
Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

MeanCache: User-Centric Semantic Caching for
LLM Web Services

Waris Gill1, Mohamed Elidrisi2, Pallavi Kalapatapu2, Ammar Ahmed4, Ali Anwar4, Muhammad Ali Gulzar1
1Virginia Tech 2Cisco 3University of Minnesota

waris@vt.edu, {melidris, pkalapat}@cisco.com, {ahme0599, aanwar}@umn.edu, gulzar@cs.vt.edu

Abstract—Large Language Models (LLMs) like ChatGPT and
Llama have revolutionized natural language processing and
search engine dynamics. However, these models incur excep-
tionally high computational costs. For instance, GPT-3 consists
of 175 billion parameters, where inference demands billions of
floating-point operations. Caching is a natural solution to reduce
LLM inference costs on repeated queries. However, existing
caching methods are incapable of finding semantic similarities
among LLM queries nor do they operate effectively on contextual
queries, leading to unacceptable false hit-and-miss rates.

This paper introduces MeanCache, a user-centric semantic
cache for LLM-based services that identifies semantically similar
queries to determine cache hit or miss. Using MeanCache, the
response to a user’s semantically similar query can be retrieved
from a local cache rather than re-querying the LLM, thus
reducing costs, service provider load, and environmental impact.
MeanCache leverages Federated Learning (FL) to collaboratively
train a query similarity model without violating user privacy. By
placing a local cache in each user’s device and using FL, Mean-
Cache reduces the latency, costs, and enhances model perfor-
mance, resulting in lower false-hit rates. MeanCache also encodes
context chains for every cached query, offering a simple yet highly
effective mechanism to discern contextual query responses from
standalone queries. Our experiments benchmarked against the
state-of-the-art caching method reveal that MeanCache attains
an approximately 17% higher F-score and a 20% increase in
precision during semantic cache hit-and-miss decisions while
performing even better on contextual queries. It also reduces
the storage requirement by 83% and accelerates semantic cache
hit-and-miss decisions by 11%.

Index Terms—Large Language Models, Semantic Cache, Em-
bedding, Contextual Queries, Cache, Privacy-Preserving AI

I. INTRODUCTION

Large Language Models (LLMs) like ChatGPT [1], Google
Bard [2], Claude [3], and Llama [4] have demonstrated re-
markable capabilities in understanding and generating human
language, leading to significant advancements in applications
ranging from search engines to conversational agents. LLMs
are increasingly integrated into platforms like the Perplexity
AI search engine, Rabbit OS [5], and Arc browser [6].
Motivation. Generating responses to user queries with LLMs,
such as GPT-3, requires substantial computations and poses
environmental challenges [7], [8], [9], [10]. For example,
GPT-3’s 175B parameters in float16 format consume 326 GB
memory, exceeding single GPU capacities and necessitating
multi-GPU deployments [7]. These requirements lead to high
operational costs. Consequently, LLM-based services charge
users and limit query rates [11], [12]. Prior studies have
observed that users frequently submit similar queries to web

services [13], [14], [15] (approximately 33% of search engine
queries being resubmitted [15]), suggesting opportunities for
optimization by avoiding redundant computations.

Caching serves as an effective technique in traditional web
services to address duplicate search queries, avoiding re-
dundant computations, significantly improving response time,
reducing the load on query processors, and enhancing network
bandwidth utilization [15], [13], [16], [17]. If applicable to
LLMs-based web services, such caching can substantially
impact billions of floating point operations, thereby decreasing
operational costs and environmental impact.
Problem. Existing caching techniques [18], [15], [14], [13]
use keyword matching, which often struggles to capture the
semantic similarity among similar queries to LLM-based web
services, resulting in a significantly low hit rate. For instance,
existing caches do not detect the semantic similarity between
“How can I increase the battery life of my smartphone?”
and “Tips for extending the duration of my phone’s power
source”, leading to a cache miss. Recently, Zhu et al. [19] and
GPTCache [20] present server-side semantic caching for the
LLMs-based services to address the limitations of keyword-
matching caching techniques. If a new query is semantically
similar to any query in a cache, the server returns the response
from the cache. Otherwise, a model multiplexer selects the
most suitable LLM for the query to generate the response.

Existing semantic caches have several limitations. First, they
demand a significantly large central cache to store the queries
and responses of all users, which is unscalable and violates
users’ privacy. Second, they incur the network cost of sending
a user query to the server even if there is a cache hit. An end
user will still be charged for the query even if the query is
served from the server cache. Third, they use a single server-
side embedding model to find the semantic similarity among
queries, which does not generalize to each user’s querying
patterns. For instance, Google Keyboard [21] adapts to each
user’s unique writing style and embeds such personalized
behaviors to enhance the accuracy of the next word prediction
model. Fourth, they employ Llama-2 to enhance the accuracy
of semantic matching [20]; however, in practice, such models
perform billions of operations to generate embeddings, offset-
ting the benefits of the cache. Lastly, they are only effective on
standalone queries, resulting in unbearably high false hit rates
for contextually different but semantically similar queries.
Key Insights and Contributions of MeanCache. This
work introduces a novel user-centric semantic caching system

1

ar
X

iv
:2

40
3.

02
69

4v
4

 [
cs

.L
G

]
 7

 M
ar

 2
02

5

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

called MeanCache. MeanCache provides a privacy-preserving
caching system that returns the response to similar queries
directly from the user’s local cache, bypassing the need to
query the LLM-based web service. MeanCache achieves these
goals in the following ways.

To address privacy concerns associated with central server-
side caching, MeanCache introduces a user-side cache design
ensuring that the user’s queries and responses are never stored
outside of the user’s device. To find a semantic match between
a new query and cached queries, MeanCache uses smaller em-
bedding models such as MPNet [22] to generate embeddings
for semantic matching locally. Previous work has shown that a
smaller model can achieve performance comparable to larger
models on custom tasks [23], [24], [25].

Due to different contexts around queries, LLM may return
different responses for semantically similar queries. For such
queries, MeanCache also records the contextual chain, parent
queries already in the cache, for a given query. To find
a response for a contextual query, MeanCache verifies the
context of a contextual query by matching a given query’s
context with the cached query’s context chain to accurately
retrieve responses to contextual queries.

Each user may not have sufficient queries to customize an
embedding model that can help find a semantic match between
new queries and cached queries. To address this, MeanCache
utilizes federated learning (FL), which exploits data silos on
user devices for private training for collaborative learning [26],
[27], [28], [29], [?], thereby personalizing an embedding
model for each user. This privacy-preserving training not
only customizes the embedding model to the user’s querying
patterns but also enhances the performance (i.e., accuracy)
of semantic caching without compromising user privacy (i.e.,
without storing user data on the web server).

The runtime performance of MeanCache is primarily influ-
enced by the time taken to match a new query embedding
vector with existing ones in the cache to find a semantically
similar query. The search time is directly proportional to the
dimensions of the embedding vector. To optimize runtime
performance, MeanCache compresses the embedding vector
by leveraging principal component analysis (PCA) [30], [31],
[32], effectively reducing the size of the embedding vector
(i.e., projecting it to lower dimensional space). MeanCache
also offers an adaptive cosine similarity threshold, which is
also collaboratively computed using FL, to improve accuracy
in finding semantic matches between queries.
Evaluations. We compare MeanCache with GPTCache [20].
GPTCache is closely related to MeanCache and has received
over 6,000 stars on GitHub [33]. We benchmark Mean-
Cache’s performance against GPTCache on the GPTCache’s
dataset [34] to demonstrate its effectiveness and highlight the
improvements MeanCache offers over existing solutions.

MeanCache surpasses GPTCache [20] by achieving a 17%
higher F-score and approximately a 20% increase in precision
in end-to-end deployment for identifying duplicate queries
to LLM-based web services. MeanCache’s performance on
contextual queries is even more impressive when compared

to GPTCache (baseline). For contextual queries, MeanCache
achieves a 25% higher F-score and accuracy, and a 32% higher
precision over the baseline. MeanCache’s embedding compres-
sion utility approximately reduces storage and memory needs
by 83% and results in 11% faster semantic matching while
still outperforming the state-of-the-art GPTCache.
Artifact Availability: MeanCache is implemented in the
Flower FL framework [35]. The complete source code and
contextual queries dataset will be available at https://github.
com/SEED-VT/MeanCache.

II. BACKGROUND

Federated Learning (FL). FL is a distributed, privacy-
preserving ML model training approach [36], [27], [37], [38].
In each FL round, a central server distributes a global model to
participating clients, who train it on their local data and return
the updated models. The server then aggregates these models
to create a new global model for the next round. While several
aggregation algorithms exist (FedAvg [28], FedProx [39], and
FedMA [40]), FedAvg is most common, using the equation:

W t+1
global =

K∑
k=1

nk

n
wk,t (1)

where W t+1
global represents the new global model, wk,t is

the model of the kth client at round t, nk is the sample
count at the kth client, and n is the total sample count
across participating clients. This process continues for multiple
rounds until convergence.
Transformer and Embeddings. The transformer architecture
is based on the attention mechanism [41]. Transformers are
extensively utilized in natural language processing (NLP) tasks
such as machine translation, text summarization, and question-
answering. The attention mechanism allows transformers to
effectively capture long-range dependencies within sequences,
while positional encoding explicitly incorporates information
about the order of tokens. Transformers convert text into
embeddings, representing words or sentences as dense vec-
tors in high-dimensional space. These embeddings capture
semantic meanings, ensuring that semantically similar words
or sentences have similar vector representations [42], [43],
[44]. Cosine similarity is a widely used metric for measuring
the similarity between embeddings, with values ranging from
-1 (completely opposite) to 1 (identical). For instance, embed-
dings for words such as cat and dog typically exhibit higher
cosine similarity compared to cat and car, as the former pair
is more closely related semantically. For embedding vectors
E1 and E2, cosine similarity is calculated as:

cosine similarity =
E1 ·E2

||E1|| · ||E2||
(2)

where E1 · E2 represents the dot product and ||E1|| and
||E2|| denote the vector magnitudes.
Contextual Queries. Interaction between end-users and LLM
services typically involves two primary types of queries: stan-
dalone queries (e.g., Q1 Draw a line in Python?) and follow-

2

https://github.com/SEED-VT/MeanCache
https://github.com/SEED-VT/MeanCache

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

MeanCache
(Client-Side)

Index Cached Query Response
Cached
Query
Embeddings

Query
Context
Chain

Eviction
Policy

0 What is FL? FL is a sub field of
ML. It focuses on …

[0.7, 0.8, 0.5,
…] null LRU

1 Plot a linear graph
using Python

Let’s create a simple
line plot …

[0.1, 0.3, 0.2,
…] null LRU

2 Change line color to
blue

’color’ parameter in
plot() ..

[0.2, 0.1, 0.9,
..] Index:1 LRU

… ….. …. …. …. ….

Draw a line plot
in python.

[0.1, 0.29, 0.22, …]
Context: null

Embedding
Model

If cache hit

Sto
re

 Re
sp

on
se

Response

Embedding Generation and
Semantic Matching

Local Cache

If cache miss
LLM Based Web

Service
(e.g., ChatGpt,
Bing Copilot)

Fig. 1: MeanCache’s Workflow.

up, or contextual queries (e.g., Q2 Change the color to red).
Standalone queries can be resolved independently without
any additional information, whereas contextual queries require
prior context to provide accurate and relevant responses.

Consider a scenario in which both queries Q1 and Q2,
along with their responses, have been cached. If a user later
submits a new standalone query, Q3 Draw a circle?, followed
by a contextual query, Q4 Change the color to red, Q4 might
appear semantically similar to the cached query Q2. However,
despite their similarity, Q4 references a different context (Q3
rather than Q1), thus requiring a distinct interpretation and
response. Consequently, a semantic cache without effective
context detection may yield incorrect cache hits.

III. MEANCACHE’S DESIGN

MeanCache is a user-centric semantic cache optimized
for user-side operation. Figure 1 illustrates the workflow of
MeanCache for similar queries. Algorithm 1 further explains
MeanCache’s querying and population process programmati-
cally. When a user submits a query to an LLM web service
with MeanCache enabled, MeanCache computes the query em-
beddings (Line 1). These embeddings are then matched with
the embedding of the cached queries using cosine similarity
(Line 2). For every similar query found within the cache,
MeanCache analyzes the context chain for every query and
matches it with the conversational history of the submitted
query (Line 4). If MeanCache finds a similar query with a
similar context chain, the response is retrieved from the local
cache and returned to the user (Line 7). Otherwise, MeanCache
forwards the query to the LLM service to obtain the response.
The query, its response, and embeddings are then stored in the
cache (Line 9).

MeanCache harnesses the collective intelligence of multiple
users to train a semantic similarity model, and its user-centric
design addresses privacy and scalability issues. To achieve
these, MeanCache takes the following design decisions. It
employs a small embedding model with lower computational
overhead than LLM based embedding models. It uses FL
for collaborative training to fine-tune the embedding model
without ever storing user data on a central server. This
approach generates high-quality embeddings and improves
the accuracy of embedding matching for retrieving similar
queries. To handle contextual queries, MeanCache includes
contextual chain information in its cache against every query

Algorithm 1: MeanCache
Input: User query Q, User Query Context Cq (e.g., null if no

parent)
Output: Response R

1 EQ ← encode(Q) // compute the embedding of the query
2 similar queries← FindSimilarQueriesinCache(EQ)

// retrieve top-k similar cached queries
3 context match← False // flag to indicate if suitable

context is found
4 foreach context Ci ∈ similar queries do
5 if Ci matches with Cq then
6 context match← True
7 Retrieve response R from cache for Ci

8 if not context match then
9 R← LLMResponseAndEnrollInCache(Q,EQ, Cq)

// generate response and cache it

10 return R

to identify if the cached response for a query is only applicable
under a specific context. This design is capable of handling
contextual chains. To reduce storage and memory overhead
and expedite search time for finding similar queries in the
cache, MeanCache compresses the embeddings using PCA.

A. FL Based Embedding Model Training

GPTCache [20] suggests using Llama to generate superior
embeddings, thereby enhancing semantic matching accuracy.
However, this approach has several limitations. LLMs not
only sizable, being gigabytes in size, but they also require
substantial computational resources to generate embeddings.
Deploying such models, especially at the end-user level, is
impractical due to their size and significant computational
overhead for semantic matching. MeanCache employs a com-
pact embedding model, which has a lower computational
overhead compared to large embedding models. The smaller
model may not provide the same level of accuracy as an
LLM. However, a smaller model trained on customized tasks
can match the performance of an LLM [23], [24], [25]. One
challenge in using smaller embedding models is that each
user may not have sufficient data to train and customize the
embedding model.

MeanCache utilizes FL to exploit the vast amount of dis-
tributed data available on users’ devices to train and personal-
ize the smaller embedding model. FL allows the users to train
the embedding model locally and learn the optimal threshold
for cosine similarity. The updated weights and local threshold
are shared with the server. The server aggregates the updated
weights and cosine similarity threshold from multiple users
to update the global model, which is redistributed back to
the users. This approach ensures that the user’s privacy is
maintained, and the collective intelligence of multiple users is
leveraged to improve the performance of the caching system.
Figure 2 shows the overview of privacy-preserving training of
the embedding model with FL.

In the first step, the server sends the initial weights of
the embedding model (W t+1

global) and global threshold (τ) to
a subset of users as shown in step 1 in Figure 2. The subset

3

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

Step 4. Server aggregates clients’
models (i.e., 𝑊!) and thresholds (𝜏!).

Step 2. Each client trains
received model on its
local queries and update
the threshold.

Step 3. Each client send its
local model and threshold
to server.

Bob

-Describe DNA

-What is RNA?

(𝑾𝑩, 𝝉𝑩) (𝑾𝒈, 𝝉𝒈)
3

1

Step 1. Send copies of 𝑾𝒈 and
threshold (𝝉𝒈) to clients.

Central Server

𝑾𝒈 ='𝑾𝒌

𝝉𝒈 ='𝝉𝒌

Alice

-What is FL?

-Plot line plot.

(𝑾𝑨, 𝝉𝑨) (𝑾𝒈, 𝝉𝒈)
3

1

Charlie

-What is String
theory?

-Matrix in Matlab

(𝑾𝑪, 𝝉𝑪) (𝑾𝒈, 𝝉𝒈)
3

1

Fig. 2: Privacy-preserving model training in MeanCache.

of users is usually randomly selected or selected based on
their battery level, network bandwidth, or performance history.
Additionally, the server also sends the hyperparameters (e.g.,
learning rate, batch size, epochs) necessary for FL training of
the embedding model.

1) Client Training: Upon receiving the embedding model
(W t+1

global) from the server, each client replaces its local em-
bedding model weights with the newly received weights.
Subsequently, each client trains the embedding model locally
on its unique local dataset (step 2 in Figure 2). To generate
high-quality embeddings from unique and similar queries,
MeanCache’s clients training employs a multitask learning
approach, integrating two distinct loss functions: contrastive
loss [42] and multiple-negatives ranking loss [45], [42]. These
loss functions update the weights of the embedding model
during the training process. The contrastive loss function
operates by distancing unique (non-duplicate) queries from
each other within the embedding space, thereby facilitating the
differentiation between duplicate and non-duplicate queries.
Unlike contrastive loss, the multiple-negatives ranking loss
function minimizes the distance between positive pairs (du-
plicate queries) amidst a large set of potential candidates
i.e., multiple-negatives ranking loss does not concentrate on
distancing unique queries and its objective is to draw positive
pairs (similar queries) closer within the embedding space.

This learning approach enables MeanCache to adjust to
diverse query patterns exhibited by users. For instance, some
users may generate more repetitive queries compared to others,
while certain users may not produce any repetitive queries
at all. Interestingly, MeanCache’s multitask learning objective
can benefit from learning even from a user with no repeti-
tive queries. This is because MeanCache’s global embedding
model (W t+1

global) will learn to widen the distance between
unique queries, thereby effectively learning the true misses of
the non-duplicate queries and minimizing the false hits during
the search process. True miss happens when a similar query is
not present in the cache. A false hit is when a query is found
and returned from the cache, which is not actually similar.

2) Finding the Optimal Threshold for Cosine Similar-
ity: After generating query embeddings using an embedding
model, a similarity metric such as cosine similarity is used

to determine if the new query embeddings match the cached
embeddings of past queries. This process involves setting a
threshold for cosine similarity, which is a delicate balance.

In addition to privacy-preserving training of the embedding
model, MeanCache also learns the optimal threshold (τ) for
cosine similarity. The range of τ is between 0 and 1. This
threshold (τ) dictates the level of similarity above which a
cached query is considered relevant to the current user query.
Setting the threshold too low could result in numerous false
hits, leading to retrieving irrelevant queries from the cache.
Conversely, a threshold set too high might cause many false
misses, where relevant queries are not retrieved from the cache.

During the client’s local training, MeanCache determines
this optimal threshold (τ) from the client’s feedback to the
cache query response. Even after receiving a cached response,
a user requests a response from the LLM, MeanCache consid-
ers it as a false positive and adjusts its threshold. MeanCache
varies the threshold τ to find the optimal threshold that opti-
mizes the F-score of the cache (Section IV-F). By finding the
optimal threshold, MeanCache effectively balances between
true hits and true misses, therefore yielding improved accuracy
in semantic similarity matching to return the response from the
cache on duplicate queries.

3) Aggregation: After client local training and finding the
optimal threshold, each client sends updated weights of the
global model (W t+1

global) and optimal threshold (τ) to the server
(step 3 in Figure 2). The server aggregates the updated weights
from multiple users to form a new embedding model (W t+1

global)
using FedAvg [28] as shown in step 4 of Figure 2. The server
also computes the mean of the received optimal thresholds
from the clients for a global optimal threshold (τglobal). The
benefit of finding τglobal is that when a new user joins the
system, the user will not have queries to find its own optimal
threshold. In such cases, the system can use τglobal as a starting
point for semantic similarity.

After finding the global optimal threshold and the global
embedding model, the server then redistributes the updated
embedding model to the users for the next round of FL
training. This process is repeated over several FL rounds to
improve the semantic matching accuracy (i.e., lower false hits
and false misses). After the completion of the FL training,
each client will have access to a fine-tuned embedding model
(W t+1

global) to generate high-quality embeddings that can capture
the complex semantics of a user query.

4) Embeddings Compression using PCA: The substantial
size of the embedding vector (e.g., Llama embeddings with a
dimension of 4096) can lead to considerable overhead during
the matching process of new query embeddings with cached
queries embeddings. This is due to the search time being
directly proportional to the dimensions of the embedding vec-
tor. Furthermore, high-dimensional embeddings demand more
memory and storage. For example, the embeddings generated
by Llama for a single query require approximately 32.05 KB
of memory storage. Consequently, calculating the cosine simi-
larity between two high-dimensional embeddings, specifically
new query embeddings and each embedding in the cache,

4

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

Embedding Model PCA

(a) Learning PCA Components

(b) Inference Time Dimensionality Reduction

Query1

Query2

Queryn PCA
Components

64 Principal
Components

0.7 0.1 0.3 ……….
[768] Dimensions

0.4 0.5 0.2 ……….

[768] Dimensions

0.2 0.6 0.4 ……….
[768] Dimensions

Queries Embeddings

Embedding
Model

PCA
Components

64 Principal
Components

+ 0.7 0.8 0.5 ……….

[64] Dimensions

What is FL?

Updated Embedding Model

Embedding vector dimension
is reduced from 768 to 64.

Fig. 3: Embeddings Compression using PCA.

becomes computationally demanding and time-intensive. To
improve the search time for identifying similar queries in the
cache and to reduce the client’s storage needs, it is essential to
diminish the dimensionality of the embeddings while ensuring
minimal impact on the MeanCache’s performance.

PCA is a dimensionality reduction technique that is
widely used to compress high-dimensional data into a lower-
dimensional space [30], [31], [32], while still maintaining
the most important information. First, MeanCache generates
embeddings for all the users’ queries using the embedding
model. Next, MeanCache applies PCA to learn the principal
components of all the queries embeddings generated in the
previous step, as shown in Figure 3-a. MeanCache integrates
the learned principal components as an additional layer in the
embedding model. This new layer will project the original
embeddings onto the lower dimensional space, producing
compressed embeddings (Figure 3-b).

When a non-duplicate query is received, MeanCache uses
the updated embedding model (with PCA layer) to generate
the compressed embeddings (Figure 3-b) for the new query
and store the query, response, and the compressed embed-
ding in the cache. Storing the compressed embeddings in
the cache will significantly reduce the storage and memory
overhead of the embeddings. Next, when a duplicate query is
received, MeanCache uses the same embedding model with
PCA components to generate the compressed embeddings for
this duplicate query and find similar queries in the cache. Since
the embeddings are compressed, the search time for finding
similar queries in the cache will be significantly reduced.

B. Cache Population and MeanCache Implementation

Once the embedding model is trained within MeanCache
on each user, it is deployed as depicted in Figure 1. Initially,
when a new user starts using MeanCache, the local cache is
vacant. During these interactions, if a user query’s response is
not found in the cache, the request is forwarded to the LLM
web service to retrieve the response, which is then inserted
in the cache. If MeanCache finds semantically similar queries
in the cache for any of the following queries from the user,
it analyzes the context chain for every similar cached query
and matches its embedding with the conversational history

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Participants

102

103

Q
ue

ri
es

15
71

45
7

42
8

18
0

25
30

15
31

42
7

26
47

14
80

11
9

33
67

91

34
5

11
6 35

2

37
10

24
2 46

6

10
4

69
84

57
3

19
4

14
4

61

79
8

54
7

13
2

70
0

40
4

54

12
69

19

12
0

18

88

12
47

58 83

36

28
50

Total Queries Duplicate Queries

Fig. 4: Analysis of real-world ChatGPT conversations reveals
that, on average, 31% of queries are similar to previously
submitted queries.

of the submitted query. If MeanCache finds a similar query
with a similar context chain, the response is retrieved from the
local cache and returned to the user. Otherwise, MeanCache
forwards the query to the LLM web service to obtain the
response. The query and its response and embeddings are then
stored in the cache.

MeanCache is a python-based application that is built on the
Flower FL framework [35]. A user can submit LLM queries
via this application to take advantage of the local cache. The
central server, which orchestrates the FL training, may reside
on the LLM web service. We employ the Sbert [42] library
to train MPNet [22] and Albert [46] on each client and to
generate query embeddings. To efficiently execute a cosine
similarity search between a query embedding and cached
embeddings, we utilize Sbert’s semantic search, which can
handle up to 1 million entries in the cache. MeanCache cache
storage is persistent and built using DiskCache [47] library.

C. Validating the Prevalence of Similar Queries

We conducted a privacy-preserving study with 20 ChatGPT
users, analyzing over 27K queries. Our participants included
university professors, developers, and graduate students who
are regular ChatGPT users and experienced in running Python
scripts. We provide these participants detailed instructions to
download their queries and responses, run analysis scripts
locally, and share aggregated results (e.g., total and duplicate
queries, field/profession). Individual queries are not shared,
and thus, the conversations remain private. We find that about
31% of user queries were similar to previous ones, suggesting
a user-centric cache can reduce LLM inference costs (Fig-
ure 4). As this study was conducted in an academic setting,
the ratio of repeated queries may vary in other contexts.

IV. EVALUATION

Our evaluation answers the following research questions.
• How does MeanCache perform in comparison to baseline

in terms of performance metrics (§IV-B)?
• How accurately does MeanCache retrieve contextual

queries from the cache (§IV-C)?
• Is it possible to reduce the embedding dimension to

save storage space and accelerate semantic search while
outperforming the baseline (§IV-D)?

• Is it possible to train an embedding model in a privacy-
preserving manner without the centralized data (§IV-E)?

5

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

Metrics Standalone Queries Contextual Queries
GPT- Mean- Mean- GPT- MeanCache
Cache Cache Cache Cache

(MPNet) (Albert)
F score 0.56 0.73 0.68 0.67 0.93
Precision 0.52 0.72 0.66 0.66 0.98
Recall 0.85 0.78 0.77 0.71 0.79
Accuracy 0.72 0.85 0.81 0.61 0.86

TABLE I: MeanCache outperforms GPTCache (baseline) on
both standalone and contextual queries.

• What effect does the cosine similarity threshold have on
the performance of MeanCache (§IV-F)?

• GPTCache [20] suggests using Llama 2 to generate
embeddings to improve semantic matching. Is it feasible
to use Llama 2 to compute embeddings at the user side
for semantic matching (§IV-G)?

A. Evaluation Settings

We conduct evaluations of MeanCache against the base-
line [20] to demonstrate that MeanCache achieves optimal per-
formance while preserving user-privacy (i.e., without storing
the user queries at the server). For a fair comparison between
MeanCache and baseline, we employ the optimal configuration
as described in the GPTCache study [20]. This configuration
utilizes Albert [46] and sets the cosine similarity threshold at
0.7 to determine the cache hit or miss.

1) Transformer Models and Datasets: For extensive evalu-
ations of MeanCache, we utilize the Llama 2 [4], MPNet [22],
and Albert [46] transformer models to generate embeddings.

We evaluate MeanCache using the GPTCache dataset. The
dataset is partitioned into training, testing, and validation
subsets. The training and validation datasets are randomly
distributed among the clients, each receiving non-overlapping
data points. During local training, each client utilizes its train-
ing dataset to update its local embedding model and employs
the validation dataset to determine the optimal threshold for
cosine similarity (Section IV-F). The testing dataset, located
at the central server, facilitates a fair comparison between
MeanCache and GPTCache [20]. Since there does not exist
any dataset of contextual queries, we generate a synthetic
dataset using GPT-4 consisting of 450 queries, including
duplicates, non-duplicates, and contextual queries, to evaluate
MeanCache performance on contextual queries.

2) Experimental Setup: The experiments are conducted on
a high-performance computing cluster, equipped with 128
cores, 504 GB of memory, and four A100 Nvidia GPUs, each
with 80 GB of memory. We utilize the Flower FL [35] library
to simulate a FL setup. Additionally, the SBERT [42] library
is employed to train the embedding model on each client.
The number of clients participating in FL training are 20. The
number of clients is restricted due to the limited size of the
GPTCache dataset, which is inadequate for distribution among
hundreds of clients. However, we believe MeanCache results
are not influenced by the number of clients, and the evaluation
setup of MeanCache is consistent with the evaluation standard
in FL [48], [49].

3) Evaluation Metrics: In caching systems, the efficacy
has traditionally been gauged by cache hit-and-miss rates.
A cache hit implies the data or query is retrieved from the
cache, whereas a cache miss indicates the opposite. Semantic
caching introduces a nuanced classification: true and false hits,
alongside true and false misses. A true hit signifies a correct
match between a query and a similar cached query, whereas a
false hit is an incorrect match with a non-similar cached query.
A true miss signifies when a query does not have a similar
cached query, whereas a false miss happens when a query has
a similar cached query but is not returned from the cache.
Thus, traditional hit/miss metrics are potentially misleading in
semantic caches. For example, a query might incorrectly match
with an irrelevant cached query (deemed a hit traditionally)
due to semantic matching. We adopt precision, recall, F score,
and accuracy for a comprehensive evaluation of MeanCache
against baseline. These metrics are defined as follows:
Precision. The ratio of true positive hits to all positive hits
(including both true positives and false positives). In semantic
caching, this measures how many of the queries matched to
a cached query are correctly matched. Precision = TP

TP+FP
where TP represents true positives (true hits) and FP repre-
sents false positives (false hits).
Recall. The ratio of true positive hits to all relevant items
(including both true positives and false negatives). In semantic
caching, this assesses the proportion of correctly matched
queries out of all queries that should have been matched to a
cached query. Recall = TP

TP+FN where FN represents false
negatives (false misses).
Fβ Score. A weighted harmonic mean of precision and recall,
balancing the two based on the value of β. β > 1 gives more
weight to recall, while β < 1 emphasizes precision.

Fβ = (1 + β2) · Precision × Recall
(β2 × Precision) + Recall

Accuracy. The ratio of correctly identified queries (both
true hits and true misses) to all queries. Accuracy =

TP+TN
TP+TN+FP+FN where TN represents true negatives (true
misses).

B. MeanCache Comparison with Baseline

We evaluate MeanCache against GPTCache to assess im-
provements in precision, recall, and F score. MeanCache FL
model training is discussed in Section IV-E, and the optimal
threshold is covered in Section IV-F.

We select a sample of 1000 queries, 30% of which are
repeated queries (i.e., 300 queries are repeated), and load these
1000 queries as cached queries. Note that repeated queries are
usually fewer than non-repeated queries. Thus, we use 30%
as repeated queries, a similar percentage previously observed
for web services [15].

Initially, we send a new set of one thousand queries to
Llama 2 (i.e., without any semantic cache) to establish a
baseline for response times. We limit responses to 50 tokens
to reflect practical response sizes, although actual sizes can
be much larger. Note that MeanCache’s performance is not

6

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

0 20 40 60 80 100
Query ID

0.0

0.5

1.0

Ti
m

e
(s

)

Llama 2 Llama 2+GPTCache Llama 2+MeanCache

Fig. 5: Response times of 100 randomly sampled user queries to the Llama 2-based LLM service in three scenarios: without any
semantic cache, with GPTCache, and with MeanCache. The integration of a semantic cache does not add significant overhead
to non-duplicate queries, meaning it does not impede the performance of the LLM-based service. Moreover, it significantly
reduces the average response times for duplicate queries (70-99) by serving them from the local cache.

0 20 40 60 80 100
Query ID

Hit

Miss

L
ab

el

Real Label GPTCache Predicted Label MeanCache Predicted Label

Fig. 6: Comparison of MeanCache and GPTCache on a set of 100 queries, including 70 non-duplicate and 30 duplicate queries,
sent to the Llama 2-based LLM service. Queries 0 to 69 are non-duplicate (i.e., real label is miss), and GPTCache produces
significantly higher false hits on these unique queries compared to MeanCache.

0 1
Predicted Label

0
1

R
ea

l
L

ab
el 611 89

66 234

(a) MeanCache

0 1
Predicted Label

0
1

R
ea

l
L

ab
el 467 233

46 254

(b) GPTCache

Fig. 7: Confusion matrices for MeanCache and GPTCache on
1000 queries comprising 700 unique and 300 duplicate queries.
Among the 700 unique queries, MeanCache produces only 89
false hits, while GPTCache generates 233 false hits.

dependent on the response as it only matches the queries. Next,
we send these queries to Llama 2 based local LLM service
with MeanCache and GPTCache to measure the response
times and performance metrics (e.g., precision, recall, F-score),
respectively. An analysis of a random subset of 100 queries (70
non-duplicate and 30 duplicate) from the 1000 queries shows
the impact of caching on response times in Figure 5 and cache
hit and miss rates in Figure 6. While MeanCache is evaluated
on 1,000 standalone and 450 contextual queries (Table I), we
use this smaller subset of 100 queries solely for visualization
purposes, as displaying all queries would create cluttered
figures. The y-axis in Figure 5 shows the response time of
each query without any cache (Llama 2), with GPTCache
(Llama 2 + GPTCache), and with MeanCache (Llama 2 +
MeanCache). In Figure 6, x-axis represents the query and the
y-axis represents each semantic cache hit and miss alongside
the real label. Figure 5 demonstrates that implementing a
semantic cache does not impede the performance (queries
ranging from 0 to 69) and improves the user experience as
response times reduce on duplicate queries (queries 70 to 99).

However, Figure 6 shows that GPTCache produces signifi-
cant false hits on non-duplicate queries (queries 0 to 69) com-
pared to MeanCache. Each false hit means the user receives an
incorrect cached response, requiring them to resend the query
to the LLM service, leading to a poor user experience. To
prioritize precision, we adjust the beta value in the F score
to 0.5, valuing precision twice as highly as recall to ensure
user satisfaction by avoiding false positives. This decision is
driven by the need to minimize user inconvenience caused by
incorrect cache hits. A false miss (low recall) does not require
user intervention as the false miss query will be automatically
routed to the LLM. Thus, precision in semantic caching is
more important than recall.

Table I and the confusion matrices in Figure 7 highlight
MeanCache’s superior performance over GPTCache on the
1000 user queries. Notably, MeanCache with MPNet achieves
a precision of 0.72, significantly surpassing GPTCache’s 0.52.
This superiority is evident in the lower false positive rates
(i.e., false hits) shown in Figure 7a. The number of false hits
for MeanCache is 89 (Figure 7a), while GPTCache has 233
false hits, as depicted in Figure 7b. In practical terms, this
means that with GPTCache, the end user has to manually
resend 233 queries to the LLM service to get the correct
responses, compared to only 89 queries with MeanCache.
While GPTCache’s recall is higher than MeanCache’s, as we
discussed earlier, precision is significantly more important
than recall, and MeanCache outperforms GPTCache in this
regard. Overall, the F-score of MeanCache with MPNet is 0.73
and 0.68 with the Albert embedding model, both of which
outperform GPTCache’s F-score of 0.56.

7

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

0 20 40 60 80 100
Query ID

Hit

Miss
La

be
l

Real Label GPTCache Predicted Label MeanCache Predicted Label

(a) Ideally, all 100 queries should result in misses. However, GPT-
Cache incorrectly produces 54 false hits, while MeanCache yields
only 3.

0 20 40 60 80 100 120 140
Query ID

Hit

Miss

La
be

l

Real Label GPTCache Predicted Label MeanCache Predicted Label

(b) MeanCache yields 8% more true hits than the baseline.

Fig. 8: Performance on Contextual Queries: MeanCache vs.
Baseline. (a) reports MeanCache’s fewer false hits 3 vs. 54 of
GPTCache. (b) reports higher true hits by MeanCache.

0 1
Predicted Label

0
1

R
ea

l L
ab

el

97 3

31 119

(a) MeanCache

0 1
Predicted Label

0
1

R
ea

l L
ab

el

46 54

43 107

(b) GPTCache (baseline)

Fig. 9: For contextual queries, MeanCache reports three false
hits, compared to 54 false hits by GPTCache.

Summary. In an end-to-end deployment, MeanCache sig-
nificantly outperforms GPTCache. It demonstrates a 17%
higher F score and a 20% increase in precision in optimal
configuration. The substantial reduction in false cache hits
enhances the end-user experience.

C. Contextual Queries

Section II describes contextual queries. GPTCache, lack-
ing the capability to detect contextual queries, incorrectly
identifies such queries as cache hits, resulting in inaccurate
responses. MeanCache addresses this limitation by verifying
the context chain (Algorithm 1) of semantically matched
queries. This verification ensures that contextual queries (e.g.,
Q4 in Section II) correctly yield a true cache miss, thus
prompting an appropriate request to the LLM service.

On the dataset of 450 contextual queries (see Sec-
tion IV-A1), first, we populate the cache (MeanCache and
baseline) with 200 queries (100 standalone and 100 contextual
queries of the standalone queries). Next, we send 150 duplicate
queries (75 standalone + 75 contextual) and 100 non-duplicate
queries (a total of 250 queries) to the cache-enabled LLM.
Figure 8 shows the true label (whether the query should
be returned from the cache or not) and the corresponding
GPTCache and MeanCache performance (predicted label).
Note that in Figure 8a, all the queries should be answered by
the LLM; in other words, there should be no hits. However,
GPTCache has 54 false hits, while MeanCache has only three

false hits. This is also shown in the confusion matrix in
Figure 9. Table I (Column-3) summarizes the comparative
results. MeanCache outperforms GPTCache by over 25% in
both F-Score and accuracy. Additionally, MeanCache achieves
32% higher precision compared to the baseline.

Summary. GPTCache’s low performance stems from its
inability to consider contextual information, leading to high
false hit rates. MeanCache demonstrates superior handling
of contextual queries, with a 25% improvement in accuracy
over the baseline.

D. Embedding Compression and Impact on Storage Space

Clients often face storage limitations compared to web
servers. Storing embeddings in the local cache on the user side
for semantic search demands memory storage. Various models
yield embeddings with differing vector sizes; for example,
the MPNet and Albert models produce an output embedding
vector of 768 dimensions, whereas the Llama 2 model’s
embeddings dimension size is 4096. The embedding vector
size also affects semantic search speeds, where smaller vectors
could enhance speed and lower resource demands.

Figure 10 illustrates the effects of MeanCache dimension
reduction utility on the storage, semantic matching speed
(overhead), and MeanCache’s performance (F score). The x-
axis indicates the number of queries stored in the cache, while
the y-axis shows storage size, average search time, and the
F score in respective graphs. MeanCache-Compressed (MP-
Net) and MeanCache-Compressed (Albert) represent instances
where MeanCache decreases the embedding dimensions from
768 to 64 by employing the compression, as detailed in
MeanCache design (Section III).

Figure 10 demonstrates that increased stored queries linearly
raise storage needs. Yet MeanCache with compression enabled
drastically lowers storage needs by 83% compared to GPT-
Cache. Figure 10 also indicates that compression decreases
the average search time, with MeanCache enabled compres-
sion approximately 11% faster. Moreover, despite a slight
decrease in F score with compression enabled, MeanCache still
surpasses GPTCache. Furthermore, given the evidence from
Section IV-E (Figures 11 and 12) that MPNet produces more
precise embeddings, and it is also clear from Figure 10 that
MPNet’s embeddings are particularly resilient to compression
and excel in semantic matching.

Summary. The application of embedding compression op-
timization in MeanCache offers substantial benefits, includ-
ing an 83% savings in storage and an 11% faster search
process, while still outperforming the established baseline
(GPTCache).

E. Privacy Preserving Embeddings Model Training

Storing clients queries on the server side presents a po-
tential privacy risk. To address this, each client can retain
its local data on its own device. The ensuing challenge is

8

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

1000 2000 3000
(a) Number of Cached Queries

0

2000

4000

6000

8000
St

or
ag

e
Si

ze
(K

B
s)

1000 2000 3000
(b) Number of Cached Queries

0.01

0.02

0.03

A
vg

.S
ea

rc
h

Ti
m

e
(s

)

1000 2000 3000
(c) Number of Cached Queries

0.5

0.6

0.7

F
Sc

or
e

GPTCache
MeanCache (MPNet)

MeanCache (Albert)
MeanCache-Compressed (MPNet)

MeanCache-Compressed (Albert)

Fig. 10: (a) MeanCache’s embedding compression reduces storage by 83% compared to GPTCache. (b) MeanCache’s semantic
matching speed is 11% faster with compression enabled, while still outperforming GPTCache. (c) MeanCache’s F score is
slightly lower with compression enabled, but it still outperforms GPTCache.

0 10 20 30 40 50
FL Training Rounds

0.75

0.80

0.85

0.90

0.95

Sc
or

e

F1
Precision

Recall
Accuracy

Fig. 11: MPNet’s FL training helps generate high-quality
embeddings.

0 10 20 30 40 50
FL Training Rounds

0.75

0.80

0.85

0.90

0.95

Sc
or

e

F1
Precision

Recall
Accuracy

Fig. 12: FL training boosts MeanCache’s query matching
precision with Albert.

how to train an embedding model that can also utilize the
distributed data from all clients. FL is recognized for training
neural networks in a privacy-preserving manner. As such,
MeanCache employs FL to train and fine-tune an embedding
model, thereby preserving privacy and leveraging the dataset
residing on the client’s side. In this section, our objective is
to evaluate whether FL training can progressively enhance
the embedding model to generate high-quality embeddings
for user queries. To simulate this scenario, we distribute the
training dataset among 20 clients. In each round, we sample
4 clients, conducting a total of 50 FL training rounds. Each
client trains its embedding model for 6 epochs, operating on a

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.25

0.50

0.75

1.00

Sc
or

e

F1
Precision

Recall
Accuracy

Fig. 13: MeanCache optimizes MPNet’s threshold.

dedicated A100 GPU. We conduct two experiments with the
Albert and MPNet models. The batch size is set to 256 for
the Albert model, and for MPNet, it is set to 128 during the
local training by participating clients.

Figures 11 and 12 depict the performance of MeanCache
as FL training progresses. The x-axis represents the training
round, while the y-axis shows the performance metrics such
as F-score, precision, recall, and accuracy of the global model
(W t+1

global). As illustrated in Figure 11, the F-score for MPNet
increases from 0.82 to 0.88, and for Albert, it rises from
0.83 to 0.86, as shown in Figure 12. Similarly, precision for
MPNet significantly increases from 0.74 to 0.85, as depicted
in Figure 11, and for Albert, it increases from 0.74 to 0.81,
as demonstrated in Figure 12. Given that MPNet is a more
robust transformer architecture compared to Albert, it is also
observed during our training that MPNet outperforms Albert,
exhibiting superior learning in FL settings.

Summary. FL training increases 11% precision of Mean-
Cache for MPNet and a 7% increase for Albert. The per-
formance of the embedding model to generate high-quality
embeddings can improve in a privacy-preserving manner
using FL training.

F. Cosine Similarity Threshold Impact on Semantic Matching

Semantic matching for a new user query begins by gen-
erating the embeddings of the user’s query (Eq) using the

9

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.00

0.25

0.50

0.75

1.00

Sc
or

e

F1
Precision

Recall
Accuracy

Fig. 14: MeanCache identifies an optimal threshold of 0.78
for Albert.

embedding model. The cosine similarity (θ) is computed with
the cached embeddings. If the cosine similarity θ exceeds the
threshold τ , the cache is hit and the response to the user query
is returned from the cache. Therefore, the cosine similarity
threshold τ is crucial in determining the similarity between
a user query and cached entries. A low threshold value of
τ can lead to false hits (incorrect matches), while a high
threshold might overlook the appropriate matches (i.e., false
cache misses or false negatives).

To illustrate this, MeanCache varies the threshold τ from 0
to 9 and evaluates the performance metrics F-score, precision,
recall, and accuracy with an equal distribution of duplicate and
non-duplicate queries from the validation data to avoid bias.
Figures 13 and 14 show how the cosine similarity threshold
(τ) affects MeanCache’s performance. The x-axis represents
the threshold τ values, and the y-axis denotes the performance
metrics. For instance, at a 0.3 threshold, MeanCache’s seman-
tic matching accuracy using MPNet is 57%, with a precision
of 54% as shown in Figure 13. Similarly, with Albert at the
same threshold, the accuracy is 55%, and the precision is
53% (Figure 14). Precision typically improves with an increase
in threshold. However, beyond a certain point, increasing the
threshold τ leads to a decline in F score, accuracy, and recall.

For MPNet, the optimal threshold τ is identified at 0.83,
achieving an F1 score of 0.89, precision of 0.92, and accuracy
of 0.90 (Figure 13). For Albert, the optimal threshold is 0.78,
with an F1 score of 0.88.

Summary. GPTCache’s suggested threshold of 0.7 will
result in suboptimal performance during semantic matching.
The optimal threshold τ values varies with the embedding
model. MeanCache optimally adjusts the threshold based on
user data, outperforming GPTCache’s suggested threshold
by 16% in precision and 4% in F score for MPNet, and by
10% in precision and 2% in F score for Albert.

G. Infeasibility of Embedding Generation with Llama 2

GPTCache [20] recommend using Llama for generating
embeddings to enhance GPTCache’s performance. However,
Llama 2’s embedding computation is expensive in terms of
inference time, requires substantial storage, and incurs con-
siderable overhead during semantic searches. For example,

Llama-2mpnet albert

0.00

0.02

0.04

C
om

pu
ta

tio
n

Ti
m

e
(s

) 0.0
40

0.0
05 0.0

09

Llama-2mpnet albert

0

10

20

30

St
or

ag
e

Si
ze

(K
B

s)

32

6 6

Fig. 15: Llama 2 takes significantly longer to compute em-
beddings and requires substantially more storage space than
Albert and MPNet.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.00

0.25

0.50

0.75

1.00

Sc
or

e

F1
Precision

Recall
Accuracy

Fig. 16: Llama 2 does not perform well in semantic matching,
even at optimal thresholds.

Llama 2 with its 7 billion parameters, demands 30 GB of
memory [50], whereas Albert and MPNet require only 43 MB
and 420 MB, respectively.

To highlight the impracticality to generate query embed-
dings with Llama 2, we compare the embedding computation
time, embedding storage space requirement of Llama 2, Albert
and MPNet transformer models. Figure 15 shows the average
time to compute the embeddings of a single query and storage
requirements for the embeddings. Figure 15 shows that the
average embedding computation time of Llama 2 is 0.04
seconds, while for Albert and MPNet the average computation
time is 0.005 and 0.009 seconds respectively. Single query
embeddings generated from Llama 2 takes approximately 32
KBs of space and embeddings generated by both MPNet and
Albert only take 6 KBs, as shown in Figure 15.

Furthermore, we evaluate the performance of the Llama 2
on embedding generation and semantic matching. Figure 16
shows that the performance of Llama 2 with different cosine
similarity threshold (τ) and corresponding performance metric.
We can see that the performance of Llama 2 is not good even
with the optimal cosine similarity threshold, as also noted by
researchers [51]. The maximum F1 score achieved by Llama
2 is 0.75 which is quite low when compared with the optimal
thresholds scores from the Figures 13 and Figure 14.

Smaller models tailored for specific tasks often surpass
larger models in efficiency [23], [24], [25]. Thus, diverging
from GPTCache’s approach, we advocate for adopting smaller
yet efficient embedding models for semantic caching. These
models not only ensure optimal performance but also minimize

10

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

the semantic cache’s overhead on users, featuring lower infer-
ence demands and reduced output embedding sizes, thereby
facilitating deployment on edge devices.

Summary. Llama 2 is not viable for generating embeddings.
Future enhancements might improve its performance to gen-
erate embeddings, but the computational demands, semantic
search duration, and storage requirements will likely remain
elevated.

V. RELATED WORK

Several caching systems are proposed to optimize the per-
formance. Study [18] suggests a two-tier dynamic caching
architecture for web search engines to enhance response times
in hierarchical systems. Utilizing LRU eviction at both levels,
they demonstrate how the second-tier cache can significantly
lower disk traffic and boost throughput. Researchers in [52]
propose a three-level index organization and [53] propose
a three-tier caching. Another study [14] examined two real
search engine datasets to explore query locality, aiming to de-
velop a caching strategy based on this concept. Their analysis
centered on query frequency and distribution, assessing the
feasibility of caching at various levels, such as server, proxy,
and client side. A novel caching technique called Probability
Driven Cache (PDC) is proposed in [13] to optimize the
performance of search engines by using the probability of
query repetition to decide whether to cache the query. PDC
uses the probability of a query to be repeated to decide
whether to cache the query or not. A different approach is
presented in [54], which proposes the Static Dynamic Cache
(SDC) to exploit temporal and spatial locality present in
the query stream, avoiding redundant processing and saving
computational resources. Efficient caching designs for web
search engines are explored in [17], where static and dynamic
caching strategies are compared, weighing the benefits of
caching query results against posting lists. Challenges in large-
scale search engines, which process thousands of queries
per second across vast document collections, are examined
in [55], focusing on index compression, caching optimizations,
and evaluating various inverted list compression algorithms
alongside caching policies such as LRU and LFU.

All of these studies focus on caching systems designed for
traditional search engines that process keyword queries (i.e.,
keyword matching) and return a list of links as a response.
However, when applied to LLM-based web servers or APIs,
these caching systems do not provide a single concise response
and may yield many false results. Moreover, such caching
techniques fail to capture the semantic similarity among re-
peated queries, leading to a significantly low hit rate. Server-
side caching for services based on LLMs is proposed in [19]
and [20], aiming to reduce the massive computational cost of
LLMs. In particular, the approach in [19] checks if a new
query is semantically similar to any existing queries in the
cache. If a match is found, the cached response is returned;
otherwise, a model multiplexer selects the most suitable LLM.

While these techniques can handle semantic similarity
among queries and provide a single concise response, they
raise privacy concerns as user queries are stored on external
servers. Additionally, these techniques are static and unable to
adapt to individual user behavior. Users may still be charged
for the query, even if it is served from the cache. Therefore,
a user-centered semantic cache that operates on the user
side is needed, providing benefits in terms of privacy, cost,
and latency. This cache should be able to detect semantic
similarity among queries and adapt to each user’s behavior
while preserving privacy. MeanCache offers these benefits
without compromising user privacy.

VI. CONCLUSION

MeanCache introduces the first user-centric semantic cache
designed for LLM-based web services, such as ChatGPT. In
MeanCache, clients collaboratively train a global embedding
model using FL on their local data, ensuring user privacy.
After aggregation, the global model produces high-quality
embeddings for effective semantic matching. When a new
query from the user matches a previous one, MeanCache
semantically compares it with the user’s local cache and
retrieves the most relevant results. This approach reduces
the computational cost of LLM services, enhances bandwidth
and latency, and conserves the user’s query quota. Even
with compressed embeddings that save 83% of storage space,
MeanCache outperforms existing baseline. With its distributed
cache design, MeanCache offers a solution to reduce up to one-
third of LLM query inference costs for semantically similar
queries on the user side.
Acknowledgment. We thank anonymous reviewers for pro-
viding valuable and constructive feedback to help improve the
quality of this work. This work was supported by Amazon
- Virginia Tech Initiative in Efficient and Robust Machine
Learning. We also thank the Advanced Research Computing
Center at Virginia Tech and the Flower FL framework for their
support in building and evaluating this work.

REFERENCES

[1] “Introducing chatgpt,” https://openai.com/blog/chatgpt, (Accessed on
01/18/2024).

[2] “Google ai updates: Bard and new ai features in search,” https:
//blog.google/technology/ai/bard-google-ai-search-updates/, (Accessed
on 01/18/2024).

[3] “Introducing claude 2.1 \ anthropic,” https://www.anthropic.com/news/
claude-2-1, (Accessed on 01/18/2024).

[4] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[5] “Learning human actions on computer applications,” https://www.rabbit.
tech/research, (Accessed on 01/19/2024).

[6] “Arc max is the popular browser’s new suite of ai tools
- the verge,” https://www.theverge.com/2023/10/3/23898907/
arc-max-ai-browser-mac-ios, (Accessed on 01/19/2024).

[7] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “OPTQ: accurate
quantization for generative pre-trained transformers,” in The Eleventh
International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. [Online].
Available: https://openreview.net/pdf?id=tcbBPnfwxS

11

https://openai.com/blog/chatgpt
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://www.anthropic.com/news/claude-2-1
https://www.anthropic.com/news/claude-2-1
https://www.rabbit.tech/research
https://www.rabbit.tech/research
https://www.theverge.com/2023/10/3/23898907/arc-max-ai-browser-mac-ios
https://www.theverge.com/2023/10/3/23898907/arc-max-ai-browser-mac-ios
https://openreview.net/pdf?id=tcbBPnfwxS

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

[8] A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa, “Quip#:
Even better llm quantization with hadamard incoherence and lattice
codebooks,” arXiv preprint arXiv:2402.04396, 2024.

[9] N. Sachdeva, B. Coleman, W.-C. Kang, J. Ni, L. Hong, E. H. Chi,
J. Caverlee, J. McAuley, and D. Z. Cheng, “How to train data-efficient
llms,” arXiv preprint arXiv:2402.09668, 2024.

[10] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong,
R. Wang, J. Xue, and F. Wei, “The era of 1-bit llms: All large language
models are in 1.58 bits,” arXiv preprint arXiv:2402.17764, 2024.

[11] “Perplexity pro,” https://www.perplexity.ai/pro, (Accessed on
03/01/2024).

[12] “OpenAI Pricing,” https://openai.com/pricing, (Accessed on
01/19/2024).

[13] R. Lempel and S. Moran, “Predictive caching and prefetching of query
results in search engines,” in Proceedings of the 12th international
conference on World Wide Web, 2003, pp. 19–28.

[14] Y. Xie and D. O’Hallaron, “Locality in search engine queries and its
implications for caching,” in Proceedings. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 3.
IEEE, 2002, pp. 1238–1247.

[15] E. P. Markatos, “On caching search engine query results,” Computer
Communications, vol. 24, no. 2, pp. 137–143, 2001.

[16] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

[17] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and
F. Silvestri, “The impact of caching on search engines,” in Proceedings
of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, 2007, pp. 183–190.

[18] P. C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca, and
B. Ribeiro-Neto, “Rank-preserving two-level caching for scalable search
engines,” in Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, 2001,
pp. 51–58.

[19] B. Zhu, Y. Sheng, L. Zheng, C. Barrett, M. Jordan, and J. Jiao, “Towards
optimal caching and model selection for large model inference,” in
Thirty-seventh Conference on Neural Information Processing Systems,
2023. [Online]. Available: https://openreview.net/forum?id=gd20oaZqqF

[20] F. Bang, “Gptcache: An open-source semantic cache for llm applications
enabling faster answers and cost savings,” in Proceedings of the 3rd
Workshop for Natural Language Processing Open Source Software
(NLP-OSS 2023), 2023, pp. 212–218.

[21] “Federated learning: Collaborative machine learning without centralized
training data – google research blog,” https://blog.research.google/2017/
04/federated-learning-collaborative.html, (Accessed on 04/01/2024).

[22] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: Masked and
permuted pre-training for language understanding,” Advances in Neural
Information Processing Systems, vol. 33, pp. 16 857–16 867, 2020.

[23] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.

[24] G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, H. Alobeidli, A. Cap-
pelli, B. Pannier, E. Almazrouei, and J. Launay, “The refinedweb dataset
for falcon llm: Outperforming curated corpora with web data only,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[25] Y. Du and L. Kaelbling, “Compositional generative modeling: A single
model is not all you need,” arXiv preprint arXiv:2402.01103, 2024.

[26] X. Wang, Q. Le, A. F. Khan, J. Ding, and A. Anwar, “Icl: An incen-
tivized collaborative learning framework,” in 2024 IEEE International
Conference on Big Data (BigData), 2024, pp. 94–103.

[27] A. F. Khan, Y. Li, X. Wang, S. Haroon, H. Ali, Y. Cheng, A. R. Butt,
and A. Anwar, “Towards cost-effective and resource-aware aggregation
at edge for federated learning,” in 2023 IEEE International Conference
on Big Data (BigData), 2023, pp. 690–699.

[28] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[29] W. Gill, A. Anwar, and M. A. Gulzar, “TraceFL: Interpretability-Driven
Debugging in Federated Learning via Neuron Provenance,” in 2025
IEEE/ACM 47th International Conference on Software Engineering
(ICSE). IEEE, 2025.

[30] K. Pearson, “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. [Online].
Available: https://doi.org/10.1080/14786440109462720

[31] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.” Journal of educational psychology, vol. 24, no. 6, p. 417,
1933.

[32] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and
recent developments,” Philosophical transactions of the royal society A:
Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065,
p. 20150202, 2016.

[33] “zilliztech/gptcache: Semantic cache for llms. fully integrated with
langchain and llama index.” https://github.com/zilliztech/gptcache, (Ac-
cessed on 03/03/2024).

[34] “Gptcache/examples/benchmark at main · zilliztech/gptcache,” https:
//github.com/zilliztech/GPTCache/tree/main/examples/benchmark, (Ac-
cessed on 03/04/2024).

[35] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, H. L. Kwing, T. Parcollet, P. P. d. Gusmão, and N. D.
Lane, “Flower: A friendly federated learning research framework,” arXiv
preprint arXiv:2007.14390, 2020.

[36] A. F. Khan, A. A. Khan, A. M. Abdelmoniem, S. Fountain, A. R. Butt,
and A. Anwar, “Float: Federated learning optimizations with automated
tuning,” in Proceedings of the Nineteenth European Conference
on Computer Systems, ser. EuroSys ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 200–218. [Online].
Available: https://doi.org/10.1145/3627703.3650081

[37] W. Gill, A. Anwar, and M. A. Gulzar, “FedDebug: Systematic Debug-
ging for Federated Learning Applications,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 2023, pp.
512–523.

[38] ——, “FedDefender: Backdoor Attack Defense in Federated Learning,”
in Proceedings of the 1st International Workshop on Dependability
and Trustworthiness of Safety-Critical Systems with Machine Learned
Components, 2023, pp. 6–9.

[39] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[40] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=BkluqlSFDS

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[42] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Hong
Kong, China: Association for Computational Linguistics, Nov. 2019,
pp. 3982–3992. [Online]. Available: https://aclanthology.org/D19-1410

[43] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-t. Yih, “Dense passage retrieval for open-domain
question answering,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Online: Association
for Computational Linguistics, Nov. 2020, pp. 6769–6781. [Online].
Available: https://aclanthology.org/2020.emnlp-main.550

[44] J. Ni, G. Hernandez Abrego, N. Constant, J. Ma, K. Hall, D. Cer,
and Y. Yang, “Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models,” in Findings of the Association for
Computational Linguistics: ACL 2022, S. Muresan, P. Nakov, and
A. Villavicencio, Eds. Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 1864–1874. [Online]. Available: https:
//aclanthology.org/2022.findings-acl.146

[45] M. Henderson, R. Al-Rfou, B. Strope, Y.-H. Sung, L. Lukács, R. Guo,
S. Kumar, B. Miklos, and R. Kurzweil, “Efficient natural language
response suggestion for smart reply,” arXiv preprint arXiv:1705.00652,
2017.

[46] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite BERT for self-supervised learning of language
representations,” CoRR, vol. abs/1909.11942, 2019. [Online]. Available:
http://arxiv.org/abs/1909.11942

12

https://www.perplexity.ai/pro
https://openai.com/pricing
https://openreview.net/forum?id=gd20oaZqqF
https://blog.research.google/2017/04/federated-learning-collaborative.html
https://blog.research.google/2017/04/federated-learning-collaborative.html
https://doi.org/10.1080/14786440109462720
https://github.com/zilliztech/gptcache
https://github.com/zilliztech/GPTCache/tree/main/examples/benchmark
https://github.com/zilliztech/GPTCache/tree/main/examples/benchmark
https://doi.org/10.1145/3627703.3650081
https://openreview.net/forum?id=BkluqlSFDS
https://aclanthology.org/D19-1410
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2022.findings-acl.146
https://aclanthology.org/2022.findings-acl.146
http://arxiv.org/abs/1909.11942

Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)

[47] “Diskcache: Disk backed cache — diskcache 5.6.1 documentation,”
https://grantjenks.com/docs/diskcache/, (Accessed on 04/01/2024).

[48] D. Avdiukhin and S. Kasiviswanathan, “Federated learning under arbi-
trary communication patterns,” in International Conference on Machine
Learning. PMLR, 2021, pp. 425–435.

[49] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimiza-
tion,” Advances in neural information processing systems, vol. 33, pp.
7611–7623, 2020.

[50] “Sizing guide - nvidia docs,” https://docs.nvidia.com/ai-enterprise/
workflows-generative-ai/0.1.0/sizing-guide.html, (Accessed on
01/25/2024).

[51] “[user] embedding doesn’t seem to work? · issue #899 ·
ggerganov/llama.cpp,” https://github.com/ggerganov/llama.cpp/issues/
899, (Accessed on 01/18/2024).

[52] R. Baeza-Yates and F. Saint-Jean, “A three level search engine index
based in query log distribution,” in String Processing and Information
Retrieval: 10th International Symposium, SPIRE 2003, Manaus, Brazil,
October 8-10, 2003. Proceedings 10. Springer, 2003, pp. 56–65.

[53] X. Long and T. Suel, “Three-level caching for efficient query processing
in large web search engines,” in Proceedings of the 14th international
conference on World Wide Web, 2005, pp. 257–266.

[54] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the perfor-
mance of web search engines: Caching and prefetching query results
by exploiting historical usage data,” ACM Transactions on Information
Systems (TOIS), vol. 24, no. 1, pp. 51–78, 2006.

[55] J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted
list caching in search engines,” in Proceedings of the 17th international
conference on World Wide Web, 2008, pp. 387–396.

13

https://grantjenks.com/docs/diskcache/
https://docs.nvidia.com/ai-enterprise/workflows-generative-ai/0.1.0/sizing-guide.html
https://docs.nvidia.com/ai-enterprise/workflows-generative-ai/0.1.0/sizing-guide.html
https://github.com/ggerganov/llama.cpp/issues/899
https://github.com/ggerganov/llama.cpp/issues/899

	Introduction
	Background
	MeanCache's Design
	FL Based Embedding Model Training
	Client Training
	Finding the Optimal Threshold for Cosine Similarity
	Aggregation
	Embeddings Compression using PCA

	Cache Population and MeanCache Implementation
	Validating the Prevalence of Similar Queries

	Evaluation
	Evaluation Settings
	Transformer Models and Datasets
	Experimental Setup
	Evaluation Metrics

	MeanCache Comparison with Baseline
	Contextual Queries
	Embedding Compression and Impact on Storage Space
	Privacy Preserving Embeddings Model Training
	Cosine Similarity Threshold Impact on Semantic Matching
	Infeasibility of Embedding Generation with Llama 2

	Related Work
	Conclusion
	References

