
NoiseScope: Detecting Deepfake Images in a Blind Setting
Jiameng Pu
Virginia Tech
jmpu@vt.edu

Neal Mangaokar
Virginia Tech

neal1998@vt.edu

Bolun Wang
Facebook

bolunwang@fb.com

Chandan K. Reddy
Virginia Tech

ckreddy@vt.edu

Bimal Viswanath
Virginia Tech
vbimal@vt.edu

ABSTRACT
Recent advances in Generative Adversarial Networks (GANs) have
significantly improved the quality of synthetic images or deepfakes.
Photorealistic images generated by GANs start to challenge the
boundary of human perception of reality, and brings new threats to
many critical domains, e.g., journalism, and online media. Detecting
whether an image is generated by GAN or a real camera has become
an important yet under-investigated area. In this work, we propose
a blind detection approach called NoiseScope for discovering GAN
images among other real images. A blind approach requires no a
priori access to GAN images for training, and demonstrably gener-
alizes better than supervised detection schemes. Our key insight is
that, similar to images from cameras, GAN images also carry unique
patterns in the noise space. We extract such patterns in an unsu-
pervised manner to identify GAN images. We evaluate NoiseScope
on 11 diverse datasets containing GAN images, and achieve up to
99.68% F1 score in detecting GAN images. We test the limitations
of NoiseScope against a variety of countermeasures, observing that
NoiseScope holds robust or is easily adaptable.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures.

KEYWORDS
Deepfakes, Blind Detection, Machine Learning, Clustering

ACM Reference Format:
Jiameng Pu, Neal Mangaokar, Bolun Wang, Chandan K. Reddy, and Bimal
Viswanath. 2020. NoiseScope: Detecting Deepfake Images in a Blind Set-
ting. In Annual Computer Security Applications Conference (ACSAC 2020),
December 7–11, 2020, Austin, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3427228.3427285

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427285

DCGAN	[65]
2016

CoGAN	[47]	
2016

PGGAN	[39]	
2018

StyleGAN	[40]	
2019

GAN	[33]
2014

Figure 1: Advances in GANs over the years.

1 INTRODUCTION
Recently, the machine learning community has made significant
advances in deep generative models. A landmark paper by Goodfel-
low et al. proposed the Generative Adversarial Network (GAN) in
2014 [33]. This work triggered immense interest in developing and
improving GAN models. Today, such generative models can gener-
ate convincing images [39, 40], videos [75], text [34] and audio [22].
Figure 1 shows quality of images generated by GANs over the
years. These efforts were primarily motivated by different benign
use cases, e.g., to augment datasets using synthetic samples to train
better models [26], for de-identification [42], feature extraction [5],
video prediction [46], and image editing [58]. However, govern-
ments [16, 73] and industry [25] are realizing the dual-use nature
of such powerful methods—fake content or deepfakes produced by
generative models can also be used for malicious purposes.

Today, we see many instances of misuse of deepfakes, including
fake pornographic videos and images of celebrities, and ordinary
people [24, 64], fake audios of people saying things they never
said [50]. Industry and governments are also concerned about deep-
fakes being used for large disinformation campaigns on social media
platforms to manipulate elections, trigger hate and violence against
minorities, and to create unrest in society [60]. Deepfakes can be
a threat beyond the web as well. Recent work showed how GANs
can be used to create deepfake medical images to mislead medical
professionals, and ML-based diagnostic tools [51].

In this work, we take a step towards defending against such
threats by building a deepfake detection scheme. We focus on
deepfake images generated by GANs, which is the state-of-the-
art method for generating photorealistic images. Most prior work
on detecting fake (GAN generated) images are supervised meth-
ods that require a priori access to fake images, or their generative
models [52]. However, supervised schemes usually do not gener-
alize well to datasets they are not trained on, and access to fake
images for training can be limited in practice. Instead, we focus on
advancing the state-of-the-art in blind detection of fake images. Our

https://doi.org/10.1145/3427228.3427285
https://doi.org/10.1145/3427228.3427285

scheme, called NoiseScope, can accurately detect fake images with-
out requiring any a priori access to fake images or their generative
schemes for training.

Our work is inspired by prior work in camera fingerprinting [11,
12, 32, 49], and includes the following key contributions:
1○ Similar to images produced by cameras, we find that fake im-
ages contain unique low-level noise patterns that are tied to the
GAN model that generated it. Such patterns are correlated with
the deconvolution layers of GANs. 2○We present the design and
implementation of NoiseScope, a blind detection scheme that lever-
ages unique patterns in fake images left by the generative model.
Given a test set with unknown number of fake and real (produced
by camera) images, NoiseScope extracts any available model finger-
prints or patterns that identify a GAN and uses the fingerprint to
detect fake images in that set. In contrast to supervised schemes,
our method is agnostic to the type of GAN used, and is also effec-
tive when the test set contains images from multiple GANS. Our
method also works for any type of high-level image content, as it
only extracts low-level noise patterns. 3○We evaluate NoiseScope
on 11 diverse deepfake image datasets, created using 4 high quality
GAN models. NoiseScope can detect fake images with up to 99.68%
F1 score. 4○ Lastly, we extensively evaluate NoiseScope against a
variety of countermeasures by assuming an attacker who is aware
of NoiseScope’s detection pipeline.

Considering the rate at which new generative models (GANs)
are being proposed, supervised learning strategies will likely tip
the arms race in favor of the attacker. Therefore, there is an urgent
need to advance blind detection schemes that can, in theory, work
against a wide range of GANmodels. The source code of NoiseScope
is available at GitHub1, and we hope NoiseScope inspires more work
on deepfake detection.

2 BACKGROUND & RELATEDWORK
In this work, we focus on images, and consider deepfake images as
those produced by machine learning algorithms, more specifically,
GANs. GAN models are capable of producing high-quality images.
In fact, humans find it hard to distinguish deepfake images from
real images [51]. We encourage the reader to look at the following
website 2 that presents a new fake image on each page refresh,
created using the StyleGAN [40]. In the rest of the paper, we will
interchangeably use the term deepfake or fake image to refer to such
content. Images produced by traditional imaging devices (cameras)
are called real images.

2.1 Deepfake Generation Methods
Deepfakes are primarily enabled by the family of deep generative
models. Given a training set of images, a generative model can
learn the distribution of the data and produce new images with
variations. Two popular approaches include Generative Adversarial
Networks (GANs) [33], and Variational Autoencoders (VAEs) [41].
We focus on deepfakes generated by GANs, because GANs have
shown impressive performance over the last few years.
GAN Basics. In 2014, Goodfellow et al. [33] proposed the Gener-
ative Adversarial Network (GAN). A GAN is designed using two

1https://github.com/jmpu/NoiseScope
2https://thispersondoesnotexist.com/

neural networks, a generator (G) that produces fake images, and
a discriminator (D) that takes the fake image and gives feedback
to the generator on how well it resembles a real image. The two
components are trained simultaneously in an adversarial manner
such that the generator learns to produce fake images that are in-
distinguishable from real images, and the discriminator learns to
distinguish between real and fake images (produced by the genera-
tor). Therefore, the idea is to optimize one main objective—make the
generated images indistinguishable from real images. This training
objective or loss term is called the adversarial loss.

It is important to note the role of deconvolution or upsampling
layers in generative models. An integral component of most genera-
tive models, including VAEs and GANs, is a transposed convolution
layer [23], commonly referred to as deconvolution or upsampling
layer. This is fundamental to building high quality generators, as it
allows for learnable upsampling from a lower dimensional vector
space. In Section 5.1, we demonstrate how the deconvolution layers
can leave distinct patterns in the “noise space” of an image, which
enable us to distinguish between fake and real images.
Choice of GANs. Experimenting with the large number of GANs
in the literature [3, 47, 65, 82] would be impractical. Instead, we
focus on certain key models that significantly raised the bar for
different types of image generation tasks. We focus on deepfakes
generated by CycleGAN [87], PGGAN [39], BigGAN [9], and Style-
GAN [40]. These 4 GANs are briefly discussed below. Figures 8-18
in Appendix A show image samples from all 4 GANs.
CycleGAN [87]. CycleGAN advanced the state-of-the-art in image-
to-image translation when it was proposed, improving over the
previous method Pix2Pix [37]. CycleGAN can translate an image
from one domain to another, e.g., turn an image of a horse to a
zebra. Compared to Pix2Pix, CycleGAN does not require paired
images for training, which is a huge advantage, as paired images
(for two domains) are hard to obtain. From a threat perspective,
image-to-image translation schemes can be used by an attacker in
many ways, e.g., swap faces in an image, insert a new person or
object into a scene.
PGGAN [39]. In 2018, PGGAN demonstrated a huge improvement
in image quality. Previously, GANs were not capable of generating
high resolution images in high quality. The basic idea is to progres-
sively generate higher resolution images, by starting from easier
low-resolution images. PGGAN progressively grows both the gener-
ator and discriminator by adding new layers as training progresses
to produce higher resolution images with more details. PGGAN
is able to produce photo-realistic images at high resolutions, up
to 1024x1024. At the time, PGGAN produced the highest Incep-
tion score of 8.80 for CIFAR10 [43], and also created a high-quality
version of the CelebA dataset [48] at 1024x1024 resolution.
BigGAN [9]. Soon after the introduction of PGGAN, Brock et al.
introduced BigGAN, an attempt to scale up conditional GANs to
develop high quality images on a large number of domains. BigGAN
uses a variety of techniques to improve GAN training and image
quality, including an increased batch size, increase in number of
layer channels, and shared embeddings for batch normalization lay-
ers in the generator. One feature of BigGAN is the “truncation trick”,
whereby using a hyperparameter called the truncation threshold,
one can control the trade-off between image fidelity and variety. A

2

https://github.com/jmpu/NoiseScope
https://thispersondoesnotexist.com/

higher truncation threshold leads to higher variety in generated
images, while a lower threshold boosts fidelity. When evaluated
on the ImageNet dataset, BigGAN produced a very high Inception
Score of 166.5, outperforming SAGAN [82] which had the previous
best Inception Score of 52.52.
StyleGAN [40]. In 2019, Karras et al. released StyleGAN, an im-
provement to PGGAN which incorporates a complete redesign of
the generator architecture. The generator no longer receives as
input a random noise vector, but a style vector generated by a noise-
to-style CNN mapping network. Other changes include a change in
the upsampling technique, and addition of noise to feature maps in
the convolutional layers. This redesign allows fine-grained control
over style of the generated image, while simultaneously retaining
and improving upon the high-quality output of PGGAN. Having
fine-grained control over style of the generated image is important
from an attack perspective.

2.2 Deepfake Detection Methods
Prior work on deepfake detection has investigated both supervised
and blind detection schemes. In a supervised scheme, the defender
has access to both real and fake content (or has knowledge of the
generative model) and can use this labelled data to train a classifi-
cation algorithm. In blind detection, the defender has no a priori
access to fake content (or generative methods employed), and only
has access to real content. Most prior work has employed supervised
schemes, and limited efforts have been made towards advancing
blind detection schemes. Consequently, the performance of such
schemes has evolved considerably, and the release of effective DNN
models that facilitate improved feature learning has only furthered
this progress. However, the dominant performance of supervised
learning comes with notable caveats.

In practice, it is hard to obtain a priori access to fake content,
or knowledge of the generative model. However, even with such
presumption, supervised schemes suffer from a fatal inability to
generalize. More specifically, we observe that such schemes are
designed for and thus trained on a limited set of deepfakes (gen-
erated by specific generative models), and do not generalize well
when evaluated against deepfakes produced by other models. In
Section 5.2, we demonstrate this inability to generalize.

A blind detection scheme aims to solve this problem by not
requiring a priori access to fake images for training, while being
able to detect fake images from a wide variety of sources (GANs).
An accompanying difficulty of blind design is a potential decrease
in performance when compared to existing supervised classifiers.
NoiseScope aims to advance the state-of-the-art for blind detection
schemes by offering a performant detection scheme. NoiseScope
complements the supervised detection schemes from prior work,
allowing for potentially hybrid ensembles that feature the best of
both worlds.
Supervised methods. One set of approaches focus on building a
supervised classifier with input image features crafted from specific
vector spaces. Examples include Marra et al.’s [52] proposition of
using raw pixel and conventional forensics features, and Nataraj
et al.’s [57] extraction of pre-computed RGB pixel co-occurrence
matrices to capture distinguishing features. Feature engineering in

multiple color spaces has also been explored. Li et al. proposed a fea-
ture set capturing disparities in color spaces between real and fake
images and then using such features to perform classification [45].

Prior work observed that, similar to cameras, GANs also leave
unique fingerprints in the images. Marra et al. [53] extracted GAN
model fingerprints using techniques from the camera fingerprint-
ing literature [12, 49], and implemented a supervised scheme to
detect fake images. Another approach by Yu et al. [80] used a su-
pervised deep learning scheme to learn GAN model fingerprints,
and attribute images to GANs. Yu et al.’s approach primarily fo-
cused on attributing fake images to different GANs. Albright and
McCloskey [2] also worked on attributing images to GANs by lever-
aging generator inversion schemes [19]. Our work also aims to
identify model fingerprints to detect fake images but does so in a
blind manner.

Domain-specific inconsistencies can also be used to detect deep-
fakes. Yang et al. [78] focused on deep fakes generated by splicing
synthesized face regions into a real image. They show that such
splicing introduces errors when 3D head poses are estimated from
the fake images. An SVM-based classifier is trained to learn such
errors to distinguish between real and fake images.

Other supervised approaches leverage DNNs to automatically
extract features relevant for classification. Mo et al. [55] developed
a CNN-based model to detect face images generated by PGGAN.
Rossler et al. compared 5 CNN-based classification architectures by
learning extracted face regions [69]. Tariq et al. [72] propose using
ensembles of various CNN-based classifiers to detect GAN gener-
ated face images. Concurrent to our work,Wang et al. [77] proposed
a classifier based on the ResNet-50 architecture that is trained on a
large number of fake images from a single GAN, with carefully cho-
sen data augmentation schemes. Afchar et al. [1] designed MesoNet
based on Inception blocks to detect deepfakes showing impressive
performance. We compare NoiseScope with MesoNet in Section 5.2.
Also note that the above approaches have a fundamental weakness—
they can be evaded by the attacker, by re-training the GAN using
the defender’s DNN model as the discriminator.
Blind detection. Li et al.’s work [45] proposes a blind detection
scheme. The idea is that GANs fail to learn correlations among color
components in the RGB space, which results in inconsistencies
when examined in other color spaces, namely HSV, and YCbCr.
They train a one-class SVM classifier on features based on color
statistics of HSV and YCbCr color spaces of real images to detect
fake images. The intuition is that fake images will be flagged as
anomalies in the color (feature) space. We compare our approach
against Li et al.’s approach in Section 5.2.

Zhang et al. [83] uses real data to train “AutoGAN”, a compo-
nent that aims to simulate a GAN generator. The idea is to first
generate fake images using AutoGAN, and then train a supervised
classifier on the newly synthesized fake images and real images to
detect other fake images. Unfortunately, its performance largely
depends on the architecture of AutoGAN’s generator. Results show
significant drop in performance when tested on fake images from
a GAN that uses a different architecture compared to AutoGAN’s
generator.

3

3 DETECTING DEEPFAKES VIA NOISESCOPE
3.1 Attack and Defense Model
Attacker model. Attacker aims to generate high quality convinc-
ing deepfake images using deep generative models (GANs). Our
focus is on fake images that are entirely produced by a generative
model (GAN). Fake images created by image forgery techniques
such as replacing or adding content in real images (e.g., face swap-
ping [74]) are not considered. In Section 5, we consider an attacker
who is unaware of our defense scheme. Later, in Section 6, we con-
sider an attacker who is aware of our defense scheme pipeline and
employs a variety of countermeasures against NoiseScope.
Defender model. Defender has no a priori access to fake images,
and no knowledge of the generative scheme used by the attacker.
Defender is provided a test set of images, out of which an unknown
number of images are fake or real, and the goal is to flag fake images.
Defender also makes use of a reference set of real images, which is
only used to calibrate certain detection parameters of NoiseScope.
For example, if Facebook wants to detect deepfake profile pictures,
they can prepare a test set containing profile pictures (say faces), and
the reference set would include a set of known real profile pictures.
Our method is designed to be content agnostic, and therefore the
test set can be based on images from different content categories.

3.2 Method Basics
We do not rely on content-specific features that capture semantic
or statistical inconsistencies, e.g., finding abnormalities in human
face images. Such defenses will not survive for long, given the rate
at which GANs are advancing and producing photorealistic images.
Instead, we aim to identify patterns that are not tied to the semantic
aspects of image contents but allow us to differentiate between real
and fake images.

We borrow ideas from the rich literature of camera fingerprinting
schemes [11, 12, 32, 49]. Each imaging device (e.g., camera) leaves
a unique and stable pattern in each image due to imperfections
in various stages of the image acquisition process. Such patterns
known as photo-response non-uniformity (PRNU) patterns have
been used to fingerprint cameras or image acquisition devices [49].
Naturally, this first raises the question whether GAN-based image
generators would leave a unique and stable “artificial” pattern in the
generated images. In fact, preliminary work by Marra et al. shows
that such stable patterns do exist in GAN generated images [53].
These patterns are present, regardless of the content in the image,
be it images of human faces, objects, animals or landscapes. Sec-
ondly, we would expect those patterns to look different because
GAN models share no similarity with camera-based image acqui-
sition pipelines. We leverage these ideas and propose a complete
blind detection scheme that can accurately flag fake images with
any type of content. Next, we explain techniques from the camera
fingerprinting literature that we leverage to fingerprint generative
models.
Leveraging model fingerprints for detection. Consider a set
of images, Ii , where i ∈ {1, . . . ,Np } generated by a GAN. Our goal
is to estimate a stable pattern left by the GAN, that is unrelated to
the semantics of the image content. The first step is to separate the
high-level content from the image, and estimate the noise residual

StyleGAN CycleGAN PGGAN BigGAN

Canon	EOS	6D iPhone	7	Plus Nikon	D90 Nikon	D4

Figure 2: Camera fingerprints from Canon, iPhone, Nikon
cameras (top) and GAN fingerprints from StyleGAN, Cycle-
GAN, PGGAN, BigGAN (bottom).

 0

 20

 40

 60

 80

 100

0 100 1,000 10,000 100,000

D
is

tr
ib

u
ti

o
n

 o
f

Im
ag

es
PCE Correlation b/w GAN Fingerprint and Images

Real Images
GAN Images

Figure 3: Histogram of PCE correlation between model fin-
gerprint and images (fake and real).

Ri . The high-level content is estimated by applying an appropriate
denoising filter f (Ii). The noise residual is then computed as, Ri =
Ii − f (Ii). Now the assumption is that the noise residual Ri contains
the stable pattern or the fingerprint F , and some random noise Ni ,
i.e., Ri = F + Ni . Therefore, one can estimate the fingerprint by
averaging the residuals:

F̄ = (

Np∑
i=1

Ri)/Np (1)

In practice, the larger the Np , the additive noise component tends
to cancel out, and we obtain a more accurate fingerprint. According
to prior work, it is possible to estimate a reliable fingerprint using
at least 50 images, i.e., Np > 50 [6].

Figure 2 shows camera and GAN fingerprints computed using
the above method for Np = 100 images. Note that model finger-
prints look very different from device fingerprints. In the case of
CycleGAN and PGGAN, there is a noticeable checkerboard pattern.
This observation is further discussed later in Section 5.1.

If model and device fingerprints are so dissimilar, can we use
the model fingerprint to distinguish between fake and real images?
To answer this, we take a set of face images composed of 200 real
(taken by Canon EOS 70D) and 200 fake images from StyleGAN. The
fingerprint for StyleGAN, say FGAN , is computed using a separate
set of 100 face images. Next, to attribute images in this set to the
device or the GAN, we compute the correlation between the model
fingerprint and residual of each image (Ri) in the test set, i.e.,

ρFGAN ,i = corr (F̄GAN ,Ri). (2)

4

For a given image, if this correlation is higher than a certain thresh-
old Tc , it is classified as a fake image, or real, otherwise. A corre-
lation measure called Peak to Correlation Energy (PCE) (described
next) is used. Figure 3 shows the histogram of correlation values
for all images in the set (both fake and real). The fake images can
be easily separated from the real images based on the PCE values.
PCE metric [30]. PCE is a similarity metric to compare two discrete
signals. It is computed as the ratio between squared normalized
correlation and sample variance of circular cross-relations. The
PCE implementation3 that we use carries the sign of normalized
correlation peak (can be negative). A high positive value of PCE
denotes a high correlation. Other than PCE, there are other cor-
relation measures, such as Pearson correlation [59], and quotient
correlation [84]. Compared to other metrics, PCE is a more stable
metric that can be used with images from devices with different
resolutions and sensor types [30]. We find PCE to be suitable for
GAN images as well.

To summarize, if an accurate model fingerprint is available, it is
straight-forward to detect fake images. However, in a blind setting
we have no knowledge of fake images or the associated GAN(s) to
compute the model fingerprint.
Key challenges in designingNoiseScope. 1○ The first challenge
is estimating a model fingerprint. It is hard to estimate a model fin-
gerprint from a single image in a blind setting (Equation 1 requires
averaging over multiple images). While prior work, NoisePrint [18]
provides a supervised (CNN-based) learning scheme to extract cam-
era fingerprint from a single image, such methods are not applicable
in a blind setting. Instead, our idea is to extract fingerprints from
the test set itself in an unsupervised manner.We propose an image
clustering scheme that identifies subsets of images belonging to
the same source (device or model), and estimate fingerprints based
on those subsets. Our method should work as long as a certain
minimum number of fake images (enough to reliably estimate a
fingerprint) are present in the test set. 2○ Once a fingerprint is
extracted from the test set, how do you tell whether it is a model
fingerprint or a device fingerprint? To achieve this, we propose a
fingerprint classification module based on anomaly detection to
identify model fingerprints. 3○Method should be agnostic to the
specific GAN used, and should also work when test set contains fake
images from different GANs. To address this, our clustering scheme
is designed to be agnostic to the GAN(s) used, and is able to ex-
tract available fingerprints, even from multiple models. 4○ Method
should work for images with any type of high-level content (images
of faces, animals, objects, etc.) To address this challenge, we use
residual image extraction schemes that can effectively suppress
high-level content.

3.3 Detection Pipeline
NoiseScope includes 4 main components: (1) Noise residual extrac-
tor, (2) Fingerprint extractor, (3) Fingerprint classifier, and (4) Fake
image detector. Figure 4 provides an overview of NoiseScope’s de-
tection pipeline. The first component prepares the noise residuals,
the second component finds all available fingerprints in the test
set. The third component identifies model fingerprints among the

3http://dde.binghamton.edu/download/camera_fingerprint/

Figure 4: An illustration ofNoiseScope detection pipeline: (a)
Noise Residual Extractor, (b) Fingerprint Extractor via Clus-
tering, (c) Fingerprint Classifier, (d) Fake Image Detector.

identified fingerprints, and the fourth component uses the model
fingerprints to flag fake images.
Noise Residual Extractor. This first step suppresses high level
image content and extracts the noise residual (which contains the
fingerprint). We use the Wavelet Denoising filter [54] to extract the
noise residual for each image in the test set. Prior work recommends
this as one of the best filters to suppress high-level content [13,
17]. However, there is no perfect filter, and we do notice Wavelet
denoising also leaking image contents into the noise residual in
some cases. If there is heavy content leakage, then fingerprint
extraction (next step) becomes harder. But in general, Wavelet
denoising tends to perform well. In Section 5.2, we analyze the
impact of different denoising filters on detection performance.
Fingerprint Extractor and Fingerprint Classifier. The second
step extracts model fingerprints from the test set. The fingerprint
extractor finds all available fingerprints (model or device) from the
test set, and the fingerprint classifier identifies those that are model
fingerprints. To extract fingerprints, we resort to unsupervised
clustering by starting with the individual noise residuals computed
from step 1. Our goal is to group images belonging to the same
source (model or device), and then use each group of images to
build a fingerprint (using Equation 1).

But there is a challenge—it is hard to cluster images in the resid-
ual space. Residual images contain random noise along with the
fingerprint pattern. So even images from the same source (model or
device) will not always show high correlation [38]. All our efforts
to cluster images in the residual space resulted in impure clusters,
i.e., clusters with mix of fake and real images. An impure cluster
would give us an inaccurate fingerprint which is not useful.

To address this challenge, we use a different strategy: Instead
of completely clustering images in the residual space, we use an
incremental clustering strategy, similar to bottom-up hierarchical
clustering. The idea is to mostly compute correlations between fin-
gerprints (which has less random noise), and less between residuals.
Initially, each residual image forms its own cluster. Next, any pair
of residuals with PCE correlation higher than a threshold Tmerдe
is merged into a new cluster. Each time a cluster is updated, we
compute a fingerprint (using cluster members), and two clusters are
merged if the PCE correlation between their fingerprints is greater
than Tmerдe .4 This is done iteratively at each step to grow clusters.
By computing correlations using fingerprints, we reduce the risk
of random noise impacting our correlation estimates. The larger a

4We update clusters such that each image is only present in one cluster.

5

http://dde.binghamton.edu/download/camera_fingerprint/

cluster becomes, the more the random noise will vanish when we
estimate the fingerprint. The PCE threshold for merging, Tmerдe
is chosen such that clusters mostly end up being pure, i.e., contain
all fake images or all real images. If Tmerдe is too low, clusters end
up being impure, and we obtain inaccurate fingerprints which may
not be useful for detecting fake images in the next step. IfTmerдe is
too high, we run the risk of not finding sufficiently large clusters or
even no clusters to estimate an (accurate) fingerprint. In Section 4.2,
we discuss how we estimate Tmerдe .

The clustering process stops when no more clusters can be
merged using the threshold. However, to reduce the computational
complexity, we propose to stop clustering early when we find clus-
ter(s) with size > Tsize . Recall that we only require a small number
of images (> 50) to estimate a fingerprint. Once we stop clustering,
we pass any fingerprint computed using clusters greater than size
50, to the Fingerprint Classification component to decide whether it
is a model or device fingerprint. If no model fingerprints are found,
we continue the clustering process again (in case it was stopped
early), until no more merging is possible. Fingerprints found at
the end are again passed to the fingerprint classifier. Pseudo-code
for the fingerprint extraction and classification step is shown in
Algorithm 1.
Fingerprint Classifier. The fingerprint classifier is used to identify
model fingerprints. Key challenge here is that we have no a pri-
ori knowledge of model fingerprints. Our intuition is that GAN
fingerprints stand out as anomalies when compared to device fin-
gerprints in some feature space. Recall the checkerboard pattern in
GAN fingerprints shown earlier in Figure 2. We observe that model
fingerprints tend to have different texture patterns when compared to
device fingerprints. To capture texture features from a fingerprint,
the well-known Haralick texture features [35] are used. Haralick
texture features capture 14 statistical features from the Gray Level
Co-Occurrence Matrix (GLCM), which in turn captures the num-
ber of repeated pairs of adjacent pixels. For the anomaly detection
scheme, we use the Local Outlier Factor (LOF) scheme [8]. Input
to LOF are Haralick features extracted from fingerprints computed
over (real) images in the reference set. Once trained, the fingerprint
classifier can take any fingerprint as input (after extracting Har-
alick features), and check whether it is an anomalous sample. A
fingerprint is considered to be a model fingerprint if this component
marks it as an anomalous fingerprint.
Fake Image Detector. In the last step, we take all the model
fingerprints detected in step 2 and compute the PCE correlation
between each fingerprint and all residual images in the test set
(using Equation 2). If correlation is higher than a threshold, the
image is flagged as a fake. An image is considered to be fake, if it is
flagged by at least one model fingerprint. The reference set is used
to calibrate the correlation threshold. The threshold is chosen such
that a model fingerprint when correlated with real images in the
reference set, should not flag any of them. A high threshold will
improve precision, while underestimating the threshold will bring
down precision, and improve recall.
Method Scalability. The clustering part is the most computa-
tionally heavy step of the system. In the worst case, the clustering
could run for log(n) iterations, where n is the number of images in
the dataset. Each iteration requires sorting of the pair-wise PCE

Algorithm 1: NoiseScope Fingerprint Extractor & Classi-
fier:
Data: Set of image residues: I , PCE merging threshold:

Tmerдe , cluster size threshold: Tsize .
Result: Set of model fingerprints: FP .
FakeFingerprintExtractor (I ,Tmerдe ,Tsize):

Cluster set C = {I1, ..., INp } contains Np residuals.
Stopping flagmerдeable = True
whilemerдeable do

Merged cluster set Cpairs = {}

for pair (ci , c j) in C with highest PCE do
if PCE(ci , c j) > Tmerдe then

Add merged pair (ci , c j) to Cpairs
Remove clusters ci and c j from C

if Cpairs is empty then
merдeable = False

else
Add Cpairs to C .

if notmerдeable or size(c : C) > Tsize then
Fingerprint set FP = {}

for c in C where size(c) > 50 do
Compute fingerprint f pc = f inдerprint(c)

if f pc is flagged as outlier then
Add fingerprint f pc to set FP

if FP is not empty or notmerдeable then
Return FP

correlation, with anO(n2 · log(n2)) complexity. This gives the entire
clustering part a complexity of O(n2 · log2(n)). Improvements can
be made to scale the Fingerprint Extractor for large-scale classi-
fication. Pairwise PCE correlations can be computed in parallel
to speed up the construction of the PCE correlation matrix. As
n → ∞, the, pipeline can, as a whole, also be run in parallel on
subsets of the n images. A final instance of the Fingerprint Extrac-
tor can be used to agglomerate the clusters obtained from these
parallelized Fingerprint Extractors. We can also leverage prior work
on distributed/parallel hierarchical clustering [56, 62, 66].

4 EXPERIMENTAL SETUP
We discuss the experimental settings used to evaluate detection
performance of NoiseScope.

4.1 Real and Fake Image Datasets
For each dataset, we discuss the GAN used to generate the fake
images in the test set, and how real images for the test and reference
sets are collected. Each dataset includes 2,500 fake images, and out
of the real images we collected for each dataset, 2,000 random
real images are used to build the reference set. Table 1 presents
statistics of the 11 datasets covering 4 GAN models, used for our
evaluation. Image samples from all datasets are shown in Figures 8-
18 in Appendix A.

6

Datasets Content Fake Source Real Source Resolution # Fake images # Real images
StyleGAN-Face1 Human face StyleGAN[15] FFHQ[40] 1024x1024 2,500 8,000
StyleGAN-Face2 Human face StyleGAN[28] FFHQ[40] 1024x1024 2,500 8,000
StyleGAN-Bed Bedroom StyleGAN[14] LSUN[79] 256x256 2,500 3,098
BigGAN-DogLV French bulldog BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 5,309
BigGAN-DogHV French bulldog BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 5,309
BigGAN-BurgLV Cheeseburger BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 4,390
BigGAN-BurgHV Cheeseburger BigGAN[36] ImageNet[21], Flickr[71] 256x256 2,500 4,390
PGGAN-Face Human face PGGAN[67] FFHQ[40] 1024x1024 2,500 8,000
PGGAN-Tower Tower PGGAN[67] LSUN[79] 256x256 2,500 4,187
CycleGAN-Winter Winter scene CycleGAN[86] summer2winter[85], Flickr[71] 256x256 2,500 4,594
CycleGAN-Zebra Zebra CycleGAN[86] horse2zebra[85], Flickr[71] 256x256 2,500 11,241

Table 1: Basic information of 11 deepfake image datasets evaluated in Section 5.2.

StyleGAN-Face1. This is a dataset of human face images, at
1024x1024 resolution. Fake images are generated by StyleGAN,
trained on the Flickr-Faces HQ (FFHQ) dataset of human faces [40].
Fake images are collected from the official NVIDIA StyleGAN
GitHub repository [15]. We collected 8, 000 real images for the test
and reference sets by randomly sampling from the FFHQ dataset.
StyleGAN-Face2. Recently Generated Media, Inc. [29] released
100, 000 StyleGAN generated face images [28]. Their aim is to pro-
vide royalty-free stock images using AI [63]. The GAN was trained
using a proprietary dataset of 29, 000+ curated photographs of 69
models. The images are photorealistic (See Figure 17), and it is
unclear if these images have been further post-processed to im-
prove image quality. Fake images are sampled from this dataset. We
randomly sampled 8, 000 real images from the FFHQ dataset.
StyleGAN-Bed. This includes images of bedroom scenes at 256x256
resolution. Fake images are generated by NVIDIA with a StyleGAN
trained on the LSUN Bedroom dataset [79] of bedroom scenes.
Fake images are obtained from the official NVIDIA GitHub reposi-
tory [14]. We randomly sampled 3, 098 real images from the LSUN
Bedroom dataset.
BigGAN-DogLV andBigGAN-DogHV. Datasets include images
of french bulldogs at 256x256 resolution. Fake images are generated
using a BigGAN-deep instance [9], trained on the ImageNet dataset,
and obtained online [36]. BigGAN provides an inference-time trun-
cation parameter to vary the trade-off between fidelity and variety
(see Section 2.1). We generate two sets of fake images, BigGAN-
DogLV and BigGAN-DogHV at truncation settings of 0.2 and 0.86,
respectively. BigGAN-DogLV has images with lower variety, while
BigGAN-DogHV has images with higher variety. Real images are
partially sourced from ImageNet. However, ImageNet only provides
1, 300 images for this image class. We further collected additional
real images by crawling Flickr.com, giving us a total of 5, 309 real
images.5

BigGAN-BurgLV and BigGAN-BurgHV. Datasets include im-
ages of cheeseburgers at 256x256 resolution, prepared using the
same methodology used for BigGAN-DogLV, and BigGAN-DogHV.
BigGAN-BurgLV and BigGAN-BurgHV corresponds to low and
high variety fake image sets, respectively. We crawled additional
real images from Flickr.com, and in total used 4, 390 real images.
PGGAN-Face. This dataset contains images of human faces, at
1024x1024 resolution. Fake images are produced by NVIDIA with a

5Images were curated using manual effort as well as using the ResNet50 ImageNet
classifier

PGGAN trained on the CelebA dataset [39] of celebrity faces. Fake
images are collected from the official PGGAN repository [67]. For
real images, we sampled 8, 000 images from the FFHQ dataset.
PGGAN-Tower. Dataset contains images of towers, at 256x256 res-
olution. The fake images are generated by NVIDIA with a PGGAN
trained on the LSUN tower dataset [79] of towers. These images are
collected from the official PGGAN repository [67]. We randomly
sampled 4, 187 real images from the Tower category of the LSUN
dataset.
CycleGAN-Winter. Dataset contains images of winter scenes at
256x256 resolution. Fake images are generated using a pre-trained
model available on the official CycleGAN repository [86]. Cycle-
GAN requires input images to generate fake translated images
(summer to winter scene translation), and only a limited number
of fake images (1,187) could be generated using the data provided
by the authors. To generate more fake images, we crawl Flickr.com
for more input images, and generate new fake images. Real im-
ages provided by the authors are also limited (only 1,474). We thus
supplement the real images for CycleGAN-Winter by crawling
Flickr.com, and obtain a total of 4, 594 real images.
CycleGAN-Zebra. Dataset contains images of zebras at 256x256
resolution. Fake images are generated using CycleGAN, and we fol-
low the strategy used for CycleGAN-Winter to prepare this dataset.
We collected 11, 241 real images.

4.2 Configuration of NoiseScope
Noise Residual Extractor. We use a Wavelet Denoising filter
(see Section 3.3) to prepare residual images. The implementation
from Goljan et al is used. 6

Fingerprint Extractor. Two parameters to configure include
Tmerдe , which decides the PCE correlation threshold to merge
two clusters, and Tsize used to stop the clustering process early.
Tsize is set to 150 and is observed to work well across datasets.
To estimate Tmerдe , one approach is to use a reference set with
camera identifiers. PCE correlation between fingerprints computed
from the same camera can be computed, and a suitable threshold
can be estimated. We lack camera identifier information in most of
our datasets, and therefore use a different strategy. We assume the
reference set includes images from multiple cameras and compute
‘pseudo-fingerprints’7 over random subsets (non-overlapping) of

6http://dde.binghamton.edu/download/camera_fingerprint/
7Technically they are not fingerprints as they are computed over images from different
cameras.

7

http://dde.binghamton.edu/download/camera_fingerprint/

20 images. Next, pairwise PCE correlation between these different
pseudo-fingerprints are estimated. Clearly, the PCE values will not
be high, as images are from different cameras. Therefore, we set
Tmerдe to be 99.5 percentile of this distribution, i.e., it should be at
least larger than the correlation between pseudo-fingerprints com-
puted over different cameras. This strategy works well in practice.
Fingerprint Classifier. We configure and train an LOF anomaly
detection scheme (Section 3.3). If we have a reference dataset with
camera identifiers, we can compute fingerprints for each camera,
and use that to train the anomaly detection scheme. Lacking such
data for most of our datasets, we again use the strategy used in
Fingerprint Extractor, and compute ‘pseudo-fingerprints’7 using
random subsets of 50 real images from the reference set (which is
assumed to contain images from multiple cameras), and train the
scheme using 200 such pseudo-fingerprints. This is effective because
model fingerprints are still anomalous in the texture space even
when compared to pseudo-fingerprints computed over multiple
cameras. The parameter contamination, which configures the error
in the training set is set to 10−4, and the number of neighbors to
analyze (in K-NN) is set to 30.
Fake Image Detector. This component flags an image to be fake,
if the PCE correlation between a model fingerprint and residual
image (in test set) is higher than a threshold. To calibrate the thresh-
old, we compute PCE correlation between a model fingerprint, and
images in the reference set. Threshold is chosen such that 99.5% of
the reference set images are not flagged as fake.

4.3 Evaluation Metrics and Baseline Method
We report average F1 score computed as the harmonic mean of
Precision and Recall of the fake class, calculated over 5 random
trials (unless specified otherwise).

We compare NoiseScope with the blind detection scheme pro-
posed by Li et al. [45] (Section 2.2). This approach analyzes differ-
ences between real and fake images using disparities in the HSV and
YCbCr color spaces. This is achieved by using features extracted
from these color spaces to train a one-class SVM for anomaly de-
tection. We abbreviate this method as CSD-SVM. The underlying
assumption is that fake images will be detected as anomalies. We
follow the configuration described in the paper to train CSD-SVM.
A Gaussian kernel is used, and parameters are estimated via grid
search. For the parameter ν , which controls the upper bound of
training error, we try two values, 0.10 and 0.05. Real images in the
reference set are used to train the CSD-SVM for each dataset.

5 EVALUATION OF PROPOSED SCHEME
5.1 Analysis of Model Fingerprints
Performance of FingerprintClassifier. For the three face datasets
(StyleGAN-Face1, StyleGAN-Face2, and PGGAN-Face), our real
dataset includes images with camera source information for 90
cameras (extracted from EXIF metadata). We first train the anomaly
detection scheme on device fingerprints from 18 cameras. Next, in
each trial, we test on 500 device fingerprints (extracted from the
remaining 72 cameras), and 500 model fingerprints (obtained from
the three face datasets). Our classifier achieves a high average F1
score of 99.2% over 5 trials (average Precision of 98.5% and Recall

Figure 5: Change in CycleGAN fingerprint checkerboard
when varying transpose convolution parameters.

of 100.0%) for the detection of model fingerprints and is therefore
capable of accurately detecting model fingerprints.

In the rest of the evaluation, when camera identifiers are not
available, we use the strategy described in Section 4.2, and train
the fingerprint classifier using pseudo-fingerprints computed over
the reference set. Results in Section 5.2 show that this works well
in practice.
UnderstandingModel Fingerprints. Why do GAN fingerprints
show checkerboard patterns? The answer is tied to the deconvolu-
tion layers that are the core building blocks of GAN generators [65].
Odena et al. observed checkerboard patterns in images generated
by upsampling via transpose convolution operations [61]. They at-
tributed the checkerboard pattern to the overlap that occurs when
the kernel size of the transpose convolution projection window is
not divisible by the stride. The pattern is amplified when multiple
transpose convolutional layers are stacked. In our fake images, we
do not observe such checkerboard patterns in the high-level content,
but we clearly see such patterns in the fingerprints (Figure 2).

To further understand the correlation between deconvolution
layers and checkerboard patterns, we conduct the following experi-
ment using CycleGAN. The transpose convolutions in the Cycle-
GAN ResNet50 generator are found in 2 layers, with strides of 2x2
and kernel sizes of 3x3. We observe that by varying the kernel size
in the second layer from 3x3 to 5x58, we can alter the intensity and
locality of the checkerboard pattern in the resulting fingerprint.
The model fingerprints, before and after modifying CycleGAN are
shown in Figure 5. The visible change in fingerprint textural pat-
terns indicates a strong correlation between the fingerprint and the
deconvolution operations in modern GAN generators.

5.2 Detection Performance
We evaluate detection performance of NoiseScope when applied to
the 11 datasets discussed in Section 4.1.
Performance on balanced test sets. In each trial, NoiseScope is
applied to a balanced test set with 500 real, and 500 fake images.
Table 2 presents detection performance (average F1 score) for both
NoiseScope, and CSD-SVM (ν=0.1). NoiseScope outperforms CSD-
SVM over all 11 datasets and achieves a high F1 score of over 90.1%
for all datasets. Varying the ν parameter (upper bound of training
error) to 0.05 for CSD-SVM shows no noticeable improvement.
Given NoiseScope’s high detection performance, it is worth noting
that images generated by StyleGAN, PGGAN and BigGAN are
vividly photorealistic, and are difficult for humans to spot.

8Kernel dilation, input padding and output padding must also be accordingly changed
to support the desired image output dimensions.

8

Datasets F1 Score (%)
NoiseScope CSD-SVM

StyleGAN-Face1 99.56 92.93
StyleGAN-Face2 90.14 67.53
StyleGAN-Bed 99.63 94.82
BigGAN-DogLV 99.38 86.94
BigGAN-DogHV 92.6 70.10
BigGAN-BurgLV 99.68 94.82
BigGAN-BurgHV 98.64 83.67
PGGAN-Face 99.09 64.07
PGGAN-Tower 95.93 91.61
CycleGAN-Winter 92.40 87.14
CycleGAN-Zebra 92.84 84.95

Table 2: Performance of NoiseScope and CSD-SVM (ν = 0.1).

Datasets F1 Score (%) w/ different fake:real ratio
200:400 200:800 200:1600 200:2000

StyleGAN-Face1 97.9 97.1 96.4 94.0
StyleGAN-Face2 81.0 74.3 62.8 58.4
StyleGAN-Bed 99.5 98.8 97.8 97.2
BigGAN-DogLV 98.9 97.7 95.8 95.2
BigGAN-DogHV 89.3 85.7 84.9 82.3
BigGAN-BurgLV 98.6 97.2 96.2 91.9
BigGAN-BurgHV 97.9 96.0 94.8 93.2
PGGAN-Face 97.1 97.4 93.7 94.4
PGGAN-Tower 94.5 94.3 92.2 92.3
CycleGAN-Winter 88.2 86.8 72.2 69.4
CycleGAN-Zebra 89.9 86.3 78.2 76.1

Table 3: Detection performance (F1) on imbalanced test sets
with different ratio of fake to real images.

Performance on imbalanced test sets. We apply NoiseScope on
test sets with an imbalanced ratio of real vs fake images. For each
dataset, we evaluate on 4 imbalanced test sets comprising different
ratios of real and fake images. In each test set, the number of fake
images is set to 200, and we increase the number of real images
according to the desired ratio. We experiment with ratios of fake
to real as 1:2, 1:4, 1:8, and 1:10.9 The inherent difficulty of using
NoiseScope in an imbalanced setting is the presence of noisy samples
among fake and real images. These are samples where content
tends to leak into residuals. Therefore, such noisy fake and real
images can show unexpectedly high correlation. Consequently, as
the number of real images increases, the probability of a fake image
cluster merging with noisy real samples increases.

Detection performance is presented in Table 3. Out of the 11
datasets, 7 datasets exhibit high performance of over 91.9% F1 score
for all ratios (numbers shown in bold). As expected, there is a drop
in performance as datasets become more imbalanced, but even at
1:10, we observe high detection performance for these 7 datasets.

Among the remaining 4 datasets, StyleGAN-Face2, CycleGAN-
Winter, CycleGAN-Zebra shows the biggest drop in performance
as test set becomes more imbalanced. To further understand the re-
duced performance, we analyze the purity of the model fingerprints
obtained as output of the fingerprint classification component. Pu-
rity of a model fingerprint is the fraction of images in the cluster
(used to estimate the fingerprint) that are fake. If purity is less, then
the performance of the fake image detection module will decrease
9For 1:8, and 1:10 we do 3 trials. Rest of them are averaged over 5 trials.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.2 0.4 0.6 0.8 1

C
D

F
of

 M
od

el
 F

in
ge

rp
rin

ts

Purity of Model Fingerprints

CycleGAN Winter
PGGAN Tower

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50
 0

 50

 100

 150

 200

 250

 P
er

fo
rm

an
ce

 (
F

1
)

 F

la
g

g
ed

 C
lu

st
er

 S
iz

e

PCE Merging Threshold (Tmerge)

F1
Size

(b)

Figure 6: (a) GAN fingerprint purity distributions (b) PCE
Merging Threshold Tmerдe vs. Detection F1 Score.

Datasets F1 Score(%) w/ different fake:real ratio
200:400 200:800 200:1600 200:2000

StyleGAN-Face2 88.47 86.45 80.23 76.71
BigGAN-DogHV 93.80 89.39 89.17 86.76
CycleGAN-Winter 89.65 90.17 82.08 81.00
CycleGAN-Zebra 92.17 91.98 86.26 83.13

Table 4: Improved detection performance by increasing
Tmerдe in non-performant imbalanced configurations.

(as the fingerprint is inaccurate). In general, for the three datasets
(StyleGAN-Face2, CycleGAN-Winter, and CycleGAN-Zebra), we
observe that purity of the fingerprints is lower compared to the
other datasets. Figure 6a shows the distribution (CDF) of purity of
fingerprints found across test sets (aggregated over all ratios) for
two datasets—one for which NoiseScope is performant (PGGAN-
Tower), and one for which NoiseScope suffers from relatively lower
performance (CycleGAN-Winter). CycleGAN-Winter suffers from
lower fingerprint purity that range between 60% to 80%, whereas
the fingerprint purity for PGGAN-Tower is high, i.e., over 95%.
Therefore, high detection performance correlates well with the
ability to reliably extract pure fingerprints.

One approach to improve fingerprint purity is to raise the PCE
merging thresholdTmerдe . A higher value ofTmerдe would prevent
noisy samples from merging with fake images. StyleGAN-Face2,
CycleGAN-Winter, and CycleGAN-Zebra results in Table 3 has
Tmerдe values in the range from 8.45 to 11.68.We raise the threshold
to 15 and recompute the results for these datasets. In addition, we
also recompute results at the raised threshold for BigGAN-DogHV
(which has F1 score below 90% in Table 3). Results with the increased
threshold are presented in Table 4 for all 4 datasets. We observe a
marked increase in detection performance, e.g., on average 10.35%
increase in F1 for 1:10 ratio across all datasets. We also observe an
increase in purity of fingerprints (not shown).

Above analysis raises the question of whether defender can
estimate a better value ofTmerдe , starting from the initial estimate?
We note that this is possible by analyzing the variation in cluster
sizes as one increases Tmerдe starting from the initial value. In
general, detection performance correlates well with cluster sizes. If
the largest cluster size is small (say less than 50), then the value of
Tmerдe is too high, and detection performance is likely to be lower.
To study this, we conduct experiments on CycleGAN-Zebra with an
imbalanced ratio of 1:2. Figure 6b studies the variation of detection
performance and largest cluster size, as we incrementally increase
Tmerдe starting from the initial estimate. Detection performance

9

remains mostly high and stable, for cluster size roughly above
100. Towards the end, the performance drops as cluster size goes
below 67, achieving the lowest performance when cluster size is less
than 50. The defender can thus calibrate Tmerдe by incrementally
increasing the originally estimated value, using cluster size as a
stopping condition. If no clusters are found, or clusters are too
small, then the defender has exceeded the optimal Tmerдe .
Performance when test set contains fake images from mul-
tiple GAN models. So far, we considered test datasets with fake
images from a single model. What if attackers use multiple GAN
models? Can NoiseScope still detect fake images? In theory, Nois-
eScope should adapt to such settings, because clustering should
ideally extract multiple model fingerprints corresponding to each
model. To evaluate this, we restrict ourselves to datasets capturing
faces, as it is the only content category for which we have fakes
images from multiple models. In each trial, we populate the test set
with 150 images each from the StyleGAN-Face1, StyleGAN-Face2
and PGGAN-Face datasets, and use 450 real images from the FFHQ
dataset. Results in Table 5 indicate an overall high F1 score of 91.5%,
and also shows per-dataset performance.

So how did NoiseScope achieve high detection performance when
test set includes fake images from three different models?10 Interest-
ingly,NoiseScope discovered three clusters (model fingerprints). The
first cluster mostly included images from StyleGAN-Face1 (over
95%), the second cluster mostly from PGGAN-Face (again over
95%), and in the third cluster, a majority of images are from the
StyleGAN-Face2 dataset. Therefore, NoiseScope was able to extract
model fingerprints corresponding to the three models. These results
match our intuition that GANs trained on different datasets would
generate distinct fingerprints. Our results indicate that NoiseScope
is effective on test sets with fake images from different GANs. An
attacker can take this setting to the extreme by creating a differ-
ent GAN for every single fake image to disrupt the fingerprint
extraction process. However, this significantly raises the cost for
the attacker, and reduces the utility of using generative schemes.
Performance on test sets with images frommultiple categor-
ical domains. Our current configuration uses a single categorical
domain for each test-set, but still has high variations among images
(see Figures 8-18). This was done for the sake of simplicity, and
because many GAN datasets are organized into few specific cate-
gories. Here we evaluate effectiveness on test sets with multiple
content categories. We test against BigGAN as it is the only GAN
model with images from several categories. For a test set of 500
real, and 500 fake images, images are evenly and randomly sampled
from 10 categories: Ambulance, Race car, Burrito, Tiger, Cup, Hen,
Pretzel, Pirate, French bulldog, and Cheeseburger. The average detec-
tion performance (F1) is high at 99.1%. Thus, NoiseScope works for a
mix of high-level image content, i.e., NoiseScope is content-agnostic.
What if there are too few fake images in the test set? We
present NoiseScope detection performance when evaluated on test
sets with an increasingly small number of fake images. Using rep-
resentative datasets for each GAN, we evaluate on 4 test sets with

10Models trained on three different datasets.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 60 80 100 120 140 160 180 200D
et

ec
ti

o
n
 P

er
fo

rm
an

ce
 (

F
1
)

Number of Fake Images In Test Sets

BigGAN-DogHV

CycleGAN-Zebra

StyleGAN-Face2

StyleGAN-Face1

PGGAN-Face

Figure 7: Detection performance (F1) with limited number
of fake images in test sets.

Datasets F1 Score (%) Precision (%) Recall (%)
Combined 91.5 93.3 89.8
StyleGAN-Face1 91.2 83.8 100.0
StyleGAN-Face2 81.9 100.0 69.3
PGGAN-Face 100.0 100.0 100.0

Table 5: Detection performance on test set with fake images
from multiple (GAN) sources.

Datasets
F1 Score (%)

Wavelet Blur NLM BM3D
StyleGAN-Bed 99.7 97.7 82.6 99.3
BigGAN-DogLV 99.7 99.5 95.0 99.7
BigGAN-DogHV 94.8 76.3 22.6 79.0
BigGAN-BurgLV 99.8 99.5 99.6 99.8
BigGAN-BurgHV 99.4 97.5 58.4 96.0
PGGAN-Tower 95.8 17.6 4.3 62.5
CycleGAN-Winter 91.1 71.4 6.7 84.5
CycleGAN-Zebra 93.6 74.1 7.9 96.9

Table 6: Fake Image Detector Performance (F1) using differ-
ent denoising filters. Bold numbers highlight the best per-
formance in each dataset.

5011, 80, 100 and 200 fake images respectively. All test sets con-
tain 200 real images from the respective dataset. A reference set of
2000 real images is used. Tmerдe for StyleGAN-Face1 and PGGAN-
Face remain the same as those used for the original results in
Table 2 i.e., computed using the Tmerдe estimation strategy in
Section 4.2. Tmerдe for BigGAN-DogHV, CycleGAN-Zebra and
StyleGAN-Face1 are tuned following the recalibration strategy sug-
gested in Section 5.2.We compute F1 score of detection performance
averaged over 5 trials. Results are presented in Figure 7. The per-
formance is moderately high, but as expected, drops as the number
of fake images decrease. Analysis reveals a decrease in fingerprint
purity, caused by merging with noisy samples amongst the increas-
ingly large proportion of real images. From prior workwe also know
that a reliable fingerprint requires roughly 50 images or more [6].
The decrease in performance is not a serious problem—the absolute
number of fake images to detect is in and of itself, very small. One
can consider a scenario with too few fake images (<50) to not be

11We remove the minimum requirement of 50 images for a fingerprint when only 50
fake images are in the test set.

10

a serious threat, compared to cases where online platforms are
flooded with fake images [64].
Impact of residual image extraction filter on performance.
We use 3 popular alternative filters—Blur filter [27], Non-Local-
Means (NLM) filter [10], and the BM3D filter [20], and observe that
Wavelet denoising provides better detection performance for nearly
all datasets. Results are in Table 6. To compare, we simulate the
fake image detection step in NoiseScope. Given a test set of 500 real,
and 500 fake images, we estimate a clean model fingerprint using
a random subset of 100 fake images from the test set itself. Next,
we use this model fingerprint to flag fake images in the test set.
This is an ideal scenario because the fingerprint is 100% pure (i.e.,
estimated over only fake images). An effective filter should produce
high detection performance in such a setting, while filters that fail
to effectively remove high-level content may not perform so well.
Table 6 presents the detection performance (average F1 score) for
each 256x256 dataset.12 Wavelet Denoising filter exhibits the best
performance, with F1 scores exceeding 90% for all datasets. The
BM3D filter also shows good performance but fails to effectively
eliminate content from some datasets.
Generalization performance comparison with a supervised
scheme. Supervised detection schemes exhibit high performance
at the cost of generalization. To give an example, we use the super-
vised classifier MesoNet [1] to detect unseen GAN-generated face
images. MesoNet is trained on 1000 real and 1000 fake images from
StyleGAN-Face1 and provides a high F1 score of 94% on a test set of
the same size from StyleGAN-Face1. However, this trained model
achieves significantly reduced F1 score of 65% on a test set from
PGGAN-Face. This drop in performance indicates an exploitable
failure to generalize that is remedied by NoiseScope.
Summary. We evaluated NoiseScope against datasets containing
balanced and imbalanced proportions of fake images and observed
stable behavior with generally high detection performances. We
attributed the rare drops in performance to a low fingerprint purity,
caused by low values of merging thresholdTmerдe . We accordingly
provided guidelines for calibrating a better Tmerдe based on clus-
ter sizes. We show that NoiseScope is robust against datasets with
multiple GAN sources. We evaluated NoiseScope against test sets
containing few fake images and observe moderately high perfor-
mance, with performance dropping when there are too few fake
images (e.g., 50), at which point the threat itself is limited. We
then showcased the impact of 3 popular alternative residual filters
on NoiseScope’s performance. Finally, we highlighted the need for
NoiseScope by showcasing the inability of supervised detection to
generalize.

6 ANALYSIS OF COUNTERMEASURES
We consider a powerful adaptive attacker with knowledge of Nois-
eScope’s detection pipeline. These countermeasures aim to disrupt
the fingerprint extraction, and fake image detection capabilities of
NoiseScope. We also propose adaptive recovery measures to make
NoiseScope robust to certain challenging countermeasures. Table 7
presents results using test sets with 500 real, and 500 fake images.
Compressing fake images tomakefingerprints fragile. JPEG
compression is well known to disrupt camera fingerprint patterns,
12Applying the BM3D filter to 1024x1024 images is computationally expensive.

and therefore diminish the correlation between fingerprints and
residuals [31]. Following compression configurations used in prior
work [80], fakes images are compressed with a quality factor ran-
domly sampled from U [10, 75]. Surprisingly, NoiseScope is resilient
against compression attacks. More interestingly, the performance
for StyleGAN-Face2 increases from 90.14% to 98.33% on applying
compression. NoiseScope is resilient for two reasons: First, model
fingerprints are always extracted from the test set itself. Therefore,
the estimated fingerprint, already captures any artifacts introduced
by compression, and correlates well with the similarly processed
residual images in test set. This is unlike prior work in camera
fingerprinting, where camera attribution is attempted between a
clean fingerprint (computed over uncompressed images) and a com-
pressed residual image. Second, we observe that JPEG compression
introduces grid-like artifacts into the fingerprint, further making
the model fingerprint distinct from device fingerprints. Fingerprints
subjected to JPEG compression are shown in Figure 23 in Appen-
dix A. Compression does disrupt the fingerprint pattern. NoiseScope,
however, continues to remain effective.
Denoising using the defender’s denoising filter. This coun-
termeasure assumes knowledge of the Noise Residual Extractor.
Attacker modifies fake images by subtracting the residual obtained
using the defender’s denoising filter (Wavelet denoiser), i.e., I ′i =
Ii −Ri . This can make fingerprint extraction harder, because the pat-
terns in the noise residuals are “weakened”.NoiseScope performance
suffers for the BigGAN-DogHV and CycleGAN-Zebra datasets. See
‘Attack’ column under Wavelet Denoising. On visual inspection
of the fingerprints, the texture patterns of fingerprints appear to
have been softened by this attack. Performance dropped, because
in certain trials, the fingerprint classifier module failed to flag the
new model fingerprints, likely due to texture softening.

To recover from this attack, we resort to adversarial training of
the fingerprint classification module. We train the classifier module
on fingerprints computed from real images that goes through the
same post-processing countermeasure used by the attacker. Results
are shown in the ‘Recovery’ column under the specific countermea-
sure. We observe an improvement in detection performance for
both BigGAN-DogHV, and CycleGAN-Zebra, while performance
for the other datasets remain unaffected. Lastly, an interesting case
is that of StyleGAN-Face2. Performance actually increases for this
dataset on applying the countermeasure. On further inspection, we
observe that the countermeasure introduces new distinct artifacts
in the fingerprints, that enable NoiseScope to still accurately cluster
images, and detect them. We suspect that images in this dataset
has already undergone additional post-processing, which is likely
introducing these artifacts when new processing is applied.
Other post-processing schemes to disrupt fingerprints. We
evaluate against 4 image post-processing countermeasures known
to disrupt camera fingerprinting [31, 49, 68, 70].Whenever available,
we use settings from prior work.
Gamma correction. Gamma correction is applied to fake images
with gamma values randomly sampled from U [1.0, 2.0] [80]. Perfor-
mance remains high for all datasets, except StyleGAN-Face2 where
F1 score drops to 62%. Further investigation reveals that the finger-
print classifier performs poorly in 2/5 trials. For recovery, we again
apply adversarial training to the fingerprint classifier, and train on

11

Datasets
F1 Score (%) with Different Countermeasures

Original JPEG compression Wavelet-denoising Gamma correction Histogram equalization Blur Adding noise
- Attack Attack Recovery Attack Recovery Attack Attack Attack Recovery

StyleGAN-Face1 99.6 99.3 99.4 99.4 99.5 99.5 99.2 99.4 99.7 99.2
StyleGAN-Face2 90.1 98.3 98.0 98.0 62.0 82.8 72.9 80.0 54.9 81.4
BigGAN-DogHV 92.6 89.5 57.9 87.0 92.9 93.4 88.9 55.7 88.4 78.6
PGGAN-Face 99.1 98.9 99.2 99.2 98.9 98.9 99.2 98.5 97.9 96.2
CycleGAN-Zebra 92.8 91.0 53.7 89.2 91.9 92.6 84.4 61.8 51.8 85.9

Table 7: Performance (F1) of NoiseScope under different countermeasures. ‘Original’ means no countermeasures were used.

real images that undergo the same post-processing. Performance
of StyleGAN-Face2 recovers from 62% to 82%.
Histogram equalization. Histogram equalization involves distribut-
ing the intensity range to improve image contrast. We apply his-
togram equalization to fake images. Detection performance remains
high for all datasets except StyleGAN-Face2. Fingerprint extrac-
tion did not perform well, and StyleGAN-Face2 ended up with
impure clusters (purity ranging between 60% to 70%). We do not
attempt recovery from this countermeasure because on examination
of fake images that missed detection, we see that image quality has
been severely degraded. Therefore, to evade detection by NoiseScope,
post-processing that significantly degrades image quality is required.
Image samples are shown in Figure 22 (Appendix A).
Blur. Blurring performs a normalized box averaging on fake images,
with a specific kernel size [7]. Kernel size is randomly selected from
{1, 3, 5, 7} [80]. We expect blurring to damage patterns in the model
fingerprints. Performance for StyleGAN-Face2, CycleGAN-Zebra
and StyleGAN-Face2 end up dropping. We find that blurring largely
weakens the fingerprint pattern. However, on closer investigation
of images that were not caught, we find that image quality has
degraded significantly—NoiseScope failed to catch fake images that
were severely blurred. Therefore, we do not attempt a recovery
scheme. Figures 20, 21 in Appendix A show samples of images that
evaded detection.
Adding Noise.We add i.i.d. Gaussian noise to fake images. The noise
variance is randomly sampled from U [5.0, 20.0] [80]. CycleGAN-
Zebra, and StyleGAN-Face2 shows significant drop in performance.
In both cases, noise degrades the quality of the fingerprint, making
them unsuitable for computing correlation with residual images. In
the case of CycleGAN-Zebra, the fingerprint classifier also fails to
detect model fingerprints. To recover, we apply a denoising filter
(Non-Local-Means) to all images in the test set, and also perform
adversarial training of the fingerprint classifier using the same
denoising filter. We apply this strategy to all datasets, and we can
see that performance of StyleGAN-Face2 and CycleGAN-Zebra are
regained to 81.4% and 85.9%, respectively, but recovery slightly
hurts BigGAN-BurgHV by 10% due to the denoising operation.
Fingerprint spoofing. Fingerprint spoofing attack aims to dis-
guise fake images to be from a specific camera device. This attack is
commonly studied in the camera fingerprinting literature [4, 44, 81].
We use the StyleGAN-Face1 dataset to evaluate this countermea-
sure. We consider a fingerprint substitution attack [44] using the
following formulation: Is = I − αFa + βFb . Fa , and Fb , are model
and camera fingerprints, respectively. Fa is computed using 200
fake images from StyleGAN-Face1, and Fb is a camera fingerprint
computed using 200 images from Canon EOS 5D Mark III (FFHQ
dataset). The first step is to verify that we have correctly spoofed
the camera fingerprint. We empirically estimate α as 1.5, and β
as 1.5, as the spoofed fingerprint shows low PCE correlation with

the model fingerprint, and high PCE correlation with the camera
fingerprint, while maintaining image quality. We then consider a
worst-case scenario for the defender, where the test set contains
200 spoofed fake images, and 200 real images which are used to
extract Fb . We perform detection on such test sets with 5 trials. We
obtain a low average F1 score of 66.67%. On closer investigation,
we find the fake image detection module performed poorly because
the fingerprints have been spoofed.

To recover from this attack, we utilize a different filter, i.e., a
normalizing box (blur) filter, instead of the Wavelet denoiser to
compute residuals. The intuition is that the spoofing attack does
not destroy all the artifacts (produced by the GAN), i.e., a model
fingerprint can still be extracted. In fact, the performance is regained
to 94.56% F1. Therefore, use of alternative filters for residual extraction
is an effective recovery strategy against fingerprint spoofing attacks.
One might argue that attackers can spoof the new residual space
used in the residual extractor again. However, an endless game of
switching residual extractors (multiple filters and filter parameters)
is unlikely. If an attacker tries spoofing against multiple filters, then
we observe that image quality deteriorates significantly. Image
samples spoofed against multiple filters are shown in Figure 19 in
the Appendix.
Adapting the GAN model. Can the attacker modify the GAN to
bypass detection? For example, for many DNN-based supervised
detection schemes, the attacker can use the defender’s classifier
as the GAN discriminator, and produce images that evade detec-
tion. In our case, such countermeasures are hard. First, the model
fingerprints extracted by NoiseScope is tied to the fundamental
building blocks of generative models, i.e., deconvolution layers (see
Section 5.1). One can try to change the deconvolution layer param-
eters, which will change the fingerprint patterns, but is unlikely
to make it similar to device fingerprints. Second, the attacker can
use the fake image detector component of NoiseScope as the GAN
discriminator. However, one has to ensure that the operations are
differentiable, which is non-trivial. Also, such an effort would be
similar to our previous countermeasures of spoofing the fingerprint
or using the defender’s filter. We have already discussed robustness
of NoiseScope against such countermeasures.
Summary. We evaluated a range of challenging countermeasures
against NoiseScope. NoiseScope is resilient against compression at-
tacks, considered to be challenging in prior work. We also recom-
mend effective recovery schemes against different types of post-
processing attacks—Wavelet-noising, adding noise, and Gamma
correction. The countermeasures that evaded detection includes
those that degraded image quality significantly and can be con-
sidered as unsuccessful countermeasures. Online platforms like
news/social media sites collecting images, can reject images that

12

are excessively post-processed. There is ongoing work on detect-
ing image manipulations or post-processing. For example, Adobe
recently developed new tools to detect Photoshopped images [76].
NoiseScope can leverage such tools and implement appropriate re-
covery measures to make its detection pipeline more resilient to
different countermeasures.

7 CONCLUSION
Deep learning research has tremendously advanced capabilities of
generative models. GAN models can generate photorealistic images
or deepfakes that could be used for different malicious purposes,
e.g., to spread fake news, create fake accounts. In this work, we
present NoiseScope, a method to detect deepfakes in a blind manner,
i.e., without any a priori access to fake images or their generative
models. The key idea is to leverage unique patterns left behind by
generative models when a fake image is produced. Our method is
evaluated on 11 diverse deepfake datasets, covering 4 high quality
generative models, and achieves over 90% F1 score in detecting fake
images. We also analyze the resilience of NoiseScope against a range
of countermeasures.

REFERENCES
[1] Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. 2018.

Mesonet: a Compact Facial Video Forgery Detection Network. In Proc. of WIFS.
[2] Michael Albright and Scott McCloskey. 2019. Source Generator Attribution via

Inversion. In Proc. of CVPR Workshop on Media Forensics.
[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Genera-

tive Adversarial Networks. In Proc. of ICML.
[4] Sudipta Banerjee, Vahid Mirjalili, and Arun Ross. 2019. Spoofing PRNU Patterns

of Iris Sensors While Preserving Iris Recognition. In Proc. of ISBA.
[5] Christian F Baumgartner, Lisa M Koch, Kerem Can Tezcan, Jia Xi Ang, and Ender

Konukoglu. 2018. Visual Feature Attribution Using Wasserstein GANs. In Proc.
of CVPR.

[6] Greg J Bloy. 2008. Blind Camera Fingerprinting and Image Clustering. In Proc. of
TPAMI (2008).

[7] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[8] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: Identifying Density-based Local Outliers. In ACM Sigmod Record.

[9] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN
Training For High Fidelity Natural Image Synthesis. In Proc. of ICLR.

[10] Antoni Buades, Bartomeu Coll, and J-M Morel. 2005. A Non-local Algorithm For
Image Denoising. In Proc. of CVPR.

[11] Mo Chen, Jessica Fridrich, and Miroslav Goljan. 2007. Digital Imaging Sensor
Identification. In Proc. of Security, Steganography, andWatermarking ofMultimedia
Contents.

[12] Mo Chen, Jessica Fridrich, Miroslav Goljan, and Jan Lukás. 2008. Determining
Image Origin and Integrity Using Sensor Noise. IEEE Transactions on Information
Forensics and Security (2008).

[13] Giovanni Chierchia, Sara Parrilli, Giovanni Poggi, Carlo Sansone, and Luisa
Verdoliva. 2010. On the Influence of Denoising in PRNU Based Forgery Detection.
In Proc. of MiFor Workshop.

[14] NVIDIA CORPORATION. 2019. StyleGAN-Bed Fake Image Source. https://drive.
google.com/drive/folders/1Vxz9fksw4kgjiHrvHkX4Hze4dyThFW6t.

[15] NVIDIA CORPORATION. 2019. StyleGAN-Face1 Fake Image Source. https:
//drive.google.com/drive/folders/14lm8VRN1pr4g_KVe6_LvyDX1PObst6d4.

[16] Jack Corrigan. 2019. Darpa Is Taking on the Deepfake Problem. https://www.
nextgov.com/emerging-tech/2019/08/darpa-taking-deepfake-problem/158980/.

[17] Andrea Cortiana, Valentina Conotter, Giulia Boato, and Francesco GB De Na-
tale. 2011. Performance Comparison of Denoising Filters for Source Camera
Identification. In Proc. of MWSF.

[18] Davide Cozzolino and Luisa Verdoliva. 2019. Noiseprint: a CNN-based Camera
Model Fingerprint. IEEE Transactions on Information Forensics and Security (2019).

[19] Antonia Creswell and Anil Anthony Bharath. 2018. Inverting the Generator of
A Generative Adversarial Network. IEEE Transactions on Neural Networks and
Learning Systems (2018).

[20] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2007.
Image Denoising by Sparse 3-D Transform-domain Collaborative Filtering. IEEE
Transactions on Image Processing (2007).

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
geNet: A Large-scale Hierarchical Image Database. In Proc. of CVPR.

[22] Chris Donahue, Julian McAuley, and Miller Puckette. 2019. Adversarial Audio
Synthesis. In Proc. of ICLR.

[23] Vincent Dumoulin and Francesco Visin. 2016. A Guide to Convolution Arithmetic
for Deep Learning. arXiv preprint arXiv:1603.07285 (2016).

[24] Donie O’Sullivan et al. 2019. Inside the Pentagon’s Race Against Deepfake
Videos. https://www.cnn.com/interactive/2019/01/business/pentagons-race-
against-deepfakes/.

[25] Facebook. 2019. Creating A Data Set and A Challenge for Deepfakes. https:
//ai.facebook.com/blog/deepfake-detection-challenge/.

[26] Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit
Greenspan. 2018. Synthetic Data Augmentation Using GAN for Improved Liver
Lesion Classification . In Proc. of ISBI.

[27] E. S. Gedraite and M. Hadad. 2011. Investigation on the Effect of a Gaussian Blur
In Image Filtering and Segmentation . In Proc. of ELMAR.

[28] Inc Generated Media. 2019. StyleGAN-Face2 Fake Image Source. https://drive.
google.com/drive/folders/1wSy4TVjSvtXeRQ6Zr8W98YbSuZXrZrgY.

[29] Generated Media, Inc. 2019. Unique, worry-free model photos. https://generated.
photos/.

[30] Miroslav Goljan. 2008. Digital Camera Identification From Images – Estimat-
ing False Acceptance Probability . In Proc. of International Workshop on Digital
Watermarking.

[31] Miroslav Goljan, Mo Chen, Pedro Comesaña, and Jessica Fridrich. 2016. Effect
of Compression on Sensor-fingerprint Based Camera Identification. Electronic
Imaging (2016).

[32] Miroslav Goljan, Jessica Fridrich, and Tomáš Filler. 2009. Large Scale Test of
Sensor Fingerprint Camera Identification. In Proc. of Media Forensics and Security.

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Proc. of NeurIPS.

[34] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. 2018.
Long Text Generation via Adversarial Training with Leaked Information . In Proc.
of AAAI.

[35] R. M. Haralick. 1979. Statistical and Structural Approaches to Texture. IEEE
(1979).

[36] TensorFlow Hub. 2019. BigGAN Deep Pretrained Model. https://tfhub.dev/
deepmind/biggan-deep-256/1.

[37] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image Translation with Conditional Adversarial Networks . In Proc. of CVPR.

[38] Xiang Jiang, ShikuiWei, Ruizhen Zhao, Yao Zhao, and XindongWu. 2016. Camera
Fingerprint: A New Perspective for Identifying User’s Identity . arXiv preprint
arXiv:1610.07728 (2016).

[39] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive
Growing Of GANs for Improved Quality, Stability, and Variation. In Proc. of ICLR.

[40] Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-based Generator Archi-
tecture for Generative Adversarial Networks. In Proc. of CVPR.

[41] Diederik P Kingma and Max Welling. 2014. Auto-encoding Variational Bayes . In
Proc. of ICLR.

[42] Naman Kohli, Daksha Yadav, Mayank Vatsa, Richa Singh, and Afzel Noore. 2017.
Synthetic Iris Presentation Attack Using iDCGAN . In Proc. of IJCB.

[43] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple Layers of Features
from Tiny Images. Technical Report. Citeseer.

[44] Chang-Tsun Li, Chih-Yuan Chang, and Yue Li. 2009. On the Repudiability of
Device Identification and Image Integrity Verification Using Sensor Pattern Noise.
In Proc. of ISDF.

[45] Haodong Li, Bin Li, Shunquan Tan, and Jiwu Huang. 2018. Detection of Deep
Network Generated Images Using Disparities in Color Components . arXiv
preprint arXiv:1808.07276 (2018).

[46] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. 2017. Dual Motion GAN For
Futureflow Embedded Video Prediction. In Proc. of ICCV.

[47] Ming-Yu Liu and Oncel Tuzel. 2016. Coupled Generative Adversarial Networks .
In Proc. of NeurIPS.

[48] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning
Face Attributes in the Wild. In Proc of ICCV.

[49] Jan Lukáš, Jessica Fridrich, and Miroslav Goljan. 2006. Digital Camera Identifica-
tion From Sensor Pattern Noise. IEEE Transactions on Information Forensics and
Security (2006).

[50] Tim Mak. 2018. Can You Believe Your Own Ears? With New ‘Fake News’ Tech,
Not Necessarily. https://www.npr.org/2018/04/04/599126774/can-you-believe-
your-own-ears-with-new-fake\-news-tech-not-necessarily.

[51] Neal Mangaokar, Jiameng Pu, Parantapa Bhattacharyam, Chandan Reddy, and
Bimal Viswanath. 2020. Jekyll: Attacking Medical Image Diagnostics Using
Neural Translation. In Proc. of Euro S&P.

[52] Francesco Marra, Diego Gragnaniello, Davide Cozzolino, and Luisa Verdoliva.
2018. Detection Of GAN-generated Fake Images Over Social Networks. In Proc.
of MIPR.

13

https://drive.google.com/drive/folders/1Vxz9fksw4kgjiHrvHkX4Hze4dyThFW6t
https://drive.google.com/drive/folders/1Vxz9fksw4kgjiHrvHkX4Hze4dyThFW6t
https://drive.google.com/drive/folders/14lm8VRN1pr4g_KVe6_LvyDX1PObst6d4
https://drive.google.com/drive/folders/14lm8VRN1pr4g_KVe6_LvyDX1PObst6d4
https://www.nextgov.com/emerging-tech/2019/08/darpa-taking-deepfake-problem/158980/
https://www.nextgov.com/emerging-tech/2019/08/darpa-taking-deepfake-problem/158980/
https://www.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://www.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://ai.facebook.com/blog/deepfake-detection-challenge/
https://ai.facebook.com/blog/deepfake-detection-challenge/
https://drive.google.com/drive/folders/1wSy4TVjSvtXeRQ6Zr8W98YbSuZXrZrgY
https://drive.google.com/drive/folders/1wSy4TVjSvtXeRQ6Zr8W98YbSuZXrZrgY
https://generated.photos/
https://generated.photos/
https://tfhub.dev/deepmind/biggan-deep-256/1
https://tfhub.dev/deepmind/biggan-deep-256/1
https://www.npr.org/2018/04/04/599126774/can-you-believe-your-own-ears-with-new-fake\ -news-tech-not-necessarily
https://www.npr.org/2018/04/04/599126774/can-you-believe-your-own-ears-with-new-fake\ -news-tech-not-necessarily

[53] Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi. 2019.
Do GANs Leave Artificial Fingerprints?. In Proc. of MIPR.

[54] M Kivanc Mihcak, Igor Kozintsev, and Kannan Ramchandran. 1999. Spatially
Adaptive Statistical Modeling Of Wavelet Image Coefficients And Its Application
To Denoising. In Proc. of ICASSP.

[55] Huaxiao Mo, Bolin Chen, and Weiqi Luo. 2018. Fake Faces Identification Via
Convolutional Neural Network. In Proc. of IH&MMSEC.

[56] Benjamin Moseley, Kefu Lu, Silvio Lattanzi, and Thomas Lavastida. 2019. A
Framework for Parallelizing Hierarchical Clustering Methods. In Proc. of ECML
PKDD.

[57] Lakshmanan Nataraj, Tajuddin Manhar Mohammed, BS Manjunath, Shivkumar
Chandrasekaran, Arjuna Flenner, Jawadul H Bappy, and Amit K Roy-Chowdhury.
2019. Detecting GAN Generated Fake Images Using Co-occurrence Matrices .
arXiv preprint arXiv:1903.06836 (2019).

[58] Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi. 2018. Image Colorization Us-
ing Generative Adversarial Networks. In Proc. of International Conference on
Articulated Motion and Deformable Objects.

[59] AMiranda Neto, A Correa Victorino, Isabelle Fantoni, Douglas Eduardo Zampieri,
Janito Vaqueiro Ferreira, and Danilo Alves Lima. 2013. Image Processing Using
Pearson’s Correlation Coefficient: Applications on Autonomous Robotics. In Proc.
of ICARSC.

[60] BBC News. 2019. Deepfake Videos Could ‘Spark’ Violent Social Unrest. https:
//www.bbc.com/news/technology-48621452.

[61] Augustus Odena, Vincent Dumoulin, and Chris Olah. 2016. Deconvolution and
Checkerboard Artifacts. http://distill.pub/2016/deconv-checkerboard.

[62] Clark F. Olson. 1995. Parallel Algorithms for Hierarchical Clustering. Parallel
Comput. (1995).

[63] Jon Porter. 2019. 100,000 Free AI-generated Headshots Put Stock Photo Compa-
nies on Notice. https://www.theverge.com/2019/9/20/20875362/100000-fake-ai-
photos-stock-photography-\royalty-free.

[64] Corinne Reichert Queenie Wong. 2019. Facebook Removes Bogus Accounts That
Used AI to Create Fake Profile Pictures. https://www.cnet.com/news/facebook-
removed-fake-accounts-that-used-ai-to-create-fake-profile-pictures/.

[65] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks. In
Proc. of ICLR.

[66] S. Rajasekaran. 2005. Efficient Parallel Hierarchical Clustering Algorithms. IEEE
Transactions on Parallel and Distributed Systems (2005).

[67] NVIDIA Research. 2019. Fake Image Source of PGGAN-Face
and PGGAN-Tower. https://drive.google.com/drive/folders/1j6uZ_
a6zci0HyKZdpDq9kSa8VihtEPCp.

[68] Kurt Rosenfeld and Husrev Taha Sencar. 2009. A Study of the Robustness of
PRNU-based Camera Identification. In Proc. of Media Forensics and Security.

[69] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies,
and Matthias Nießner. 2019. Faceforensics++: Learning to Detect Manipulated
Facial Images. In Proc. of ICCV.

[70] Stamatis Samaras, Vasilis Mygdalis, and Ioannis Pitas. 2016. Robustness in Blind
Camera Identification. In Proc. of ICPR.

[71] SmugMug, Inc. [n.d.]. Flickr Website. https://www.flickr.com/.
[72] Shahroz Tariq, Sangyup Lee, Hoyoung Kim, Youjin Shin, and Simon S Woo. 2018.

Detecting Both Machine and Human Created Fake Face Images in the Wild. In
Proc. of MPS.

[73] Dr. Matt Turek. [n.d.]. Media Forensics (MediFor). https://www.darpa.mil/
program/media-forensics.

[74] https://faceswap.dev//. [n.d.]. Deepfakes FaceSwap. https://github.com/
deepfakes/faceswap.

[75] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. 2016. Generating Videos
with Scene Dynamics. In Proc. of NeurIPS.

[76] Sheng-Yu Wang, Oliver Wang, Andrew Owens, Richard Zhang, and Alexei A
Efros. 2019. Detecting Photoshopped Faces by Scripting Photoshop. In Proc. of
ICCV.

[77] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A
Efros. 2020. CNN-generated Images are Surprisingly Easy to Spot... for Now. In
Proc. of CVPR.

[78] Xin Yang, Yuezun Li, and Siwei Lyu. 2019. Exposing Deep Fakes Using Inconsis-
tent Head Poses. In Proc. of ICASSP.

[79] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. 2015. LSUN:
Construction of a Large-scale Image Dataset Using Deep Learning with Humans
in The Loop. arXiv preprint arXiv:1506.03365 (2015).

[80] Ning Yu, Larry S Davis, and Mario Fritz. 2019. Attributing Fake Images to GANs:
Learning and Analyzing GAN Fingerprints. In Proc. of ICCV.

[81] Hui Zeng, Jiansheng Chen, Xiangui Kang, and Wenjun Zeng. 2015. Removing
Camera Fingerprint to Disguise Photograph Source. In Proc. of ICIP.

[82] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2019. Self-
attention generative adversarial networks. In Proc. of ICML.

[83] Xu Zhang, Svebor Karaman, and Shih-Fu Chang. 2019. Detecting and Simulating
Artifacts in GAN Fake Images. In Proc. of WIFS.

[84] Zhengjun Zhang. 2008. Quotient Correlation: A Sample Based Alternative to
Pearson’s Correlation. The Annals of Statistics (2008).

[85] Jun-Yan Zhu. [n.d.]. Real Image Source of CycleGAN-Winter and CycleGAN-
Zebra. https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/.

[86] Jun-Yan Zhu. 2018. CycleGAN Pretrained Models. https://github.com/junyanz/
CycleGAN.

[87] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
Image-to-image Translation Using Cycle-consistent Adversarial Networks. In
Proc. of ICCV.

A IMAGE SAMPLES

Figure 8: Fake samples
from BigGAN-DogLV [36].

Figure 9: Fake samples
from BigGAN-DogHV [36].

Figure 10: Fake samples
from BigGAN-BurgLV [36].

Figure 11: Fake samples
from BigGAN-BurgHV [36].

Figure 12: Fake samples from
CycleGAN-Zebra [86].

Figure 13: Fake samples from
CycleGAN-Winter [86].

14

https://www.bbc.com/news/technology-48621452
https://www.bbc.com/news/technology-48621452
http://distill.pub/2016/deconv-checkerboard
https://www.theverge.com/2019/9/20/20875362/100000-fake-ai-photos-stock-photography-\ royalty-free
https://www.theverge.com/2019/9/20/20875362/100000-fake-ai-photos-stock-photography-\ royalty-free
https://www.cnet.com/news/facebook-removed-fake-accounts-that-used-ai-to-create-fake-profile-pictures/
https://www.cnet.com/news/facebook-removed-fake-accounts-that-used-ai-to-create-fake-profile-pictures/
https://drive.google.com/drive/folders/1j6uZ_a6zci0HyKZdpDq9kSa8VihtEPCp
https://drive.google.com/drive/folders/1j6uZ_a6zci0HyKZdpDq9kSa8VihtEPCp
https://www.flickr.com/
https://www.darpa.mil/program/media-forensics
https://www.darpa.mil/program/media-forensics
https://faceswap.dev//
https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap
https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN

Figure 14: Fake samples
from PGGAN-Tower [67].

Figure 15: Fake samples
from StyleGAN-Bed [14].

Figure 16: Fake samples
from StyleGAN-Face1 [15].

Figure 17: Fake samples
from StyleGAN-Face2 [28].

Figure 18: Fake samples from PGGAN-Face [67].

(a) (b) (c) (d)
Figure 19: Image samples from StyleGAN-Face2 [28] sub-
jected to a fingerprint spoofing attack against an increasing
number of residual spaces. From left to right, we present
(a) the original image, (b) the image spoofed against the
Wavelet residual space (c) the image spoofed against the
Wavelet and Blur residual spaces, and (d) the image spoofed
against the Wavelet, Blur, and Laplacian residual spaces.

Figure 20: Samples from CycleGAN-Zebra [86] that evaded
detection when blurred. Top row shows the images before
blurring, and the bottom row shows the images after blur-
ring.

Figure 22: Samples from StyleGAN-Face2 [28] that evaded
detection when subjected to histogram equalization. Top
row shows the images before equalizing, and the bottom row
shows the images after equalizing.

Figure 21: Samples from BigGAN-DogHV [36] that evaded
detection when blurred. Top row shows the images before
blurring, and the bottom row shows the images after blur-
ring.

Figure 23: Model fingerprints from StyleGAN-Face2 [28], be-
fore (left) and after (right) applying JPEG compression.

15

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Deepfake Generation Methods
	2.2 Deepfake Detection Methods

	3 Detecting Deepfakes via NoiseScope
	3.1 Attack and Defense Model
	3.2 Method Basics
	3.3 Detection Pipeline

	4 Experimental Setup
	4.1 Real and Fake Image Datasets
	4.2 Configuration of NoiseScope
	4.3 Evaluation Metrics and Baseline Method

	5 Evaluation of Proposed Scheme
	5.1 Analysis of Model Fingerprints
	5.2 Detection Performance

	6 Analysis of Countermeasures
	7 Conclusion
	References
	A Image Samples

