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Abstract

Transfer learning is a powerful approach that allows

users to quickly build accurate deep-learning (Student)

models by “learning” from centralized (Teacher) mod-

els pretrained with large datasets, e.g. Google’s In-

ceptionV3. We hypothesize that the centralization of

model training increases their vulnerability to misclas-

sification attacks leveraging knowledge of publicly ac-

cessible Teacher models. In this paper, we describe our

efforts to understand and experimentally validate such at-

tacks in the context of image recognition. We identify

techniques that allow attackers to associate Student mod-

els with their Teacher counterparts, and launch highly

effective misclassification attacks on black-box Student

models. We validate this on widely used Teacher mod-

els in the wild. Finally, we propose and evaluate multi-

ple approaches for defense, including a neuron-distance

technique that successfully defends against these attacks

while also obfuscates the link between Teacher and Stu-

dent models.

1 Introduction

Deep learning using neural networks has transformed

computing as we know it. From image and face recog-

nition, to self-driving cars, knowledge extraction and re-

trieval, and natural language processing and translation,

deep learning has produced game-changing applications

in every field it has touched.

While advances in deep learning seem to arrive on a

daily basis, one constraint has remained: deep learning

can only build accurate models by training using large

datasets. This thirst for data severely constrains the num-

ber of different models that can be independently trained.

In addition, the process of training large, accurate mod-

els (often with millions of parameters) requires compu-

tational resources that can be prohibitive for individuals

or small companies. For example, Google’s InceptionV3

model is based on a sophisticated architecture with 48

layers, trained on ∼1.28M labeled images over a period

of 2 weeks on 8 GPUs.

The prevailing consensus is to address the data and

training resource problem using transfer learning, where

a small number of highly tuned and complex centralized

models are shared with the general community, and in-

dividual users or companies further customize the model

for a given application with additional training. By us-

ing the pretrained teacher model as a launching point,

users can generate accurate student models for their ap-

plication using only limited training on their smaller

domain-specific datasets. Today, transfer learning is rec-

ommended by most major deep learning frameworks, in-

cluding Google Cloud ML, Microsoft Cognitive Toolkit,

and PyTorch from Facebook.

Despite its appeal as a solution to the data scarcity

problem, the centralized nature of transfer learning cre-

ates a more attractive and vulnerable target for attackers.

Lack of diversity has amplified the power of targeted at-

tacks in other contexts, i.e. increasing the impact of tar-

geted attacks on network hubs [21], supernodes in over-

lay networks [54], and the impact of software vulnerabil-

ities in popular libraries [71, 22].

In this paper, we study the possible negative implica-

tions of deriving models from a small number of cen-

tralized teacher models. Our hypothesis is that bound-

ary conditions that can be discovered in the white box

teacher models can be used to perform targeted misclas-

sification attacks against its associated student models,

even if the student models themselves are closed, i.e.

black-box. Through detailed experimentation and test-

ing, we find that this vulnerability does in fact exist in

a variety of the most popular image classification con-

texts, including facial and iris recognition, and the iden-

tification of traffic signs and flowers. Unlike prior work

on black-box adversarial attacks, this attack does not re-

quire repeated queries of the student model, and can in-

stead prepare the attack image based on knowledge of

the teacher model and any target image(s).
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Figure 1: Transfer learning. A student model is initial-

ized by copying the first N-1 layers from a teacher model,

with a new dense layer added for classification. The

model is further trained by only updating the last N-K

layers.

This paper describes several key contributions:

• We identify and extensively evaluate the practicality

of misclassification attacks against student models in

multiple transfer-learning applications.

• We identify techniques to reliably identify teacher

models given a student model, and show its effective-

ness using known student models in the wild.

• We perform tests to evaluate and confirm the effective-

ness of these attacks on popular deep learning frame-

works, including Google Cloud ML, Microsoft Cog-

nitive Toolkit (CNTK), and the PyTorch open source

framework initially developed by Facebook.

• We explore and develop multiple defense techniques

against attacks on transfer learning models, including

defenses that alter the student model training process,

that alter inputs prior to classification, and techniques

that introduce redundancy using multiple models.

Transfer learning is a powerful approach that ad-

dresses one of the fundamental challenges facing the

widespread deployment of deep learning. To the best of

our knowledge, our work is the first to extensively study

the inheritance of vulnerabilities between transfer learn-

ing models. Our goal is to bring attention to fundamen-

tal weaknesses in these models, and to advocate for the

evaluation and adoption of defensive measures against

adversarial attacks in the future.

2 Background

We begin by providing some background information on

transfer learning and adversarial attacks on deep learning

frameworks.

2.1 Transfer Learning

The high level idea of transfer learning is to transfer

the “knowledge” from a pre-trained Teacher model to

a new Student model, where the student model’s task

shares significant similarity to the teacher model’s. This

“knowledge” typically includes the model architecture

and weights associated with the layers. Transfer learning

enables organizations without access to massive datasets

or GPU clusters to quickly build accurate models cus-

tomized to their application context.

How Transfer Learning Works. Figure 1 illustrates

transfer learning at a high level. The student model is ini-

tialized by copying the first N − 1 layers of the Teacher.

A new dense layer is added for classification. Its size

matches the number of classes in the student task. Then

the student model is trained using its own dataset, while

the first K layers are “frozen”, i.e. their weights are fixed,

and only weights in the last N −K layers are updated.

The first K layers (referred to as shallow layers) are

frozen during training because outputs of those layers al-

ready represent meaningful features for the student task.

The student model can reuse these features directly, and

freezing them lowers both training cost and amount of

required training data.

Based on the number of layers being frozen (K) during

the training process, transfer learning is categorized into

the following three approaches.

• Deep-layer Feature Extractor: N−1 layers are frozen

during training, and only the last classification layer is

updated. This is preferred when the student task is

very similar to the teacher task, and requires minimal

training cost (the cost of training a single-layer DNN).

• Mid-layer Feature Extractor: The first K layers are

frozen, where K < N − 1. Allowing more layers to be

updated helps the student perform more optimization

for its own task. Mid-layer Feature Extractor typically

outperforms Deep-layer Feature Extractor in scenar-

ios where the student task is more dissimilar to the

teacher task, and more training data is available.

• Full Model Fine-tuning: All layers are unfrozen and

fine-tuned during student training (K = 0). This re-

quires more training data, and is appropriate when the

student task differs significantly from the teacher task.

Bootstrapping using pre-trained model weights helps

the student converge faster and potentially achieve bet-

ter performance than training from scratch [23].

We run a simple experiment to demonstrate the impact

of transfer learning. We target facial recognition, where

the student task is to recognize a set of 65 faces, and uses

a well-performing face recognition model called VGG-

Face [11] as teacher model. Using only 10 images per

class to train the student model, we achieve 93.47% clas-

sification accuracy. Training the student with the same

architecture but with random weights (no pre-trained

weights) produces accuracy close to random guessing.



2.2 Adversarial Attacks in Deep Learning

The goal of adversarial attacks against deep learning net-

works is to modify input images so that they are misclas-

sified in the DNN. Given a source image, the attacker

applies a small perturbation so that it is misclassified by

the victim DNN into either a specific target class, or any

class other than the real class. Existing attacks fall into

two categories, based on their assumptions on how much

information attacker has about the classifier.

White-box Attacks. These attacks assume the at-

tacker knows the full internals of the classifier DNN,

including its architecture and all weights. It allows the

attacker to run unlimited queries on the model, until a

success adversarial sample is found [17, 36, 47, 41, 55].

These attacks often achieve close to 100% success with

minimal perturbations, since full access to the DNN al-

lows them to find the minimal amount of perturbations

required for misclassification. The white-box scenario is

often considered impractical, however, since few systems

reveal internals of their model publicly.

Black-box Attacks. Here attackers do not have

knowledge of the internals of the victim DNN, i.e. it

remains a black-box. The attacker is allowed to query

the victim model as an Oracle [46, 55]. Most black-

box attacks either use queries to test intermediate ad-

versarial samples and improve iteratively [55], or try to

reverse-engineer decision boundaries of the DNN and

build a replica, which can be used to craft adversarial

samples [46]. Black-box attacks often achieve lower suc-

cess than white-box attacks, and require a large number

of queries to the target classifier [55].

Adversarial attacks can also be categorized into tar-

geted and non-targeted attacks. A targeted attack aims

to misclassify the adversarial image into a specific tar-

get class, whereas a non-targeted attack focuses on trig-

gering misclassification into any class other than the real

class. We consider and evaluate both targeted and non-

targeted attacks in this paper.

3 Attacks on Transfer Learning

Here, we describe our attack on transfer learning, begin-

ning with the attack model.

Attack Model. In the context of our definitions

in Section 2, our attack assumes white-box access to

teacher models (consistent with common practice today)

and black-box access to student models. We consider a

given attacker looking to trigger a misclassification from

a Student model S, which has been customized through

transfer learning from a Teacher model T .

• White-box Teacher Model. We assume that T is a

white-box, meaning the attacker knows its model ar-

chitecture and weights. Most or all popular models

Figure 2: Illustration of our attack. Given images of a cat

and a dog, attacker computes perturbations that mimic

the internal representation of the dog image at layer K. If

the calculations are perfect, the adversarial sample will

be classified as dog, regardless of unknown layers in

SN−K .

today have been made publicly available to increase

adoption. Even if Teacher models became proprietary

in the future, an attacker targeting a single Teacher

model could obtain it by posing as a Student to gain

access to the Teacher model.

• Black-box Student Model. We assume S is black-box,

and all weights remain hidden from the attacker. We

also assume the attacker does not know the Student

training dataset, and can use only limited queries (e.g.,

1) to S. Apart from a single adversarial sample to trig-

ger misclassification, we expect no additional queries

to be made during the pre-attack process.

• Transfer Learning Parameters. We assume the at-

tacker knows that S was trained using T as a Teacher,

and which layers were frozen during the Student train-

ing. This information is not hard to learn, as many ser-

vice providers, e.g., Google Cloud ML, release such

information in their official tutorials. We further relax

this assumption in Sections 4 and 5, and consider sce-

narios where such information is unknown. We will

discuss the impact on performance, and propose tech-

niques to extract such information from the Student

using a few additional queries.

Insight and Attack Methodology. Figure 2 illustrates

the main idea behind our attack. Consider the scenario

where the attacker knows that the first K layers of the

Student model are copied from the Teacher and frozen

during training. Attacker perturbs the source image so

it could be misclassified as the same class of a specific

target image. Using the Teacher model, attacker com-

putes perturbations that mimic the internal representa-

tion of the target image at layer K. Internal representa-

tion is captured by passing the target image as input to

the Teacher, and using the values of the corresponding

neuron outputs at layer K.



Our key insight: is that (in feedforward networks)

since each layer can only observe what is passed on from

the previous layer, if our adversarial sample’s internal

representation at layer K perfectly matches that of the

target image, it must be misclassified into the same la-

bel as the target image, regardless of the weights of any

layers that follow K.

This means that in the common case of feature ex-

tractor training, if we can mimic a target in the Teacher

model, then misclassification will occur regardless of

how much the Student model trains with local data.

We also note that some models like InceptionV3 and

ResNet50, where “shortcut” layers can skip several lay-

ers, are not strictly feedforward. However, the same prin-

ciple applies, because a block (consisting of several lay-

ers) only takes information from the previous block. Fi-

nally, it is hard in practice to perfectly mimic the internal

representation, since we are limited in our level of pos-

sible perturbation, in order to keep adversarial changes

indistinguishable by humans. The attacker’s goal, there-

fore, is to minimize the dissimilarity between internal

representations, given a fixed level of perturbation.

Targeted vs. Non-targeted Attacks. We consider

both targeted and non-targeted attacks. The goal in tar-

geted attacks is to misclassify a source image xs into the

class of a target image xt . The attacker focuses on a spe-

cific layer K of the Teacher model, and tries to mimic

the target image’s internal representation (neuron values)

at layer K. Let TK(.) be the function (associated with

Teacher) transforming an input image to the internal rep-

resentation at layer K. A perturbation budget P is used

to control the amount of perturbation added to the source

image. The following optimization problem is solved to

craft an adversarial sample x′s.

min D(TK(x
′
s),TK(xt))

s.t. d(x′s,xs)< P
(1)

The above optimization tries to minimize dissimilarity

D(.) between the two internal representations, under a

constraint to limit perturbation within a budget P. We

use L2 distance to compute D(.). d(x′,xs) is a distance

function measuring the amount of perturbation added to

xs. We discuss d(.) later in this section.

In non-targeted attacks, the goal is to misclassify xs

into any class different from the source class. To do this,

we need to identify a “direction” to push the source im-

age outside its decision boundary. In our case, it is hard

to estimate such a direction without having a target im-

age in hand, as we rely on mimicking hidden represen-

tations. Therefore, we perform a non-targeted attack by

evaluating multiple targeted attacks, and choose the one

that achieves the minimum dissimilarity between the in-

ternal representations. We assume that the attacker has

access to a set of target images I (each belonging to a

distinct class). Note that the source image can be mis-

classified to even classes outside the set I. The set of

images I merely serves as a guide for the optimization

process. Empirically, we find that even small sizes of set

I (just 5 images) can achieve high attack success. The

optimization problem is formulated as follows.

min mini∈I{D(TK(x
′
s),TK(xti))}

s.t. d(x′s,xs)< P
(2)

Measuring Adversarial Perturbations. As men-

tioned before, d(x′s,xs) is the distance function used to

measure the amount of perturbation added to the image.

Most prior work used the Lp distance family, e.g., L0, L2,

and L∞ [17]. While a helpful way to quantify perturba-

tion, Lp distance fails to capture what humans perceive

as image distortion. Therefore, we use another metric,

called DSSIM, which is an objective image quality as-

sessment metric that closely matches with the perceived

quality of an image (i.e. subjective assessment) [65, 66].

The key idea is that humans are sensitive to structural

changes in an image, which strongly correlates with their

subjective evaluation of image quality. To infer structural

changes, DSSIM captures patterns in pixel intensities, es-

pecially among neighboring pixels. The metric also cap-

tures luminance, and contrast measures of an image, that

would also impact perceived image quality. DSSIM val-

ues fall in the range [0,1], where 0 means the image is

identical to the original image, and a higher value means

the perceived distortion will be higher. We include the

mathematical formulation of DSSIM in the Appendix.

We also refer interested readers to the original papers for

more details [65, 66].

Solving the Optimization Function. To solve the op-

timization in Equation 1, we use the penalty method [43]

to reformulate the optimization as follows.

min D(TK(x
′
s),TK(xt))+λ ·(max(d(x′s,xs)−P, 0))2

Here λ is the penalty coefficient that controls the tight-

ness of the privacy budget constraint. By gradually in-

creasing λ , the final optimization result would converge

to that of the original formulation. In our experiment, we

empirically choose a λ large enough to ensure the per-

turbation constraint is tightly enforced.

We use Adadelta [69] optimizer to solve the re-

formulated optimization problem. To constrain input

pixel intensity within the correct range ([0,255]), we

transform intensity values into tanh space [17].

4 Experimental Results

Next, we perform experiments across a number of clas-

sification tasks to validate the effectiveness of attacks on

transfer learning. Given their wide adoption in a variety



of applications, we focus on image classification tasks,

including facial recognition, iris recognition, traffic sign

recognition and flower recognition.

4.1 Experimental Setup

Teacher and Student Models. We use four tasks and

their associated Teacher models and datasets to build our

victim Student models.

• Face Recognition classifies an image of a human face

into a class associated with a unique individual. The

Teacher is the popular 16 layer VGG-Face model [49]

trained on a dataset of 2.6M images to recognize

2,622 faces. The Student model is trained using the

PubFig dataset [8] to recognize a different set of 65

individuals1. The Student training dataset contains 90

faces belonging to each of the 65. The testing dataset

for the Student model contains 650 images (10 images

per class).

• Iris Recognition classifies an image of a human iris

into one of many classes associated with different in-

dividuals. The Teacher model is a 16 layer VGG16

model trained on the ImageNet dataset of 1.3M im-

ages [56]. The Student model is trained on the CASIA

IRIS dataset [2] containing 16,000 iris images asso-

ciated with 1,000 individuals, and the testing dataset

contains 4,000 images.

• Traffic Sign Recognition classifies different types

of traffic signs from images, which can be used

by self-driving cars to automatically recognize traf-

fic signs. The Teacher model is again the 16 layers

VGG16, trained on the ImageNet dataset. The Stu-

dent is trained using the GTSRB dataset [1] containing

39,209 images of 43 different traffic signs. It also has

a testing dataset of 12,630 images.

• Flower Recognition classifies images of flowers into

different categories, and is a popular example of multi-

class classification. It is also an example of transfer

learning by Microsoft’s CNTK framework [6]. The

Teacher model is the ResNet50 model (with 50 lay-

ers) [28], trained on the ImageNet dataset. The Stu-

dent is trained on the VGG Flowers dataset [9] con-

taining 6,149 images from 102 classes, and comes

with a testing dataset of 1,020 images.

These tasks represent typical scenarios users may face

during transfer learning. First, the training dataset for

building the Student model is significantly smaller than

that of the Teacher’s training dataset, which is a common

scenario for transfer learning. Second, the Teacher and

Student models either target similar tasks (Face Recog-

nition) or very different tasks (Flowers and Traffic Sign

1The original dataset contains 83 celebrities. We exclude 18 celebri-

ties that were also used in the Teacher model.

Recognition). Finally, Face, Iris and Traffic sign recog-

nition are security-related tasks. More details of training

the Student models are listed in Table 2 in the Appendix.

Optimizing Student Models. We apply all three

transfer learning approaches (discussed in Section 2)

to each task, and identify the best approach. Table 1

shows the classification accuracy for different transfer

approaches. For Mid-layer Feature Extractor, we show

the result of the best Student model by experimenting

with all possible K values. The results show that Face

Recognition achieves the highest accuracy (98.55%)

when using Deep-layer Feature Extractor. This is ex-

pected as the Student and Teacher tasks are very simi-

lar, leading to significant gains from transferring knowl-

edge directly. The Flower classification task performs

best with Full Model Fine-tuning, since the Student and

Teacher tasks are different and there is less gain from

sharing layers. Lastly, Traffic Sign recognition is a nice

example for transferring knowledge from a middle layer

(layer 10 out of 16).

Based on these results, we build the Student model

for each task using the transfer method that achieves the

highest classification accuracy (marked in bold in Ta-

ble 1). The resulting four Student models cover all three

transfer learning methods.

Attack Configuration. We craft adversarial sam-

ples using correctly classified images in the test dataset.

These are images not seen by the Student model during

its training and matches our attack model, i.e. the ad-

versary has no access to the Student training dataset. To

evaluate targeted attacks, we randomly sample 1K source

and target image pairs to craft adversarial samples, and

measure the attack success rate as the percentage of at-

tack attempts (out of 1K) that misclassify the perturbed

source image as the target. For non-targeted attacks, we

randomly select 1K source images and 5 target images

for each source (to guide the optimization process). Suc-

cess for non-targeted attack is measured as the percent-

age of 1K source images that are successfully misclassi-

fied into any other arbitrary class.

For each source and target image pair, we compute the

adversarial samples by running the Adadelta optimizer

over 2,000 iterations with a learning rate of 1. For all

the Teacher models considered in our experiments, the

entire optimization process for a single image pair takes

roughly 2 minutes on an NVIDIA Titan Xp GPU.

We implement the attack using Keras [19] and Ten-

sorFlow [12], leveraging open-source implementations

of misclassification attacks provided by prior works [44,

17].



Student Task
Transfer Process

Deep-layer Feature Extractor Mid-layer Feature Extractor Full Model Fine-tuning

Face 98.55% 98.00% (14/16) 75.85%

Iris 88.27% 88.22% (14/16) 81.72%

Traffic Sign 62.51% 96.16% (10/16) 94.39%

Flower 43.63% 92.45% (10/50) 95.59%

Table 1: Transfer learning performance for different tasks when using different transfer processes. For each task, we

select the model with the highest accuracy as our target Student model in future analysis. Numbers in parenthesis

under Mid-layer Feature Extractor are the number of layers copied to achieve the corresponding accuracy, as well as

the total number of layers of the Teacher.

    Source   Adversarial    Target     Source   Adversarial    Target

Figure 3: Examples of adversarial images on Face

Recognition (P = 0.003).
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Figure 4: Attack success rate on Face Recognition with

different perturbation budgets.

4.2 Effectiveness of the Attack

We first evaluate the proposed attacks assuming the at-

tacker knows the exact transfer approach used to pro-

duce the Student model. This allows us to derive the

upper bounds on attack effectiveness, and to explore the

impact of the perturbation budget P, the distance met-

ric d(x′s,xs), and the underlying transfer method used to

produce the Student model. Later in Section 4.3 we will

relax this assumption.

Consider the Face recognition task which uses Deep-

layer Feature Extractor to produce the Student model.

Here the attacker crafts adversarial samples to target the

N − 1 layer of the Teacher model. Even with a very low

perturbation budget of P = 0.003, our attack is highly

effective, achieving a success rate of 92.6% and 100%

for targeted, and non-targeted attacks respectively. We

also manually examine the perturbations added to adver-

sarial images and find them to be undetectable by visual

inspection. Figure 3 includes 6 randomly selected suc-

cessful targeted attack samples for interested readers to

examine.

It should be noted that an attacker could improve at-

tack success by carefully selecting a source image simi-

lar to a target image. Our attack scenario is much more

challenging, since the source and target images are ran-

domly selected. Figure 3 shows that our attacks often try

to mimic a female actress using a male actor, and vice

versa. We also have image pairs with different lighting

conditions, facial expressions, hair color, and skin tones.

This significantly increases the difficulty of the targeted

attack, given constraints on the perturbation level.

Impact of Perturbation Budget P. A natural question

is how to choose the right perturbation budget, which di-

rectly affects the stealthiness of the attack. By measuring

image distortion via the DSSIM metric, we empirically

find that P = 0.003 is a safe threshold for facial images.

Its corresponding L2 norm value is 8.17, which is signif-

icantly smaller than/comparable to values used in prior

work (L2 > 20) [38].

Figure 4 shows the attack success rate as we vary the

perturbation budget between 0.0005 and 0.005. As ex-

pected, smaller budget results in lower attack success

rate, as there is less room for the attacker to change

images and mimic the internal representation. Detailed

comparison of images with different perturbation bud-

gets is in Figure 10 in the Appendix.

Impact of Distance Metric d(x′s,xs). Recall that we

use DSSIM to measure perturbation added to input im-

ages, instead of the Lp distance used by prior works, e.g.,

L2. To compare both metrics, we also implement our at-

tack using L2 distance, and analyze the generated images

ourselves. For a fair comparison, we choose an L2 dis-

tance budget that produces a targeted attack success rate

similar to using DSSIM with a budget of 0.003. Gener-

ated images are included in Figure 11 in the Appendix.

We find that DSSIM generates imperceptible perturba-

tions, while perturbations using L2 are more noticeable.

While DSSIM takes into account the underlying struc-

ture of an image, L2 treats every pixel equally, and often

generates noticeable “tattoo-like” patterns on faces.
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(b) Iris
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(c) Traffic Sign
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(d) Flower

Figure 5: Targeted and non-targeted attack success rate on Student models when targeting different layers. X axis

indicates the layer being targeted. Face and Iris freeze the first 15 layers during training; Traffic Sign freezes the first

10 layers; Flower freezes no layers.

Impact of Transfer Method. We also test out attack

on Iris, Traffic Sign, and Flower recognition tasks. Their

perturbation budgets are set to 0.005 (L2=9.035), 0.01

(L2=7.77), and 0.003 (L2=13.52), respectively. These

values are empirically derived by the authors to produce

unnoticeable image perturbations.

Overall, the attack is effective in Iris, with a targeted

attack success rate of 95.9% and non-targeted success

rate of 100%. Like Face recognition, the Iris student

model was trained via Deep-layer Feature Extractor. On

the other hand, the attack becomes less effective on Traf-

fic Sign recognition, where the success rate of targeted

and non-targeted attacks are 43.7%, and 95.35%, respec-

tively. For Flower recognition, these numbers reduce to

1.1% and 37.25%, respectively. These results suggest

that the attack effectiveness is strongly correlated with

the transfer method: our attack is highly effective for

Deep-layer Feature Extractor, but ineffective for Full

Model Fine-tuning.

4.3 Impact of the Attack Layer

We now consider scenarios where the attacker does not

know the exact transfer method used to train the Student

model. In this case, the attacker needs to first select a

Teacher layer to attack, which can be different from the

deepest layer frozen during the transfer process. To un-

derstand the impact of such mismatch, we evaluate our

attack on each of the Teacher layers in all four Student

models. We organize our results by the transfer method.

Deep-layer Feature Extractor. The corresponding

student models are Face and Iris. We set their pertur-

bation budget P to 0.003, and 0.005, respectively (the

same values used in the previous experiment). We launch

attacks to each of the N-1 Teacher layers (N=16), i.e.

computing adversarial samples that mimic the internal

representation of the target image at layer K where K =
1...N −1. Figure 5(a) and Figure 5(b) show targeted and

non-targeted success rates when attacking different lay-

ers.

For both Face and Iris, the attack is the most effective

when targeting precisely the N − 1th (15th) layer, which

is as expected since both use Deep-layer Feature Extrac-

tor. As the attacker moves from deeper layers towards

shallow layers (i.e. reducing K), the attack effectiveness

reduces. At layer 13 and above, the attack success rates

are above 88.4% for Face, and 95.9% for Iris. But when

targeting layer 10 and below, the success rates drop to

1.2% for Face recognition, and <40% for Iris recogni-

tion. This is because shallow layers represent basic com-

ponents of an image, e.g., lines and edges, which are

harder to mimic using a limited perturbation budget. In

fact, both Face and Iris models are based on convolu-

tional neural networks, which are known to capture such

representations at shallow layers [70]. Therefore, given

a fixed perturbation budget, the error in mimicking in-

ternal representations is much higher at shallow layers,

resulting in lower attack success rates.

An unexpected result is that for Iris, the success rate

for non-targeted attacks remains close to 100% regard-

less of the attack layer choice. A more detailed analysis

shows that this is because Iris recognition is highly sen-

sitive to input noise. The perturbations introduced by

our attack behave as input noise, thus triggering misclas-

sification into an “unknown” class. However, this is a

unique property of the Iris recognition task, and does not

apply to the other three tasks.

Mid-layer Feature Extractor. We then evaluate attack

on Traffic Sign, where the first 10 layers are transferred

from Teacher and frozen during training. Here the per-

turbation budget is fixed to P = 0.005. Results in Fig-

ure 5(c) show that the attack success rates peak at pre-

cisely the 10th layer, where success rate for targeted at-

tack is 43.7% and 95.35% for non-targeted attack. Sim-

ilarly, the success rates reduce when the attacker targets

shallow layers. Interestingly, the success rates also de-

crease as we target layers deeper than 10. This is be-

cause layers beyond 10 are fine-tuned and more distinct

from the corresponding Teacher layers, leading to higher

error when mimicking the internal representation.

Full Model Fine-tuning. For the Flower task, the

Student model differs largely from the Teacher model,

as all the layers are fine-tuned. Therefore, the attacker

will always use incorrect information (from the Teacher)

to mimic an internal representation of the Student. The

resulting attack success rates are low and flat across the

choice of attack layers (Figure 5(d) with P = 0.003).



How to Choose the Attack Layer? The above re-

sults suggest that the attacker should always try to iden-

tify if the Student is using Deep-layer Feature Extractor,

as it remains the most vulnerable approach. In Section 5,

we present a technique to determine whether Deep-layer

Feature Extractor is used for transfer and to identify

the Teacher model, using a few queries on the Student

model. In this case, the attacker should focus on the

N − 1th layer to achieve the optimal attack performance.

If the Student is not using Deep-layer Feature Extrac-

tor, the attacker can try to find the optimal attack layer

by iteratively targeting different layers, starting from the

deepest layer. In the case of Mid-layer Feature Extrac-

tor, the attacker can estimate the attack success rate at

each layer, using only a small set of image pairs and very

limited queries. The attacker can observe the attack suc-

cess rate increasing (or decreasing) as she approaches (or

moves away from) the optimal layer.

4.4 Discussion

Feature Extractor vs. Full Model Fine-tuning. Our

results suggest that Full Model Fine-tuning and Mid-

layer Feature Extractor lead to models that are more ro-

bust against our attacks. However, in practice, these two

approaches are often not applicable, especially when the

Student training data is limited. For example, for Face

recognition, when reducing the training dataset from 90

images per class to 50 per class, pushing back by 2 lay-

ers (i.e. transfer at layer 13) reduces the model classifi-

cation accuracy to 19.1%. Meanwhile, Deep-layer Fea-

ture Extractor still achieves a 97.69% classification ac-

curacy. Apart from performance, these approaches also

incur higher training cost than Deep-layer Feature Ex-

tractor. This is also why many deep learning frameworks

today use Deep-layer Feature Extractor as the default

configuration for transfer learning.

Can white-box attacks on Teacher transfer to student

Models? Prior work identified the transferability of

adversarial samples across different models for the same

task [38]. Thus another potential attack on transfer learn-

ing is to use existing white-box attacks on the Teacher to

craft adversarial samples, which are then transferred to

the Student. We evaluate this attack using the state-of-

the-art white-box attack by Carlini et al. [17]. Since

Teacher and Student models have different class labels,

we can only perform non-targeted attacks.

Our results show that the resulting attack is ineffec-

tive for all four tasks: only < 0.3% adversarial samples

trigger misclassification in the Student models. Thus we

confirm that the white-box attack on the Teacher will not

be transferred to the Student. The failure of the attack

can be attributed to the differences between the Teacher

and Student tasks. The Student model has a different

classification layer (and hence decision boundary) than

the Teacher, so adversarial samples computed using de-

cision boundary analysis (based on classification layer)

of the Teacher model fail on the Student model.

5 Experiments with Real ML Services

So far our misclassification attacks assume that the

teacher model is known to the attacker. Next, we re-

lax this assumption by considering scenarios where the

teacher model is unknown to the attacker. Specifi-

cally, today’s deep learning services (e.g. Google Cloud

ML, Facebook PyTorch, and Microsoft CNTK) already

help customers generate student models from a suite of

teacher models. In this case, a successful attack must

first infer the teacher model given a student model. We

address this challenge by designing a fingerprinting ap-

proach that feeds a few query images on the student

model to identify the teacher model, allowing us to ef-

fectively attack the student models produced by today’s

deep learning services.

5.1 Fingerprinting the Teacher Model

Our design assumes that, given a student model, the at-

tacker has access to the pool of candidate Teacher models

where one of them is used to produce the student model.

This is a practical assumption because for common deep

learning tasks there are only a limited set of high qual-

ity, pre-trained models that are publicly available. For

example, Google Cloud ML provides InceptionV3, Mo-

bileNets and its variants as Teacher models for image

classification. Thus the attacker only needs to identify

the Teacher from a (small) set of known candidates.

Methodology. We take a fingerprinting based ap-

proach. For each candidate Teacher model, the attacker

crafts a fingerprint image that will intentionally “distort”

the output of the student model, if and only if the stu-

dent model is generated by the given Teacher model. By

querying the student model with the fingerprinting im-

ages of all the candidates and comparing the model out-

put, the attacker can quickly narrow down to the true

Teacher model. In the following, we show that such fin-

gerprinting method is highly effective when the student

model is generated via Deep-layer Feature Extractor.

Consider the last layer of a student model (trained

using Deep-layer Feature Extractor), which is a dense

layer for classification. The prediction result (before

softmax) of an input image x can be expressed as,

S(x) =WN ×TN−1(x)+BN (3)

where WN is the weight matrix of the dense layer, BN is

the bias vector, and TN−1(.) is the function transforming

the input x to neurons at layer N − 1 2.

2There will also be an activation function that further transforms



Given the knowledge of TN−1(.), our goal is to craft

a fingerprinting image that nullifies the first term in

Equation 3, i.e. an x that produces an all-zero vector

TN−1(x) =~0 so that the output vector S(x) = BN . Since

different Teacher models differ largely in TN−1(.), a fin-

gerprinting image of a Teacher model A, when fed to a

Student model derived from a different Teacher model B,

is unlikely to produce an all-zero vector TN−1(x).
To decode the fingerprint, our hypothesis is that, with-

out the contribution from x, the bias vector BN (or S(x)
produced by the right fingerprint) will display much

lower dispersion compared to normal S(x) values. Thus

by feeding candidate fingerprinting images into the stu-

dent model and comparing the dispersion value of the

corresponding S(x), we can identify the Teacher model

as the one that produces the minimum dispersion (below

a threshold).

Assuming this hypothesis is true, we can craft finger-

printing images for each Teacher model following the

same optimization process for our misclassification at-

tack (see Section 3). The only difference is here the in-

ternal representation to mimic is a zero-vector.

Validation. To validate our approach, we produce five

additional Student models using multiple popular pub-

lic Teacher models 3. These Student models are trained

using the 17-class VGG Flower dataset 4, using Deep-

layer Feature Extractor. Together with the Face and Iris

models used in Section 4, we have a total of 7 Student

models produced from different Teacher models. All of

them achieve > 83.1% classification accuracy.

We measure the dispersion of S(x) using the Gini coef-

ficient, commonly used in economics to measure wealth

distribution [26]. Its value ranges between 0 and 1, with 0

representing complete equality and 1 representing com-

plete inequality.

We first measure the Gini coefficient of BN , validating

our hypothesis that BN’s dispersion level is very low. For

each Student model, we set output neurons of N − 1th

layer as a zero vector, so that only BN is fed into the final

prediction. For all seven models, the corresponding Gini

coefficient is below 0.011. We then feed 100 random

test images into each model, where the Gini coefficient

jumps to between 0.648 and 0.999, with a median value

of 0.941. This confirms our hypothesis where BN has a

different statistical dispersion than normal S(x).
Next, for each candidate Teacher model, we craft and

feed 10 fingerprinting images to the target student model

and compute the average Gini coefficient of S(x). Fig-

S(x), but we ignore it for the sake of simplicity. Our methodology

holds for any activation function.
3Our choice of Teacher models includes VGG16 [56], VGG19 [56],

ResNet50 [28], InceptionV3 [59], Inception-ResNetV2 [58], and Mo-

bileNet [32].
4This is a smaller version of the full 102-class flower dataset we

used in previous experiments [10].
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Figure 6: Gini coefficient of output probabilities of dif-

ferent teacher and student models.

ure 6 shows the average Gini coefficient as a function of

the fingerprinting Teacher model and the Teacher model

used to generate the Student model. The diagonal line in-

dicates scenarios where the two Teacher models match.

As expected, all the coefficients along the diagonal are

small (< 0.058), suggesting that the fingerprinting im-

ages successfully nullify the neuron component in S(x).
All off-diagonal coefficients are significantly higher (>

0.443), since the Teacher model used to generate the fin-

gerprinting image does not match that used to generate

the student model.

It is worth noting that our fingerprinting technique

can also identify different versions of Teacher models

with the same architecture. To demonstrate this, we use

Google’s InceptionV3 model that has two versions (i.e.

with different weights) released at different times.5. Our

technique accurately distinguishes between these two

versions, with a Gini coefficient < 0.075 when there is

a match, and > 0.751 otherwise.

Overall, the above results confirm that our fingerprint-

ing method can identify the Teacher model using a small

set of queries. When crafting the fingerprinting image, a

threshold of 0.1 on the Gini coefficient seems like a good

cut-off to ensure successful fingerprinting.

Effectiveness on Other Transfer Methods. Our fin-

gerprinting method is based on nullifying neuron con-

tributions to the last layer of the Student model. It is

effective when the student model is generated by Deep-

layer Feature Extractor. The same set of fingerprinting

images, when fed to student models generated by other

transfer methods, will likely lead to higher Gini coeffi-

cients and fail to identify the Teacher model. For exam-

ple, when fed to the Traffic Sign and Flower models, the

Gini coefficient is always higher than 0.839.

On the other hand, when all the fingerprinting images

5Version 2015-12-05 http://download.tensorflow.

org/models/image/imagenet/inception-2015-

12-05.tgz, Version 2016-08-28 http://download.

tensorflow.org/models/inception_v3_2016_08_28.

tar.gz

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz


lead to large Gini coefficient values, it means that ei-

ther the Teacher model is unknown (not in the candi-

date pool), or the student model is produced by a trans-

fer method other than Deep-layer Feature Extractor. For

both cases, the misclassification attack will be less effec-

tive. The attacker can use this knowledge to identify and

target student models that are the most vulnerable to the

misclassification attack.

5.2 Attacks on Transfer Learning Services

Today, popular Machine Learning as a service (MLaaS)

platforms [67] (e.g., Google Cloud ML) and deep learn-

ing libraries (e.g., PyTorch, Microsoft CNTK) already

recommend transfer learning to their customers. Many

provide detailed tutorials to guide customers through the

process of transfer learning. We follow these tutorials

to investigate whether the resulting Student models are

vulnerable to our attacks. The adversarial samples gen-

erated on the three services are listed in Figure 13 in the

Appendix.

Google Cloud ML. In this MLaaS platform, users can

train deep learning models in the cloud and maintain it as

a service. The transfer learning tutorial explains the pro-

cess of using Google’s InceptionV3 image classification

model to build a flower classification model [5].

Specifically, the tutorial suggests Deep-layer Feature

Extractor as the default transfer learning method, and the

provided sample code does not offer control parameters

or guidelines to use other transfer approaches or Teacher

models (one has to modify the code to do so). We follow

the tutorial to train a Student model on a 5-class flower

dataset (the example dataset used in the tutorial), which

achieves an 89.3% classification accuracy6.

To launch the attack on the Student model, we first

use the proposed fingerprinting method to identify that

InceptionV3 (2015 version) is used as the Teacher model

(i.e. the corresponding fingerprint image leads to Gini

coefficient of 0.061 while the other fingerprint images

lead to much higher values > 0.4063). The subsequent

misclassification attack achieves a 96.5% success rate

with P = 0.001.

Microsoft CNTK. The Microsoft Cognitive Toolkit

(CNTK) is an open source DL library available on Mi-

crosoft’s Azure MLaaS platform. The tutorial describes

a flower classification task and recommends ResNet18

as the Teacher and Full Model Fine-tuning as the default

configuration [6]. This creates a Student model similar

to the Flower model used in Section 4. CNTK also pro-

vides control parameters to switch to Deep-layer Feature

Extractor ( Mid-layer Feature Extractor is unavailable)

and other Teacher models hosted by Microsoft, including

6Instead of training the Student in the cloud, we build the model

locally using Google TensorFlow using the same procedure [7].

popular image classification models (e.g., ResNet50, In-

ceptionV3, VGG16) and a few object detection models.

Following this process, we use VGG16 as the Teacher

and Deep-layer Feature Extractor to train a new Student

model using the 102-class VGG flower dataset (the ex-

ample dataset used in tutorial). It achieves a classifica-

tion accuracy of 82.25%.

Again, we were able to launch the misclassification

attack on the Student model: our fingerprinting method

successfully identifies the Teacher model (with a Gini co-

efficient of 0.0045), and the attack success rate is 99.4%

when P = 0.003.

PyTorch. PyTorch is a popular open source DL library

developed by Facebook. Its tutorial describes steps to

build a classifier that can distinguish between images of

ants and bees [3]. The tutorial uses ResNet18 by default

and allows both Deep-layer Feature Extractor and Full

Model Fine-tuning, but indicates that Deep-layer Feature

Extractor provides higher accuracy. There is no mention

of Mid-layer Feature Extractor. PyTorch hosts a reposi-

tory of 6 image classification Teacher models that users

can plug into their transfer process.

Again we follow the tutorial and verify that Student

models trained using Deep-layer Feature Extractor on

PyTorch are vulnerable. Our fingerprinting technique

produces a Gini coefficient of 0.004, and targeted attack

achieves a success rate of 88.0% with P = 0.001. We

also test our attack on a student model trained using Full

Model Fine-tuning. Surprisingly, our targeted attack still

achieves an 87.4% success rate with P = 0.001. This

is likely because the Student model is trained only for a

short number of epochs (25 epochs) at a very low learn-

ing rate of 0.001, and thus the fine-tuning process intro-

duces only small modification to the model weights.

Implications. Our experiments on the three machine

learning services show that many Student models pro-

duced by these services are vulnerable to our attack. This

is particularly true when users follow the default config-

uration in Google Cloud ML and PyTorch. Our attack

is feasible because each service only hosts a small num-

ber of deep learning Teacher models, making it easy to

get access to the (small) pool of Teacher models. Fi-

nally, by promoting the use of transfer learning, these

platforms often expose their customers to our attack ac-

cidentally. For example, Google Cloud ML advertises

customers who have successfully deployed models using

their transfer learning service [4]. While we refrain from

attacking such customer models for ethical reasons, such

information can help attackers find potential victims and

gain additional knowledge about the victim model. We

discuss our efforts at disclosure in the Appendix.



6 Developing Robust Defenses

Having identified the practical impact of these attacks,

the ultimate goal of our work is to develop robust de-

fenses against them. Insights gained through our exper-

iments suggest that there are multiple approaches to de-

veloping robust defenses against this attack. First, the

effectiveness of attacks is heavily dependent on the level

of perturbations introduced. Successful misclassifica-

tion seems to be very sensitive to small changes made

to the input image. Therefore, any defense that perturbs

the adversarial sample before classification has a good

chance of disrupting the attack. Second, attack success

requires precise knowledge of the Teacher model used

during transfer learning, i.e. the weights transferred to

the Student model. Thus any deviations from the Teacher

model could render the attack ineffective.

Here, we describe three different potential defenses

that target different pieces of the Student model classifi-

cation process. We discuss the strengths and limitations

of each, and experimentally evaluate their effectiveness

against the attack and impact on classification of non-

adversarial inputs.

6.1 Randomizing Input via Dropout

Our first defense targets the sensitivity of adversarial

samples to small changes. The intuition is that attackers

have identified minimal alterations to the image that push

the Student model over some classification boundary. By

introducing additional random perturbations to the image

before classification, we can disrupt the adversarial sam-

ple. Ideally, small perturbations could effectively disrupt

adversarial attacks while introducing minimal impact on

non-adversarial samples. In prior work, Carlini, et al.

studied different defense mechanisms against attacks on

DNNs [16], and found the most effective approach to be

adding uncertainty to the prediction process [25].

Dropout Randomization. We add randomness to the

prediction process by applying Dropout [57] at the input

layer. This has the effect of dropping a certain fraction of

randomly selected input pixels, before feeding the modi-

fied image to the Student model. We repeat this process

3 times for each image and use the majority vote as the

final prediction result 7, or a random result if all 3 pre-

dictions are different.

We test this defense on all three tasks, Face, Iris, and

Traffic Sign, by applying Dropout on test images as well

as targeted and non-targeted adversarial samples 8. The

results for Face and Traffic Sign are highly consistent,

so we only plot the results for Face in Figure 7, includ-

ing classification accuracy on test images, and success

7We tested and found little improvement beyond 3 repetitions.
8We choose adversarial samples from Section 4.3 that achieve the

highest attack success rate.

rate of both targeted and non-targeted attacks. Results

for Traffic Sign is in the Appendix as Figure 14. As the

dropout ratio increases (i.e. more pixels dropped), both

classification accuracy and attack success rate drops. In

general, the defense is effective against targeted misclas-

sification, which drops in success rate much faster than

the corresponding drop in classification accuracy, e.g. at

dropout ratio near 0.4, classification accuracy drops to

91.4% while targeted attack success rate drops to 30.3%.

However, non-targeted attacks are less affected, and at-

tack success consistently remains higher than classifi-

cation accuracy of normal samples, e.g. 92.47% when

the classification accuracy is 91.4%. Finally, as dropout

increases, it eventually disrupts the entire classification

process, reducing classification accuracy while boosting

misclassification errors (non-targeted misclassification).

This defense is ineffective on the Iris task. Recall

that this model is sensitive to noise in general. The in-

herent sensitivity leads classification accuracy to drop at

nearly the same rate as attack success rate. When drop-

ping only 2% pixels, model accuracy already drops to

51.93%, while targeted attack success rate is still 55.5%

and non-targeted attack success rate is 100%. Detailed

results are shown in the Appendix as Figure 14. Clearly,

randomization as defense is limited by the inherent sen-

sitivity of the model. It is unclear whether the situation

could by improved by retraining the Student model to be

more resistant to noise [72].

Strengths and Limitations. The key benefit of this

approach is that it can be easily deployed, without re-

quiring changes to the underlying Student model. This is

ideal for Student models that are already deployed. How-

ever, this approach has three limitations. First, there is a

non-negligible hit on model accuracy for any significant

reduction in attack success. This may be unacceptable

for some applications (e.g., authentication systems based

on Face recognition). Second, this approach is impracti-

cal for highly sensitive classification tasks like Iris recog-

nition. Finally, this approach is not resistant to counter-

measures by the attacker. An attacker can circumvent

this defense by adding a Dropout layer into the adversar-

ial image crafting pipeline [16]. The generated adversar-

ial samples would then be more robust to Dropout.

6.2 Injecting Neuron Distances

The attack we identified leverages the similarity between

matching layers in the Teacher and Student models to

mimic an internal representation of the Student. Thus, if

we can make the Student’s internal representation deviate

from that of the Teacher for all inputs, the attack would

be less effective. One way to do that is by modifying

weights of different layers of the Student. In this sec-

tion, we present a scheme to modify the Student layers
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Figure 7: Attack success and classi-

fication accuracy on Face using ran-

domization via dropout.
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distance thresholds.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2K 4K 6K 8K 10K
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Neuron Distance Threshold

Non-targeted
Classification

Targeted

Figure 9: Attack success and classi-

fication accuracy on Iris using neuron

distance thresholds.

(i.e. weights), without significantly impacting classifica-

tion accuracy.

We start with a Student model trained using Deep-

layer Feature Extractor or Mid-layer Feature Extrac-

tor 9. This model lies in some local optimum of the

model classification error surface. Our goal is to update

layer weights and identify a new local optimum that pro-

vides comparable (or better) classification performance,

and also be distant enough (on the error surface) to in-

crease the dissimilarity between the Student and Teacher.

To find such a new local optimum, we unfreeze all

layers of Student and retrain the model using the same

Student training dataset, but with an updated loss func-

tion formulated in the following way. Consider a Stu-

dent model, where the first K layers are copied from the

Teacher. Let TK(.), and SK(.) be functions that gener-

ate the internal representation at layer K, for the Teacher,

and Student, respectively. Let I be the set of neurons in

layer K, and |Ws| be a vector of absolute sum of outgo-

ing weights from each neuron i ∈ I. Finally, let Dth be

a dissimilarity threshold between two models. Then our

objective is the following,

min CrossEntropy(Ytrue,Ypred)

s.t. ∑
x∈Xtrain

‖|Ws| ◦ (TK(x)− SK(x))‖2 > Dth
(4)

where ◦ is element-wise multiplication.

Here, we still want to minimize the classification loss,

formulated as cross entropy loss over the prediction re-

sults. But, a constraint term is added to increase the dis-

similarity between the Teacher and Student models. Dis-

similarity is computed as the weighted L2 distance be-

tween the internal representations at layer K, and is con-

ditioned to be higher than a threshold Dth. The weight

terms capture the importance of a neuron output for the

next layer 10. This helps make sure that distance be-

tween important neurons contribute more to the total dis-

9Recall that models using Full Model Fine-tuning are generally re-

sistant to the attack.
10The weight terms are not required for layers, where all neuron out-

puts are treated equally, e.g., convolutional layers.

tance between representations. We solve the above con-

strained optimization problem using the same penalty

method used in Section 3.

Before presenting our evaluation, we note two other

aspects of the optimization process. First, our objective

function only considers dissimilarity at layer K. How-

ever, after training with the new loss function, the inter-

nal representations at the preceding layers also become

dissimilar. Hence, our approach would not only reduce

attack effectiveness at layer K, but also at layers before it.

Second, a high value for Dth would increase defense per-

formance, but can also negatively impact classification

accuracy. In practice, the provider can incrementally in-

crease Dth as long as the classification accuracy is above

an acceptable level.

We evaluated this approach on all three classification

tasks. Figure 8 shows how classification accuracy and

attack success vary when we increase Dth in Face. At-

tacks are targeted at layer N−1, as Face uses Deep-layer

Feature Extractor. Unlike the Dropout based defense

(Figure 7), this method results in a steadier classification

accuracy, while attack success rate drops. As classifi-

cation accuracy drops from 98.55% to 95.69%, targeted

attack drops significantly, from 92.6% to 30.87%. Non-

targeted attacks are still hard to defend against, drop-

ping from 100% to only 91.45% under the same con-

ditions. We also analyze attack success rates at layers

below N − 1, and observe it to be lower than rates ob-

served in Figure 8. This indicates that our retraining

scheme makes the Student model more distinctive from

the Teacher model across all layers. Result for Traffic

Sign is in the Appendix in Figure 15, and is highly con-

sistent with Face.

We plot the Iris results in Figure 9. Important to note

that this defense works significantly better for the Iris

task than the Dropout scheme. Sensitivity of the Iris

model actually means classification accuracy increased

from 88.27% to 91.0% (retraining found a better local

optimum), while targeted attack success dropped from

100% to 12.6%. Unfortunately, non-targeted attacks re-

main hard to defend against. Attack success rate only



falls to 94.83% for Iris, and remains consistently above

classification accuracy.

Finally, we note that retrained models are also ro-

bust against the Teacher fingerprinting technique. When

using the true Teacher model as candidate, the finger-

printing attack results in an average Gini coefficient of

> 0.9846 for both Face and Iris models, which effec-

tively obfuscates the true identity of the Teacher model.

Strengths and Limitations. This scheme provides

significant benefits relative to the randomized dropout

scheme. First, we obtain improved defense performance,

i.e. reduce attack success without significantly degrading

classification accuracy. Second, unlike the dropout de-

fense, this scheme has no clear countermeasures. Attack-

ers do not have access to the Student training dataset, and

cannot replicate the updated Student using retraining.

Third, this approach successfully obfuscates the identity

of the Teacher model, making it significantly harder to

launch the attack given a target Student model.

Finally, the only limitation of this method is that all

Student models must be updated using our technique,

incurring additional computational cost. Compared to

normal Student training, which takes several minutes to

complete (for Face), our implementation that trains Stu-

dent models with a fixed neuron distance threshold in-

curs training time that is an order of magnitude larger.

For the example that corresponds to a reduced attack suc-

cess rate of 30.87% on Face, our defense scheme takes 2

hours. As a one time cost, it is a reasonable tradeoff for

significantly improving security against adversarial at-

tacks. Also, we expect that other standard techniques for

speeding-up neural network training (e.g., training over

multiple GPUs), can further reduce the runtime.

6.3 Ensemble of Models as a Defense

Finally, we consider using orthogonal models as a de-

fense for adversarial attacks against transfer learning.

The intuition is to have the provider train multiple Stu-

dent models, each from a separate Teacher model, and

use them together to answer queries (e.g., based on ma-

jority vote). Thus even if an attacker successfully fools

a single Student model in the ensemble, the other mod-

els may be resistant (since the adversarial sample is al-

ways tailored to a specific Student model). This can

be an effective defense, while only incurring an addi-

tional one time computational cost of training multiple

Students. This idea has been explored before in related

contexts [13].

It is unclear whether an adversary with knowledge of

this defense can craft a successful countermeasure, by

modifying the optimization function to trigger misclassi-

fication in all members of the ensemble. One possibility

is to modify the loss term that captures dissimilarity in

internal representations (Equation 1), to account for dis-

similarity in all models by taking a sum. In fact, a recent

work in a non transfer learning setting, and assuming a

white-box victim model shows that it is possible to break

defenses based on ensemble models. He et al. , success-

fully crafted adversarial samples that can fool an ensem-

ble of models, by jointly optimizing misclassification ob-

jectives over all members of the ensemble [29]. We are

investigating this as part of ongoing work.

7 Related Work

Transfer Learning. In a deep learning context,

transfer learning has been shown to be effective in vi-

sion [18, 52, 51, 15], speech [34, 63, 30, 20], and

text [33, 40]. Yosinski et al. compared different trans-

fer learning approaches and studied their impact model

performance [68]. Razavian et al. studied the similar-

ity between Teacher and Student tasks, and analyzed its

correlation with model performance [50].

Adversarial Attacks in Deep Learning. We sum-

marized some prior work on adversarial attacks in Sec-

tion 2. Prior work on white-box attacks formulate mis-

classification as an objective function, and use optimiza-

tion techniques to design perturbation [60, 17]. Good-

fellow et al. further reduced the computational complex-

ity of the crafting process to generate adversarial sam-

ples at scale [36]. Papernot et al. proposed an approach

that modifies the image pixel by pixel to minimize the

amount of perturbation [47]. Similar to our methodol-

ogy, Sabour et al. proposed a method that manipulates

internal representation to trigger misclassification [53].

Still others studied the physical realizability of adversar-

ial samples [55, 24, 35], and attacks that generate adver-

sarial samples that are unrecognizable to humans [42].

Prior work on black box attacks query the victim DNN

to gain feedback on adversarial samples and use re-

sponses to guide the crafting process [55]. Others use

these queries to reverse-engineer the internals of the vic-

tim DNN [46, 62]. Another group of attacks do not rely

on querying the victim DNN, but assume there exists an-

other model which has similar functionalities as the vic-

tim DNN [38, 45, 61]. They rely on the “transferability”

of adversarial samples between similar models.

Defenses. Defense against adversarial attacks in DL

is still an open research problem. Recent work showed

that state-of-the-art adversarial attacks can adapt and by-

pass most existing defense mechanisms [16, 14]. One ap-

proach is adversarial training, where the victim DNN is

trained to recognize adversarial samples [60, 39]. Others

tried to detect certain characteristics of adversarial sam-

ples, e.g., sensitivity to model uncertainty, neuron value

distribution [64, 31, 27, 37, 25]. Another defense, called

gradient masking, aims to enhance a model by remov-



ing useful information in gradients, which is critical to

white-box attacks [48]. Most existing defenses have been

bypassed in literature, or shown ineffective against new

attacks.

8 Conclusion

In this paper, we describe our efforts to understand the

vulnerabilities introduced by the transfer learning model.

We identify and experimentally validate a general attack

on black-box Student models leveraging knowledge of

white-box Teacher models, and show that it can be suc-

cessful in identifying and exploiting Teacher models in

the wild. Finally, we explore several defenses, includ-

ing a neuron distance threshold technique that is highly

effective against targeted misclassification attacks while

obfuscating the identity of Teacher models.
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Student Task Dataset # of Classes
Training

Size

Testing

Size

Teacher

Model
Training Configurations

Face PubFig83 [8] 65 5,850 650 VGG-Face [11] epoch=200,batch=32,optimizer=adadelta,lr=1.0

Iris CASIA Iris [2] 1,000 16,000 4,000 VGG16 [56] epoch=100,batch=32,optimizer=adadelta,lr=0.1

Traffic Sign GTSRB [1] 43 39,209 12,630 VGG16 [56] epoch=50,batch=32,optimizer=adadelta,lr=1.0

Flower VGG Flowers [9] 102 6,149 1,020 ResNet50 [28] epoch=150,batch=50,optimizer=sgd,lr=0.01

Table 2: Detailed information about dataset, Teacher models, and training configurations for each Student task.

    Source      P=0.001      P=0.003      P=0.005      Target

Figure 10: Adversarial examples generated from the

same source image with different perturbation budgets

(using DSSIM). Lower budget produces less noticeable

perturbations.

    Source   DSSIM        L2        Target

Figure 11: Comparison between adversarial images gen-

erated using DSSIM perturbation budget (P= 0.003) and

L2 budget (P = 0.01). Budgets of both metrics are cho-

sen to produce similar targeted attack success rate around

90%.

A Appendix

Disclosure

While we did not perform any attacks on deployed im-

age recognition systems, we did experiment with pub-

licly available Teacher models from Google, Microsoft

and the open source PyTorch originally started by Face-

book. Following their tutorials, our results showed they

were vulnerable to this class of adversarial attacks. In ad-

vance of the public release of this paper, we reached out

to machine learning and security researchers at Google,

Microsoft and Facebook, and shared our findings with

them.

Definition of DSSIM

DSSIM (Structural Dissimilarity) is a distance metric

derived from SSIM (Structural SIMilarity). Let x =
{x1, ...,xN}, and y = {y1, ...,yN} be pixel intensity sig-

nals of two images being compared, respectively. The

basic form of SSIM compares three aspects of the two

image samples, luminance (l), contrast (c), and structure

(s). The SSIM score is then described in the following

equation.

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y)

=
( 2µxµy +C1

µ2
x + µ2

y +C1

)

·
( 2σxσy +C2

σ2
x +σ2

y +C2

)

·
( σxy +C3

σxσy +C3

)

(5)

µ and σ are mean and standard deviation of pixel inten-

sities of image samples. C1, C2, and C3 are constants, and

recommendation for choosing these constants is included

in the original paper [65, 66].

DSSIM is calculated as 1−SSIM
2

. It ranges from 0 to

1, where 0 represents two images are identical, and 1

represents two images are negatively correlated (often

achieved by inverting the image).

In our experiments, we use an improved version of

SSIM, referred as multi-scale SSIM, which also consid-

ers distortion due to viewing conditions (e.g., display res-

olution). This is achieved by iteratively comparing the

reference and distorted images at different scales (or res-

olutions) by applying a low-pass filter to downsample

images. To compute DSSIM, we use the implementa-

tion of multi-scale SSIM from TensorFlow and follow

the recommended parameter configuration 11.

11https://github.com/tensorflow/models/blob/

master/research/compression/image_encoder/

msssim.py

https://github.com/tensorflow/models/blob/master/research/compression/image_encoder/msssim.py
https://github.com/tensorflow/models/blob/master/research/compression/image_encoder/msssim.py
https://github.com/tensorflow/models/blob/master/research/compression/image_encoder/msssim.py


    Source   Adversarial    Target     Source   Adversarial    Target

(a) Iris (P = 0.005)

    Source   Adversarial    Target     Source   Adversarial    Target

(b) Traffic Sign (P = 0.01)

    Source   Adversarial    Target     Source   Adversarial    Target

(c) Flower (P = 0.003)

Figure 12: Adversarial images generated in Iris, Traffic Sign, and Flower. Perturbation budgets selected result in

unnoticeable perturbations. Iris attack targets at VGG16 layer 15 (out of 16 layers). Traffic Sign attack targets at

VGG16 layer 10 (out of 16 layers), and Flower attack targets at ResNet50 layer 49 (out of 50 layers).

    Source   Adversarial    Target     Source   Adversarial    Target

(a) Google Cloud ML (P = 0.001)

    Source   Adversarial    Target     Source   Adversarial    Target

(b) Microsoft CNTK (P = 0.003)

    Source   Adversarial    Target     Source   Adversarial    Target

(c) PyTorch (P = 0.001)

Figure 13: Adversarial images generated for Student models trained on Google Cloud ML, Microsoft CNTK, and

PyTorch. Attacks using these samples achieve targeted success rate of 96.5%, 99.4%, and 88.0% in corresponding

models.
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(b) Iris.
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(c) Traffic Sign.

Figure 14: Performance of applying Dropout as defense with different Dropout ratio in Face, Iris, and Traffic Sign.
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(a) Face.
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(b) Iris.
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(c) Traffic Sign.

Figure 15: Performance of modifying Student as defense with different distance thresholds in Face, Iris, and Traffic

Sign.
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