝑟𝑒𝑚𝑜𝑣𝑒 (𝜎), 𝑎𝑑𝑑 (𝛼)...}
Consider Explored: {...𝑎𝑑𝑑 (𝛼), 𝑟𝑒𝑚𝑜𝑣𝑒 (𝜖), 𝑟𝑒𝑚𝑜𝑣𝑒 (𝜎)...}

Figure 6. Failed Ops Pruning

Example: Consider the example of a Set in Figure 6. For a
set, an event that tries to add an existing element or remove
a non-existing element fails due to the set’s constraints. At
the timestamp, 𝑡𝑘 , the set contains elements, 𝛼 , 𝛽 , and 𝛾 . So,
with the set’s content, the later events, 𝑟𝑒𝑚𝑜𝑣𝑒 (𝜖), 𝑎𝑑𝑑 (𝛼),
and 𝑟𝑒𝑚𝑜𝑣𝑒 (𝜎) at the timestamps 𝑡 ′

𝑘
, 𝑡 ′′
𝑘
, and 𝑡 ′′′

𝑘
respectively,

become failed ops. As a result, in the interleavings, in which

only these three events interleave in a different order, these
interleavings can be merged. For the three events in this
example, they can become failed ops and can interleave in a
different order by 3! = 6 ways. Hence, considering them as a
single interleaving reduces the number of interleavings by 5.
Although small, this reduction further contributes to making
the problem state more manageable. Besides, in some appli-
cations, the number of failed ops can go up significantly, thus
increasing the impact of this pruning. Algorithm 4 shows
the step-by-step pseudo-code that applies failed-ops-based
pruning logic.

Algorithm 4: Failed-Ops Pruning
Input: 𝐼𝐿𝑠: list of existing interleavings
Input: 𝑃𝐸𝑣𝑠: list of predecessor events
Input: 𝑆𝐸𝑣𝑠: list of successor events
Output: 𝐹𝐼 : interleavings pruned by failed-ops

1 𝐼𝐿𝑠 ← 𝑟𝑒𝑎𝑑_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 ()
2 𝑃𝐸𝑣𝑠 ← 𝑟𝑒𝑎𝑑_𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟_𝑒𝑣𝑒𝑛𝑡𝑠 ()
3 𝑆𝐸𝑣𝑠 ← 𝑟𝑒𝑎𝑑_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟_𝑒𝑣𝑒𝑛𝑡𝑠 ()
4 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = {}
/* a map, (key,value) ≡ (indices,interleaving) */

5 𝐹𝐼 = [] // list of failed-ops interleavings

6 forall 𝑖𝑙 ∈ 𝐼𝐿𝑠 do
7 𝑝𝐼𝑑𝑥 ← 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟_𝑒𝑣𝑒𝑛𝑡𝑠_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 (𝑃𝐸𝑣𝑠, 𝑖𝑙)
8 𝑠𝐼𝑑𝑥 ← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟_𝑒𝑣𝑒𝑛𝑡𝑠_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 (𝑆𝐸𝑣𝑠, 𝑖𝑙)
9 if ∀𝑝 ∈ 𝑝𝐼𝑑𝑥, ∃𝑠 ∈ 𝑠𝐼𝑑𝑥 : 𝑝 ≺ 𝑠 & ∀(𝑝′, 𝑝′′) ∈

𝑝𝐼𝑑𝑥, ∃(𝑠′, 𝑠′′) ∈ 𝑠𝐼𝑑𝑥 : 𝑝′ ≺ 𝑝′′ ⇒ 𝑠′ ≺ 𝑠′′ then
/* every predecessor event occurs before every

successor event and the relative positions
of these events remain the same */

10 if 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑝𝐼𝑑𝑥, 𝑠𝐼𝑑𝑥) ∉ 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 then
// group predecessor and successor events

11 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 [𝑐𝑜𝑛𝑐𝑎𝑡 (𝑝𝐼𝑑𝑥, 𝑠𝐼𝑑𝑥)] = []
12 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 [𝑐𝑜𝑛𝑐𝑎𝑡 (𝑝𝐼𝑑𝑥, 𝑠𝐼𝑑𝑥)] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑙)

13 𝐹𝐼 = 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 (𝐼𝐿𝑠, 𝑔𝑟𝑜𝑢𝑝𝑒𝑑_𝑏𝑦_𝑖𝑛𝑑𝑖𝑐𝑒𝑠)
/* exclude failed-ops-based interleavings from

existing interleavings list */

14 return 𝐹𝐼

4 System Design and Workflow
We implement our approach as ER-𝜋 , an integration testing
framework whose design is driven by the goals of provid-
ing a high degree of reusability and platform independence.
It provides an exhaustive replaying middleware service for
integration testing of replicated data systems. Figure 7 de-
picts the main components of ER-𝜋 along with the general
workflow, which we describe in turn.

4.1 Proxying RDL Functions
ER-𝜋 detects and executes the possible interleavings of RDL
events without modifying the library code by hand. To do so,
ER-𝜋 proxies the RDL functions invoked from the application

6

ER-𝜋 : Exhaustive Interleaving Replay for Testing Replicated Data Library Integration Middleware 2025, December 15–19, 2025, Nashville, USA

Tests Library
RDL

App logic

Ensure
Order

Proxying
RDL

Functions

App-RDL
Interface

Extract Events

Generating
Interleavings

Prune & Persist

Executing
Interleavings

Invoke
RDL Funcs

Check Test
Assertions

Append

Specify
Custom
Tests

Redis Lock

constraintsDatabaseInterleavings

Intercept1a

3

4

5

51b

2 Read
e1 .. en

Core Task Optional Task Language-Independent Language-Specific

App
developer

Figure 7. ER-𝜋 : Main Components and General Flow

code. The proxy techniques are language-specific and depend
on the RDL programming languages. Proxies are provided via
techniques that include Abstract Syntax Tree (AST) rewrit-
ing, Monkey patching, and Dynamic Proxy. We comment on
these techniques in Section 5.1. ER-𝜋 provides higher-order
functions, ER-𝜋.Start([...]) and ER-𝜋.End([...]) to
designate the segment in the application logic for which
the developers intend to conduct integration testing. ER-
𝜋 intercepts which library functions have been invoked in
the segment 1a , extracting them as events 1b to generate
exhaustive interleavings between the Start and End points.

4.2 Generating Interleavings
This language-independent component of ER-𝜋 generates
the possible interleavings to replay from the extracted events.
While generating the interleavings, ER-𝜋 uses its event-
grouping and replica-specific pruning algorithms to reduce
the search space. However, the replica-specific algorithm
is applied if the application developers want to examine
particular replicas. In that case, ER-𝜋 allows specifying the
replicas’ id as a parameter of higher-order functions that
ER-𝜋 is providing to mark the Start and End points. Upon
generating the interleavings, ER-𝜋 assigns a Lamport times-
tamp [36] to each event in each interleaving. This Lamport
timestamp defines event execution order during the replay.
Having generated all possible interleavings, ER-𝜋 persists
them in a database, 2 .

4.3 Executing Interleavings
To execute the generated interleavings 3 , ER-𝜋 relies on
the higher-order Start and End functions to identify the
execution boundary. Interleavings are read and replayed
one by one. ER-𝜋 checkpoints the replicas’ states and resets
them prior to executing each interleaving, ensuring that

interleaving executions remain unaffected by each other. ER-
𝜋 invokes interleaving events via RDL proxies, enforcing
the required event order via a distributed lock. The lock
uses a Redis-provided distributed locking library [18]. This
component deploys a mutex with a shared key managed by
a Redis server, thus effecting the required distributed order
in each interleaving.

4.4 Checking Test Assertions
After each interleaving, ER-𝜋 checks if any test assertions
have been violated, 4 . ER-𝜋 provides a test library of com-
monly held wrong assumptions and misconceptions of RDL
usage (discussed in Section 6.2). Provided as functions, the
tests can be invoked after each interleaving. The following
simplified Go code snippet demonstrates how to check if
moving List items would not duplicate them in a replica.

1 ER-𝜋.Start()
2
3 copyList := replicaState.GetList ()
4 moveItems(replicaState , fromIdx , toIdx)
5
6 ER-𝜋.End(assertNoDuplication(copyList))
7
8 func assertNoDuplication(copyList []int) {
9 assert.Equal(len(replicaState.GetList ()), len(copyList))
10 assert.True(reflect.DeepEqual(replicaState.GetList(),
11 copyList), "Expected items to be equal")
12 }

4.5 Optional Features
ER-𝜋 also provides optional features that include the abil-
ity to specify custom test assertions and to add new event
constraints 5 . Developers can specify a custom test as a
function that can be passed as a parameter to ER-𝜋.End().
When executing an integration test interactively, developers
may discover some unique event constraints. These con-
straints can be passed as additional parameters to ER-𝜋 ,
which then further prunes the possible interleavings. ER-𝜋 ’s

7

Middleware 2025, December 15–19, 2025, Nashville, USA Provakar Mondal and Eli Tilevich

event-independence and failed-ops pruning algorithms
are specifically designed to support such scenarios.

5 Implementation & Application
In this section, we describe the implementation of ER-𝜋 and
its application to third-party replicated data systems, as an
approach for testing the integration of RDLs.

5.1 Implementation
ER-𝜋 ’s language-independent components generate, prune,
and persist interleavings, also controlling their event order.
These components are shared across different languages.
To serve as a reliable and efficient shared unit of function-
ality, these components must execute robustly across any
platform or environment, supporting the diverse range of ex-
isting RDLs. C++ stands out for its support for heterogeneity,
equipped with a mature compilation and execution infras-
tructure that ensures portability across platforms [14]. Thus,
implementing these reusable components in C++ meets all
key requirements for cross-platform compatibility. It took
us ≈ 2𝐾 lines of C++ code to implement these language-
agnostic components.
To further enhance language independence, ER-𝜋 man-

ages interleavings in Datalog, a logic language known for
its deductive storage capabilities that enable lightning-fast
querying across large datasets [48]. ER-𝜋 initially stores the
exhaustive set of 𝑛! interleavings in Datalog’s deductive data-
base, using logic queries to perform the applicable pruning.
ER-𝜋 generates the Souffle dialect of Datalog [20], with the
code size varying based on the number of interleavings and
pruning criteria.

One of ER-𝜋 ’s key design objectives is to make it possible
to detect and replay the event interleavings without manual
modification of RDLs’ source code. To accomplish this objec-
tive, ER-𝜋 provides language-specific bindings, deliberately
kept small in size and complexity. These bindings are used
to generate proxies for the library functions, thus enabling
ER-𝜋 to detect which RDL events are invoked during the
specified workload. Later, ER-𝜋 reuses the proxied functions
to replay the interleavings. With that goal, ER-𝜋 takes advan-
tage of the language-specific techniques of the target RDLs.
To demonstrate generality, we have applied ER-𝜋 to RDLs
implemented in compiled (Go), interpreted (JavaScript), and
managed (Java) languages. We describe the techniques used
for each target language next.

5.1.1 Go. Go’s standard library provides features for en-
hancing code with additional functionality, without requir-
ing any manual modification. Specifically, we use go/ast,
which interfaces with the Go compiler to expose an Abstract-
Syntax Tree (AST) [52]. By modifying AST, we introduce
the needed proxy generation functionality in fewer than 300
lines of Go code.

5.1.2 JavaScript. Interpreted languages offer a high de-
gree of adaptability. Using Monkey Patching, one can proxy
any JavaScript function [33]. Proxied functions can be inter-
cepted and customized. This feature makes our JavaScript
bindings particularly concise, so all needed methods take
fewer than 280 lines of code to proxify.

5.1.3 Java. A managed language, Java is compiled to byte-
code, which is executed by a virtual machine. Bytecode is
easily amenable to modification, both statically and dynami-
cally [15]. The Java virtual machine provides the Dynamic
Proxy [22] facility that generates bytecode at runtime to
proxify any interface method. This feature enables us to
proxify all required methods in our target RDL in fewer than
415 lines of Java code.

5.2 ER-𝜋 in Action

Procedure Workflow
...............
ER-𝜋 .Start()
State 1:
if first run then

𝑒𝑣𝑒𝑛𝑡𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑒𝑣𝑒𝑛𝑡𝑠 () // by proxy functions

𝑎𝑙𝑔𝑜𝑠 ← 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒_𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠 (𝑒𝑣𝑒𝑛𝑡𝑠)

State 2:
𝐼𝐿𝑠 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 (𝑒𝑣𝑒𝑛𝑡𝑠, 𝑎𝑙𝑔𝑜𝑠)
𝑝𝑒𝑟𝑠𝑖𝑠𝑡 (𝐼𝐿𝑠)
State 3:
forall 𝑖𝑙 ∈ 𝐼𝐿𝑠 do

𝑖𝑛𝑖𝑡𝑆 ← 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑆𝑡𝑎𝑡𝑒𝑠 () // replicas’ initial states

𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑖𝑙)
ER-𝜋.𝐼𝑛𝑣𝑜𝑘𝑒𝑇𝑒𝑠𝑡𝑠 (...)
/* invoke built-in and custom tests */

𝑟𝑒𝑠𝑒𝑡 (𝑖𝑛𝑖𝑡𝑆) // reset to initial states

State 4:
if new constraints then

𝑎𝑙𝑔𝑜𝑠 ← 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒_𝑝𝑟𝑢𝑛𝑖𝑛𝑔_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠 ()
go to State 2

ER-𝜋 .End()
...............

Applying ER-𝜋 to third-party replicated data systems also
proved manageable for us from a configuration standpoint.
It only required adding several instructions to the existing
build and configuration scripts. ER-𝜋 ’s language-agnostic
components rely on C++ and Souffle, which have to be prein-
stalled. Recall that to mark the Start and End points of the
workload for which the distributed events are to be detected
and interleaved, ER-𝜋 provides higher-order functions for
developers to parameterize. The language-agnostic compo-
nents of ER-𝜋 comprise its runtime that receives the events
to interleave, subsequently pruning and persisting the in-
terleavings. Also, ER-𝜋 ’s system design allows application

8

ER-𝜋 : Exhaustive Interleaving Replay for Testing Replicated Data Library Integration Middleware 2025, December 15–19, 2025, Nashville, USA

developers to provide constraints for further pruning at run-
time. ER-𝜋 periodically checks for the presence of JSON files
in the constraints directory. If found, ER-𝜋 then consults
the files for the new constraints to apply, thus further reduc-
ing the problem space. Procedure Workflow demonstrates
ER-𝜋 ’s major steps and their connections, once it has been
applied to conduct RDL integration testing.

6 Evaluation
The evaluation of ER-𝜋 is guided by the following questions:

1. RQ1: Reproducing Bugs: How effective is ER-𝜋 to
reproduce RDL integration bugs?

2. RQ2: Recognizing Misconceptions: Is ER-𝜋 ’s ex-
haustive replay a viable means of recognizing common
RDL integration misconceptions?

3. RQ3: Reducing Problem Space: How effective are
ER-𝜋 ’s pruning algorithms at reducing the problem
space of exhaustive replay?

We applied ER-𝜋 to five third-party replicated data sys-
tems, implemented in Go, Java, and JavaScript. Next, we
briefly describe our evaluation subjects.

Subject 1: Soundcloud’s Roshi. Roshi provides a time-
series event database using a Last-Write-Win (LWW) CRDT
semantics for conflict resolution [13]. Implemented in Go,
Roshi adds a stateless, distributed layer on top of Redis and
stores shared dataset copies in multiple independent Redis in-
stances, mainly used for SoundCloud’s streaming. For ER-𝜋 ’s
evaluation, we prototyped the application logic that invokes
Roshi’s functions to maintain the replicated state.

Subject 2: OrbitDB. OrbitDB is another database, whose
properties include being serverless, peer-to-peer, and eventu-
ally consistent by means of Merkle-CRDTs [42] for conflict-
free writes and merges [59]. OrbitDB is implemented in
JavaScript. For ER-𝜋 ’s evaluation, we used OrbitDB by pro-
totyping application logic that invokes its RDL functions.

Subject 3: ReplicaDB. ReplicaDB, another open-source
database, relies on an RDL to transfer data in bulk between
relational and NoSQL representations [41]. Implemented in
Java, ReplicaDB can operate across environments, providing
different replicationmodeswith parallel data transfer. For ER-
𝜋 ’s evaluation, we prototyped application code that invokes
ReplicaDB’s functions to maintain its replicated state.

Subject 4: Yorkie. Yorkie is a Go-based replicated docu-
ment store whose JSON-represented documents allow for
seamless collaboration by means of CRDT [23]. For ER-𝜋 ’s
evaluation, we used Yorkie by prototyping application logic
that invokes its RDL functions.

Subject 5: CRDTs. CRDTs is a collection of RDL data
structures implemented in Java [25]. For ER-𝜋 ’s evaluation,
we used CRDTs by adding application logic on top of it that
invokes its RDL functions to maintain its replicated state.

Experimental Setup. For our experimental evaluation,
we used a virtual distributed environment that we config-
ured to have three replicas. Evaluating against three replicas
has been a common strategy for conducting research experi-
ments, concerned not only with replicated data systems [43]
but also with numerous cloud databases and edge computing
systems [53]. Two replicas were hosted on 64-bit Ubuntu
20.04 laptops, the first with 32 GB RAM and an Intel Core
i7 Processor and the second with 8 GB RAM and an Intel
Core i5 Processor. The third replica was hosted on a 32-bit
Raspbian 9 Raspberry Pi 3 with 1 GB RAM and ARMv7 Quad
Core Processor.

6.1 RQ1: Reproducing Bugs
One possible application of ER-𝜋 is to reproduce the bugs
experienced in a deployed system on the developer’s end.
When a bug is experienced during the execution of a repli-
cated data system, it might be impossible for users to report
which of the possible interleavings was in effect when the
bug manifested itself. To evaluate ER-𝜋 ’s effectiveness for
this task, we reproduced several previously reported bugs in
our evaluation subjects, as listed in Table 1. Because many
of these bugs have already been fixed, oftentimes we had to
use a previous release of our subjects with the bug still in
the codebase.

BugName Issue# #Events Status Reason
Roshi-1 [2] 18 9 closed misconception
Roshi-2 [1] 11 10 closed RDL issue
Roshi-3 [3] 40 21 closed misconception
OrbitDB-1 [5] 513 12 open —
OrbitDB-2 [4] 512 8 open —
OrbitDB-3 [12] 1153 15 closed misuse
OrbitDB-4 [7] 583 18 closed misconception
OrbitDB-5 [6] 557 24 closed misconception
ReplicaDB-1 [9] 79 10 closed misuse
ReplicaDB-2 [8] 23 14 closed misconception
Yorkie-1 [11] 676 17 open —
Yorkie-2 [10] 663 22 closed misconception

Table 1. Bug benchmarks. “#Events”—# of interleaved
events. “Status”—if the bug is closed by library developers.
“Reason”—what causes the bug.

6.2 RQ2: Recognizing Misconceptions
Even though RDLs are intended to facilitate the implemen-
tation of replicated data systems, developers might hold
incorrect assumptions about how RDLs interact with the
application logic. Such assumptions, referred to as miscon-
ceptions, can cause RDL usage mistakes, leading to bugs and
vulnerabilities. Five common RDL misconceptions are:

#1 The underlying network ensures causal delivery [56].
#2 The order of List elements is always consistent [56].
#3 Moving items in a List doesn’t cause duplication [24].

9

https://github.com/soundcloud/roshi/issues/18
https://github.com/soundcloud/roshi/issues/11
https://github.com/soundcloud/roshi/issues/40
https://github.com/orbitdb/orbitdb/issues/513
https://github.com/orbitdb/orbitdb/issues/512
https://github.com/orbitdb/orbitdb/issues/1153
https://github.com/orbitdb/orbitdb/issues/583
https://github.com/orbitdb/orbitdb/issues/557
https://github.com/osalvador/ReplicaDB/issues/79
https://github.com/osalvador/ReplicaDB/issues/23
https://github.com/yorkie-team/yorkie/issues/676
https://github.com/yorkie-team/yorkie/issues/663

Middleware 2025, December 15–19, 2025, Nashville, USA Provakar Mondal and Eli Tilevich

#4 Sequential IDs are always suitable for creating new
items in a to-do list [24].

#5 Multiple replicas in different regions mathematically
resolve to the same state without coordination [26, 30].

For our evaluation, we pursued a strategy similar to seed-
ing bugs, commonly used for assessing the effectiveness of
bug-detecting tools. However, “seeding misconceptions” re-
quired devising more elaborate strategies than those used
for seeding simple bugs. For each of these five misconcep-
tions, we next describe both our seeding strategy and the
test procedure used for detecting it.
Misconception #1: To seed #1, we stopped invoking the
conflict-resolution function for a particular replica and ran-
domly interleaved the same set of events requested from
other replicas. By assuming that #1 is correct, the program-
mer can expect different orders of requested events to be
causally sorted, thus always bringing the replica to the same
state. To detect this misconception, we wrote a test that
compares the replica’s states, which resulted from differ-
ent interleavings. Running this test revealed that without
invoking the conflict-resolution function explicitly, rather
than just depending on the underlying network, the replica’s
state diverges from one interleaving to another. Indeed, one
cannot rely on the network for sorting the causal updates,
with the responsibility falling on the consistency protocol.
Misconception #2: To seed #2, we used a replicated list
data structure, with its elements left unsorted. To detect the
misconception, we checked the order of list elements in dif-
ferent replicas in multiple interleavings and observed the
order varying between replicas. Even in the same replica,
depending on the execution order of updates (add or remove
elements), different interleavings can cause dissimilar ele-
ment orderings.
Misconception #3: To seed #3, we implemented a typical
move operation that applies a delete operation followed by
an insert operation. The potential problem is that if no spe-
cial care is taken, the replicated state can contain duplicated
elements. To ensure the correctness of concurrently mov-
ing the same element to different positions across replicas,
one must designate a particular position as “winning” [29].
To detect this misconception, we interleaved the move of
the same element to different positions across replicas and
checked if any duplication was present.
Misconception #4: To seed #4, we implemented a to-do list
using sequential IDs for each to-do item. To create a new
item, our implementation generates an ID by incrementing
the highest ID. The potential problem is that concurrently
creating to-do items in different replicas can cause a clash.
For example, if two replicas see the highest ID as 𝑛, they both
will create new to-do items with the same ID of 𝑛 + 1. One
strategy to avoid this problem is suggested by AMC [24]:
add consistent initialization, use a random number generator
for IDs, and ensure that to-dos are added to the same map.

To detect this misconception, we interleaved the event of
creating new to-do items across multiple replicas, checking
for any clashes across IDs in their synchronization requests.
Misconception #5: To seed #5, we prototyped the scenario
described by our motivating example in Section 2.3. Specif-
ically, we stopped coordination with other replicas for a
particular replica. To ensure correctness, each replica must
coordinate with the remaining replicas to reflect each other’s
updates. To detect this misconception, we tested whether the
particular replica’s state results in dissimilar states across
different interleavings.

Subjects Misconception label#
#1 #2 #3 #4 #5

Roshi ✓ ✓ ✓ ✓
OrbitDB ✓ ✓
ReplicaDB ✓
Yorkie ✓ ✓
CRDTs ✓ ✓ ✓ ✓ ✓

Table 2. Recognizing Misconceptions with ER-𝜋

Table 2 depicts themisconceptions ER-𝜋 manages to detect
in the evaluation subjects.

6.3 RQ3: Reducing Problem Space
To evaluate how ER-𝜋 ’s pruning algorithms reduce the prob-
lem space, we reproduced each bug in Table 1, measuring
the number of interleavings and time required for reproduc-
tion. The reproduction entailed replaying the interleavings in
three modes; (1) ER-𝜋 with its applicable pruning algorithms,
(2) DFS, and (3) Random (Rand). For 𝑛 events, both DFS and
Rand exhaustively explore all 𝑛! interleavings. These modes,
however, order the interleavings differently. DFS treats the
interleavings as a tree that starts at an empty root node and
recursively explores each event, with each level branching
out to unvisited events by backtracking and expanding. Ev-
ery path from root to leaf represents a unique interleaving,
capturing all possible 𝑛! interleavings. In contrast, Rand com-
poses each interleaving by randomly shuffling the events,
caching the composed interleavings to avoid repetition. All
experiments generated interleavings at runtime for all three
modes. Overall, the evaluation explored 10𝐾 interleavings for
each bug, taking us around seven machine days to complete
the entire experiment.
Figure 8a depicts the number of interleavings (in 𝑙𝑜𝑔10

scale) it took to reproduce each bug. If exploring 10𝐾 inter-
leavings fails to reproduce a bug, its corresponding bar is
marked with ↑. Both DFS and Rand failed to reproduce the
bugs Roshi-3, OrbitDB-4, and OrbitDB-5, while Rand also
failed to reproduce the bug Yorkie-2. In contrast, ER-𝜋 repro-
duced each bug, taking at most around 8𝐾 interleavings for
the bugs Roshi-3 and OrbitDB-5. DFS outperformed Rand,

10

https://github.com/soundcloud/roshi/issues/40
https://github.com/orbitdb/orbitdb/issues/583
https://github.com/orbitdb/orbitdb/issues/557
https://github.com/yorkie-team/yorkie/issues/663
https://github.com/soundcloud/roshi/issues/40
https://github.com/orbitdb/orbitdb/issues/557

ER-𝜋 : Exhaustive Interleaving Replay for Testing Replicated Data Library Integration Middleware 2025, December 15–19, 2025, Nashville, USA

Roshi-1 Roshi-2 Roshi-3 ODB-1 ODB-2 ODB-3 ODB-4 ODB-5 RDB-1 RDB-2 Yorkie-1 Yorkie-2
1.0e0

2.0e3

4.0e3

6.0e3

8.0e3

1.0e4

In
te

rle
av

in
gs

 #
(lo

g 1
0)

 to
 re

pr
od

uc
e

bu
g

ER- DFS Rand

(a) Number of Interleavings Explored to Reproduce Bug

Roshi-1 Roshi-2 Roshi-3 ODB-1 ODB-2 ODB-3 ODB-4 ODB-5 RDB-1 RDB-2 Yorkie-1 Yorkie-2
1.0e0

1.0e4

2.0e4

3.0e4

4.0e4

5.0e4

6.0e4

7.0e4

8.0e4

Se
co

nd
s (

lo
g 1

0)
 to

 re
pr

od
uc

e
bu

g

ER- DFS Rand

(b) Time Required to Reproduce Bug

Figure 8. Number of interleavings and time (both in 𝑙𝑜𝑔10 scale) required to reproduce bugs. ODB and RDB stands for OrbitDB
and ReplicaDB respectively. ↑ indicates that the bug is not reproduced after exploring 10, 000 interleavings.

except for ReplicaDB-2. The non-deterministic nature of ran-
dom exploration sometimes leads to unexpected outcomes,
by chance, discovering this bug faster.

Figure 8b depicts the reproduction time (also in 𝑙𝑜𝑔10 scale)
for each bug. Because we terminated the experiment after
exploring 10𝐾 interleavings having failed to find a bug, the
figure shows the time elapsed before the termination, sim-
ilarly marked with ↑. Replaying 10𝐾 interleavings uninter-
ruptedly took as long as 80𝐾 seconds (almost one machine
day), explaining the need for our termination threshold. For
all bugs, Rand took the most time due to the need to keep
shuffling the events until finding an unexplored interleav-
ing. For this reason, sometimes, small differences between
the number of interleavings translate into much larger time
differentials, such as for the bugs OrbitDB-2, ReplicaDB-1,
and Yorkie-1.

ER-𝜋 ’s faster reproduction is due to its pruning algorithms
that reduce the problem space. Figure 9 shows how each al-
gorithm contributes to reducing the number of interleavings.
Compared to DFS and Rand, ER-𝜋 prunes ≈ 5.6× and ≈ 7.4×
interleavings to replay on average, thus reducing the time
to reproduce a bug by ≈ 2.78× and ≈ 4.38×, respectively.

To evaluate ER-𝜋 ’s scalability, we designed a microbench-
mark around the bug OrbitDB-5. Rather than terminating
the execution after 10𝐾 interleavings, we left the experiment
running. Figure 10 shows five experimental runs with the

0% 25% 50% 75% 100%

Yorkie-2
Yorkie-1

RDB-2
RDB-1
ODB-5
ODB-4
ODB-3
ODB-2
ODB-1

Roshi-3
Roshi-2
Roshi-1

Event-Grouping Replica-Specific

Event-Independence Failed-OpsEvent-Independence Failed-Ops

Figure 9. Individual Algorithm’s Contribution to the Reduc-
tion of Interleavings Number

same setup, modes, and events. Each run either (✓): suc-
cessfully reproduced the bug or (×): exhausted all allocated
resources, causing the system to crash before reproducing
the bug. ER-𝜋 successfully reproduced the bug for all runs. In
contrast, the competing modes crashed before reproducing
the bug, except for one successful DFS run.
We configured the experiment to terminate upon repro-

ducing the bug. Since ER-𝜋 consistently succeeded, it never
11

https://github.com/osalvador/ReplicaDB/issues/23
https://github.com/orbitdb/orbitdb/issues/512
https://github.com/osalvador/ReplicaDB/issues/79
https://github.com/yorkie-team/yorkie/issues/676
https://github.com/orbitdb/orbitdb/issues/557

Middleware 2025, December 15–19, 2025, Nashville, USA Provakar Mondal and Eli Tilevich

I II III IV V
Experimental Run #

7.5e3
1.0e4
1.2e4
1.5e4
1.8e4
2.0e4

In
te

rle
av

in
gs

 #
(lo

g 1
0)

ER- DFS Rand

Figure 10. “Succeed-or-Crash” Micro-Benchmark

reached the point of resource exhaustion. In contrast, the ob-
served crashes in other approaches were due to exhausting
allocated system resources.While our findings are inherently
setup-specific, they underscore ER-𝜋 ’s ability to enhance test
scalability. For the same number of distributed events, ER-𝜋
effectively reduces the problem search space by minimizing
the number of interleavings to replay. As a result, it scales
to a higher number of distributed events than the evaluated
competitors, which lack pruning capability.

Applicability and Limitations: ER-𝜋 can be applied to
any replicated data system that integrates an RDL. Since our
work focuses on integration testing, the system under test
must comprise distinct components representing business
logic and replicated data management. With the widespread
adoption of component-based design—driven by its benefits
in modularity and overall software quality [49]—ER-𝜋 is well-
suited for modern distributed software ecosystems, making
it broadly applicable across existing systems.

Our approach has certain limitations, stemming from our
target domain and specific engineering choices. ER-𝜋 ’s prun-
ing algorithms are inherently domain-specific, designed specif-
ically for eventually consistent RDLs. As they stand, these
algorithms cannot be directly applied to other domains. They
may be adaptable to other distributed computing constraints—
an avenue we have yet to explore. Additionally, ER-𝜋 inter-
faces with RDL code through proxying rather than code in-
strumentation. As a result, its applicability may be limited in
language ecosystems that lack robust proxying support. Fur-
thermore, its runtime pruning relies on developer-provided
constraints rather than automatic inference via dynamic anal-
ysis. Despite its domain-specific focus and design choices,
ER-𝜋 ’s main value lies in providing a versatile infrastructure
for capturing and replaying interleavings, while applying
powerful optimizations that reduce the problem search space.
Consequently, ER-𝜋 proves particularly effective in ensuring
the robustness and reliability of replicated data systems that
integrate third-party RDLs.

7 Related Work
The design of ER-𝜋 draws inspiration from several research
areas, including the model checking of distributed systems
and testing replicated data systems, which we discuss below.

Model Checking of Distributed Systems. Model check-
ing explores interleavings of non-deterministic events to
uncover hard-to-find bugs. To be effective, checkers must be
able to reduce the exploration path of the interleaved events.
FlyMC introduces three path-reduction algorithms that pro-
vide high scalability and fast performance for data center sys-
tems by efficiently reducing the problem space [35]. DPOR
presents a partial-order reduction algorithm based on an ini-
tially explored arbitrary interleaving of the concurrent local
threads and then dynamically tracking interactions between
them to identify alternative paths [21]. MODIST interleaves
a variety of network conditions and failures, such as mes-
sage reordering, network partitions, and machine crashes in
distributed systems, providing a customizable framework,
whose strategies include DPOR, random exploration, and
DFS [55]. SAMC, a distributed model checker for cloud sys-
tems based on a white-box principle, takes the target sys-
tem’s simple semantic information and incorporates it into
four novel reduction policies to scalably find deep bugs [32].
MACEMC combines DFS and random path-exploration tech-
niques to find liveness bugs in system code, with testers
manually prioritizing events [28]. dBug systematically ex-
plores possible orders of distributed and concurrent events
for a given workload by adopting partial-order reduction to
produce a trace for replaying error encounters [47]. Crys-
tallBall’s state exploration algorithm adopts dynamic path-
reduction to explore causally related distributed events for
detecting any property violation in a black-box manner [54].
These related works target either certain properties of the
system or network messages across the nodes as a model,
without considering replication or eventual consistency. In
contrast, ER-𝜋 targets the interfacing of RDL with applica-
tion code as a model to identify integration violations, while
also relying on exhaustive replay of possible interleavings.

Testing RDL. With the increasing availability of power-
ful third-party RDLs, testing them has become an active
research topic. MET presents a design and implementation-
level verification framework for CRDT and applies explo-
rative testing by permuting all nondeterministic message
orderings [56]. AMC deterministically explores the behav-
ior of the JSON CRDT library, Automerge, and attempts
to cover both common and edge behavior along with the
implementation [24]. VeriFx provides a framework for de-
scribing the semantics of RDL at a high level and checking
the properties of the model. Additionally, it can synthesize
the implementations of the RDL into executable code, thus
presenting an approach, useful for creating new RDL [16].
Katara synthesizes verified CRDT designs from sequential

12

ER-𝜋 : Exhaustive Interleaving Replay for Testing Replicated Data Library Integration Middleware 2025, December 15–19, 2025, Nashville, USA

data type implementations, trying to eliminate errors by
design verification [31]. Compared to these works, which
target the design and implementation verification of RDLs
themselves, ER-𝜋 specifically focuses on testing the integra-
tion of RDL with the application code. Although the design
of ER-𝜋 draws inspiration from these prior state-of-the-art
approaches and tools, ER-𝜋 ’s unique contribution lies in its
focus on integrating testing.

8 Conclusion
We have presented ER-𝜋 , a middleware framework for inte-
gration testing of replicated data systems. By identifying and
replaying the possible interleavings of RDL events, ER-𝜋 has
been shown capable of finding difficult-to-find bugs and RDL
usage misconceptions. ER-𝜋 ’s novel four pruning algorithms
effectively reduce the problem space. ER-𝜋 ’s middleware
design enables applying it to RDLs written in different lan-
guages, without manually modifying their source code. To
the best of our knowledge, ER-𝜋 offers the first instance
of exhaustive interleaving replay designed specifically for
testing RDL integration.

As our future work directions, we plan to further expand
the scope of our evaluation to other replicated data systems.
We plan to extend the applicability and usefulness of ER-𝜋 for
tasks such as resource profiling and fuzzing. As integration
testing is fundamental to ensure the correctness of interfaces
between application and third-party middleware libraries,
we plan to explore how our approach can help improve the
robustness of large-scale replicated data systems. Finally, we
plan to explore whether the lessons learned from this work
can be applied to other distributed computing domains to
enhance their verification and testing.

Acknowledgments
We sincerely thank our shepherd Mohammad Sadoghi and
the anonymous reviewers, whose feedback has helped im-
prove this paper. This researchwas supported byNSF through
Grant #2232565.

References
[1] 2014. BUG: Roshi-11: CRDT semantics violated if same timestamp?

https://github.com/soundcloud/roshi/issues/11.
[2] 2014. BUG: Roshi-18: Incorrect deleted field in response. https:

//github.com/soundcloud/roshi/issues/18.
[3] 2015. BUG: Roshi-40: roshi-server golang app select and map order?

https://github.com/soundcloud/roshi/issues/40.
[4] 2018. BUG: OrbitDB-512: Lamport clock can be set far into future

making db progress halt. https://github.com/orbitdb/orbitdb/issues/

512.
[5] 2018. BUG: OrbitDB-513: Ordering tie breaker can cause undefined

ordering with the same identity. https://github.com/orbitdb/orbitdb/

issues/513.
[6] 2019. BUG: OrbitDB-557: repo folder keeps getting locked. https:

//github.com/orbitdb/orbitdb/issues/557.
[7] 2019. BUG: OrbitDB-583: Head hash didn’t match the contents errors.

https://github.com/orbitdb/orbitdb/issues/583.

[8] 2021. BUG: ReplicaDB-23: deleted records aren’t getting deleted from
the sink tables. https://github.com/osalvador/ReplicaDB/issues/23.

[9] 2022. BUG: ReplicaDB-79: Out of memory error. https://github.com/

osalvador/ReplicaDB/issues/79.
[10] 2023. BUG: Yorkie-663: Modify the set operation to handle nested

object values. https://github.com/yorkie-team/yorkie/issues/663.
[11] 2023. BUG: Yorkie-676: Document doesn’t converge when using Ar-

ray.MoveAfter. https://github.com/yorkie-team/yorkie/issues/676.
[12] 2024. BUG: OrbitDB-1153: Uncaught Error: Could not append entry:

although write access is granted. https://github.com/orbitdb/orbitdb/

issues/1153.
[13] Peter Bourgon and Nick Stenning. 2014. Roshi. https://github.com/

soundcloud/roshi.
[14] Gordon Brown, Ruyman Reyes, and Michael Wong. 2019. Towards

Heterogeneous and Distributed Computing in C++. In Proceedings of
the International Workshop on OpenCL. 1–5.

[15] Giacomo Cabri, Luca Ferrari, and Letizia Leonardi. 2005. Injecting
Roles in Java Agents Through Runtime Bytecode Manipulation. IBM
Systems Journal 44, 1 (2005), 185–208.

[16] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. 2022. Ver-
iFx: Correct Replicated Data Types for the Masses. arXiv preprint
arXiv:2207.02502 (2022).

[17] Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix.
2021. ECROs: Building Global Scale Systems from Sequential Code.
Proceedings of the ACM on Programming Languages 5, OOPSLA (2021),
1–30.

[18] Redis Documentation. 2023. Distributed Locks with Redis. https:

//redis.io/docs/latest/develop/use/patterns/distributed-locks/.
[19] Mostafa Elhemali, Niall Gallagher, Bin Tang, Nick Gordon, Hao Huang,

Haibo Chen, Joseph Idziorek, Mengtian Wang, Richard Krog, Zong-
peng Zhu, et al. 2022. Amazon DynamoDB: A Scalable, Predictably
Performant, and Fully Managed NoSQL Database Service. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). 1037–1048.

[20] Zhiwei Fan, Sunil Mallireddy, and Paraschos Koutris. 2022. Towards
Better Understanding of the Performance and Design of Datalog Sys-
tems. Datalog 2 (2022), 166–180.

[21] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order
Reduction for Model Checking Software. ACM Sigplan Notices 40, 1
(2005), 110–121.

[22] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018.
Static Analysis of Java Dynamic Proxies. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
209–220.

[23] Youngteac Hong and Dongcheol Choe. 2020. Yorkie. https://github.

com/yorkie-team/yorkie.
[24] Andrew Jeffery and Richard Mortier. 2023. AMC: Towards Trustwor-

thy and Explorable CRDT Applications with the Automerge Model
Checker. In Proceedings of the 10th Workshop on Principles and Practice
of Consistency for Distributed Data. 44–50.

[25] Andrejs Jermakovics. 2014. CRDTs. https://github.com/ajermakovics/

crdts.
[26] Leena Joshi. 2022. How to simplify distributed app development with

CRDTs. Accessed 2024.
[27] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Ja-

gannathan. 2019. Mergeable Replicated Data Types. Proceedings of the
ACM on Programming Languages 3, OOPSLA (2019), 1–29.

[28] Charles Killian, James W Anderson, Ranjit Jhala, and Amin Vahdat.
2007. Life, Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code. NSDI.

[29] Martin Kleppmann. 2020. Moving Elements in List CRDTs. In Proceed-
ings of the 7th Workshop on Principles and Practice of Consistency for
Distributed Data. 1–6.

[30] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha
Crooks, and Joseph M Hellerstein. 2022. Keep CALM and CRDT On.

13

https://github.com/soundcloud/roshi/issues/11
https://github.com/soundcloud/roshi/issues/18
https://github.com/soundcloud/roshi/issues/18
https://github.com/soundcloud/roshi/issues/40
https://github.com/orbitdb/orbitdb/issues/512
https://github.com/orbitdb/orbitdb/issues/512
https://github.com/orbitdb/orbitdb/issues/513
https://github.com/orbitdb/orbitdb/issues/513
https://github.com/orbitdb/orbitdb/issues/557
https://github.com/orbitdb/orbitdb/issues/557
https://github.com/orbitdb/orbitdb/issues/583
https://github.com/osalvador/ReplicaDB/issues/23
https://github.com/osalvador/ReplicaDB/issues/79
https://github.com/osalvador/ReplicaDB/issues/79
https://github.com/yorkie-team/yorkie/issues/663
https://github.com/yorkie-team/yorkie/issues/676
https://github.com/orbitdb/orbitdb/issues/1153
https://github.com/orbitdb/orbitdb/issues/1153
https://github.com/soundcloud/roshi
https://github.com/soundcloud/roshi
https://redis.io/docs/latest/develop/use/patterns/distributed-locks/
https://redis.io/docs/latest/develop/use/patterns/distributed-locks/
https://github.com/yorkie-team/yorkie
https://github.com/yorkie-team/yorkie
https://github.com/ajermakovics/crdts
https://github.com/ajermakovics/crdts

Middleware 2025, December 15–19, 2025, Nashville, USA Provakar Mondal and Eli Tilevich

arXiv preprint arXiv:2210.12605 (2022).
[31] Shadaj Laddad, Conor Power,MaeMilano, Alvin Cheung, and JosephM

Hellerstein. 2022. Katara: Synthesizing CRDTs with Verified Lifting.
Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022),
1349–1377.

[32] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F
Lukman, and Haryadi S Gunawi. 2014. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). 399–414.

[33] Benjamin S Lerner, Herman Venter, and Dan Grossman. 2010. Support-
ing Dynamic, Third-Party Code Customizations in JavaScript Using
Aspects. ACM Sigplan Notices 45, 10 (2010), 361–376.

[34] Che-Sheng Lin and Gwan-Hwan Hwang. 2013. State-cover Testing
for Nondeterministic Terminating Concurrent Programs with an In-
finite Number of Synchronization Sequences. Science of Computer
Programming 78, 9 (2013), 1294–1323.

[35] Jeffrey F Lukman, Huan Ke, Cesar A Stuardo, Riza O Suminto, Da-
niar H Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian,
Feng Ye, Tanakorn Leesatapornwongsa, et al. 2019. FlyMC: Highly
Scalable Testing of Complex Interleavings in Distributed Systems. In
Proceedings of the Fourteenth EuroSys Conference 2019. 1–16.

[36] Giridhar Manepalli. 2022. Clocks and Causality - Ordering Events
in Distributed Systems. https://www.exhypothesi.com/clocks-and-

causality/.
[37] David Mealha, Nuno Preguiça, Maria Cecilia Gomes, and João Leitão.

2019. Data Replication on the Cloud/Edge. In Proceedings of the 6th
Workshop on Principles and Practice of Consistency for Distributed Data.
1–7.

[38] Ruijie Meng, George Pîrlea, Abhik Roychoudhury, and Ilya Sergey.
2023. Greybox Fuzzing of Distributed Systems. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Secu-
rity. 1615–1629.

[39] Anthony Russo and Joe Russo. 2018. Avengers: Infinity War. Walt
Disney Studios Motion Pictures.

[40] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. 2010. An
Empirical Study of Reported Bugs in Server Software with Implications
for Automated Bug Diagnosis. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. 485–494.

[41] Oscar Salvador and Francesco Zanti. 2018. ReplicaDB. https://github.

com/osalvador/ReplicaDB.
[42] Hector Sanjuan, Samuli Poyhtari, Pedro Teixeira, and Ioannis Psaras.

2020. Merkle-CRDTs: Merkle-DAGs meet CRDTs. arXiv preprint
arXiv:2004.00107 (2020).

[43] Nazmus Saquib, Chandra Krintz, and Rich Wolski. 2022. Log-Based
CRDT for Edge Applications. In 2022 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, 126–137.

[44] Ohad Shacham, Mooly Sagiv, and Assaf Schuster. 2005. Scaling Model
Checking of Dataraces Using Dynamic Information. In Proceedings
of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming. 107–118.

[45] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free Replicated Data Types. In 13th International Con-
ference on Stabilization, Safety, and Security of Distributed Systems (SSS
2011). Springer LNCS volume 6976, 386–400. https://doi.org/10.1007/

978-3-642-24550-3_29

[46] Dharma Shukla. 2017. A Technical Overview of Azure Cosmos
DB. https://azure.microsoft.com/en-us/blog/a-technical-overview-of-

azure-cosmos-db/.
[47] Jiri Simsa, Randy Bryant, and Garth Gibson. 2010. dBug: Systematic

Evaluation of Distributed Systems. In 5th International Workshop on
Systems Software Verification (SSV 10).

[48] Yannis Smaragdakis and Martin Bravenboer. 2010. Using Datalog for
Fast and Easy Program Analysis. In International Datalog 2.0 Workshop.

Springer, 245–251.
[49] Tassio Vale, Ivica Crnkovic, Eduardo Santana De Almeida, Paulo

Anselmo daMota Silveira Neto, Yguaratã Cerqueira Cavalcanti, and Sil-
vio Romero de Lemos Meira. 2016. Twenty-eight years of component-
based software engineering. Journal of Systems and Software 111 (2016),
128–148.

[50] Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao
Huang. 2023. Model Checking Guided Testing for Distributed Systems.
In Proceedings of the Eighteenth European Conference on Computer
Systems. 127–143.

[51] Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li, and Ying Li. 2009.
HadoopHighAvailability throughMetadata Replication. In Proceedings
of the first international workshop on Cloud data management. 37–44.

[52] AdamWelc. 2021. Automated Code Transformation for Context Propa-
gation in Go. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1242–1252.

[53] Rich Wolski, Chandra Krintz, Fatih Bakir, Gareth George, and Wei-
Tsung Lin. 2019. CSPOT: Portable, Multi-scale Functions-as-a-Service
for IoT. In Proceedings of the 4th ACM/IEEE Symposium on Edge Com-
puting. 236–249.

[54] Maysam Yabandeh, Nikola Knežević, Dejan Kostić, and Viktor Kun-
cak. 2010. Predicting and Preventing Inconsistencies in Deployed
Distributed Systems. ACM Transactions on Computer Systems (TOCS)
28, 1 (2010), 1–49.

[55] Junfeng Yang, Tisheng Chen, MingWu, Zhilei Xu, Xuezheng Liu, Haox-
iang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009.
MODIST: Transparent Model Checking of Unmodified Distributed
Systems. In NSDI’09. 213–228.

[56] Yuqi Zhang, Yu Huang, Hengfeng Wei, and Xiaoxing Ma. 2022. MET:
Model Checking-Driven Explorative Testing of CRDT Designs and
Implementations. arXiv preprint arXiv:2204.14129 (2022).

[57] Yicheng Zhang, MatthewWeidner, and Heather Miller. 2023. Program-
mer Experience When Using CRDTs to Build Collaborative Webapps:
Initial Insights. In 13th annual workshop on the intersection of HCI and
PL (PLATEAU). https://doi.org/10.1184/R1/22277341.v1

[58] Xin Zhao and Philipp Haller. 2020. Replicated Data Types that Unify
Eventual Consistency and Observable Atomic Consistency. Journal of
logical and algebraic methods in programming 114 (2020), 100561.

[59] Friedel Ziegelmayer and Hayden Young. 2018. OrbitDB. https:

//github.com/orbitdb/orbitdb.

14

https://www.exhypothesi.com/clocks-and-causality/
https://www.exhypothesi.com/clocks-and-causality/
https://github.com/osalvador/ReplicaDB
https://github.com/osalvador/ReplicaDB
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://doi.org/10.1184/R1/22277341.v1
https://github.com/orbitdb/orbitdb
https://github.com/orbitdb/orbitdb

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Replicated Data System
	2.2 Testing Interleavings in Distributed Systems
	2.3 Motivating Example

	3 ER-'s Pruning Algorithms
	3.1 Pruning in Motivating Example
	3.2 Event Grouping
	3.3 Replica Specific
	3.4 Event Independence
	3.5 Failed Ops

	4 System Design and Workflow
	4.1 Proxying RDL Functions
	4.2 Generating Interleavings
	4.3 Executing Interleavings
	4.4 Checking Test Assertions
	4.5 Optional Features

	5 Implementation & Application
	5.1 Implementation
	5.2 ER- in Action

	6 Evaluation
	6.1 RQ1: Reproducing Bugs
	6.2 RQ2: Recognizing Misconceptions
	6.3 RQ3: Reducing Problem Space

	7 Related Work
	8 Conclusion
	References

