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Abstract—In Federated Learning, clients train models on local
data and send updates to a central server, which aggregates them
into a global model using a fusion algorithm. This collaborative
yet privacy-preserving training comes at a cost—FL developers
face significant challenges in attributing global model predictions
to specific clients. Localizing responsible clients is a crucial step
towards (a) excluding clients primarily responsible for incorrect
predictions and (b) encouraging clients who contributed high-
quality models to continue participating in the future. Existing
ML explainability approaches are inherently inapplicable as they
are designed for single-model, centralized training.

We introduce TraceFL, a fine-grained neuron provenance
capturing mechanism that identifies clients responsible for the
global model’s prediction by tracking the flow of information
from individual clients to the global model. Since inference
on different inputs activates a different set of neurons of the
global model, TraceFL dynamically quantifies the significance
of the global model’s neurons in a given prediction. It then
selectively picks a slice of the most crucial neurons in the
global model and maps them to the corresponding neurons in
every participating client to determine each client’s contribution,
ultimately localizing the responsible client. We evaluate TraceFL
on six datasets, including two real-world medical imaging datasets
and four neural networks, including advanced models such
as GPT. TraceFL achieves 99% accuracy in localizing the
responsible client in FL tasks spanning both image and text
classification tasks. At a time when state-of-the-art ML debugging
approaches are mostly domain-specific (e.g., image classification
only), TraceFL is the first technique to enable highly accurate
automated reasoning across a wide range of FL applications.

Index Terms—Interpretability, Explainability, Debugging, Ma-
chine Learning, Federated Learning, Transformer, GPT

I. INTRODUCTION

Federated Learning (FL) offers distributed training that
enables multiple clients to collaboratively train a global model
without sharing raw data [1]–[5]. In a typical FL setup,
individual clients, such as healthcare institutions, train models
on their local data. These local models are then aggregated
on a central server to form a comprehensive global model,
all without transferring sensitive client data. The resulting
global model, a fusion of all clients’ models, is then used
in production to make predictions on unseen data.

The complexity of FL systems, however, introduces unique
debugging challenges. When a global model makes a pre-
diction, whether correct or incorrect, a key question arises:
which client(s) is primarily responsible for a global model’s

output? This question is akin to debugging software, where
understanding the impact of each input and the line of code
on the software’s output is crucial. Addressing this debugging
question is vital for the effective deployment, maintenance,
and accountability of FL applications. For example, FL de-
velopers face challenges in identifying and rewarding clients
responsible for successful classifications. This recognition is
crucial to encourage their continued participation in future
incentivized FL rounds [6]. There is mature evidence that such
practice significantly improves the FL model’s quality [7].
Similar debugging is key in localizing faulty clients that may
transfer an inaccurate model for aggregation, which can result
in a dangerously low-quality global model [8]–[12].
Problem. In federated learning, the client(s) most responsible
for a global model’s prediction are the ones trained on data
that contains the predicted labels. This is analogous to finding
influential training samples in classical machine learning [13].
However, the two domains, single model-based centralized
ML and FL, are fundamentally orthogonal. Existing influence-
based debugging approaches in ML [14]–[17] and regular
software [18]–[20], require transparent access to data including
all data manipulation operations applied on the input data.
When applied to FL, these approaches will require end-to-
end monitoring of clients’ training (i.e., require access to
clients’ data), which is prohibited in FL. More broadly, these
ML influence and explainability-based debugging approaches
target a single model in which the debugging is restricted to
identifying the training data. In contrast, debugging in FL
entails isolating a client’s model among many. This paper
addresses the following debugging problem in FL: Given
the global model inference on an input in FL, how can
we identify the client(s) most responsible for the inference?
Addressing it will have significant implications on faulty client
identification, client incentivization, and the transparency and
interpretability of FL.
Challenges. Determining a client’s influence on the global
model is challenging. Clients are randomly sampled in each
round, each with unique data, contributing differently to the
global model. Thus, the influence of a client on the global
model is dynamic, non-uniform, and changes across rounds,
making it difficult to link the global model’s behavior to
a specific client. The FL protocol restricts access to client-
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side training, turning FL configuration into a nearly black-box
setting. Additionally, clients’ models are collections of neuron
weights that are individually uninterpretable. Static analysis
of models’ weights to measure clients’ influence is ineffective
because clients’ models are intrinsically different in terms
of weights, making weight comparison futile. Furthermore,
neural networks today comprise millions of neurons (e.g.,
GPT-3 has 175 billion parameters [21]) where tracing each
neuron dynamically is infeasible.

FL is increasingly used for domains other than vision using
various neural network architectures, such as transformer and
convolutional neural networks. Designing a generic FL debug-
ging approach is a major challenge. For instance, transformers
contain a self-attention mechanism that allows the model to
focus on different parts of the input sequence. This mechanism
is usually not seen in convolutional networks; instead, it uses
a convolutional layer to detect the special patterns in the input
data. Additionally, these architectures use different activation
functions such as Rectified Linear Unit (ReLU) [22] and
Gaussian Error Linear Unit (GELU) [23], introducing another
source of complications.
Our Contribution. We present the concepts of neuron prove-
nance in FL, a fine-grained lineage-capturing mechanism
that formulates the flow of information in the fusion algo-
rithm from multiple clients’ models into a global FL model,
ultimately influencing the predictions of the global model.
Using neuron provenance, we determine the precise magnitude
of contributions of participating clients towards the global
model’s prediction. We materialize the idea of neuron prove-
nance in TraceFL. TraceFL runs at the aggregator (i.e., central
server) and requires no instrumentation on the client side.

TraceFL is designed with the following insights. A global
model consists of millions of neurons, making it infeasible to
trace where how each neuron in a global model is computed.
We observe that a dynamic subset of neurons activates in
response to a given input, and not all neurons contribute
equally to a prediction [24], [25]. Using this insight, TraceFL
quantifies the contribution of these neurons in the global
model’s prediction by computing the gradient of the neurons
w.r.t. to the prediction. Such neuron-level gradients reveal
the neuron’s output impact on the global model’s prediction
and thus reduce the scope of important neurons. TraceFL
then maps the global model’s important neurons to the cor-
responding neurons in each client’s model and computes the
contribution of each client’s neuron to the corresponding
global model’s neuron. At this stage, TraceFL computes the
end-to-end neuron provenance of a global model prediction
with the magnitude of the contribution of each client’s neurons.
Finally, TraceFL aggregates the contributions of each client.
The client with the highest contribution is deemed the most
responsible for the given prediction.
Evaluations. We demonstrate TraceFL’s effectiveness, gener-
alizability, and robustness by evaluating its client localization
accuracy on both image and language models under various
commercial data distributions and differential privacy methods.
We evaluate TraceFL on four state-of-the-art neural networks:

ResNet [26], DenseNet [27], BERT [28], and GPT [29] and
using six datasets including two real-world medical imaging
datasets [30]–[32]. TraceFL achieves an average accuracy of
99% in localizing the responsible client across 30 unique FL
settings, spanning both correct and misprediction scenarios.
For fault localization in FL, TraceFL achieves an average accu-
racy of 99%, compared to 32% by the existing technique [33],
demonstrating TraceFL’s effectiveness in real-world FL de-
ployments. Additionally, we test TraceFL’s robustness against
varying data distributions and differential privacy settings and
find that TraceFL remains robust and effective, maintaining
its 99% accuracy. We also vary the number of clients to up
to 1000 and find that TraceFL is scalable and efficient in all
settings. Overall, we evaluate TraceFL on 20,600 trained client
models. These experiments exceed prior research’s evaluation
complexity and fully represent commercial FL usage [34]–
[38]. TraceFL is implemented in FLower FL [39] and com-
patible with GPU for parallel processing of neuron provenance
for compute-intensive models (e.g., GPT).
Novelty. TraceFL advances the state of FL debugging with the
following core contributions:

• TraceFL localizes the responsible clients for a given
prediction without modifying the underlying fusion al-
gorithm. Moreover, it does not require access to clients’
training and can solely determine clients’ contributions at
the central aggregator.

• TraceFL introduces a unique concept of neuron-level
provenance for FL applications to capture the dynamic
contribution of each client, which helps rank clients based
on the contribution to a given prediction. TraceFL effi-
ciently tracks the contribution of clients in large models
like GPT containing millions of parameters.

• TraceFL achieves 99% localization accuracy in localizing
the responsible client in FL. TraceFL localization remains
intact during localizing a faulty client where existing
baseline [33] achieves 32%.

• TraceFL is the first approach that is equally effective on
transformers and CNNs. Even the most sophisticated ML
debugging approaches work on single model architecture
and data domains, i.e., either convolutional neural net-
works (CNNs) or transformers.

• TraceFL significantly advances the field of debugging
and explainability in FL, addressing open challenges in
FL [33], [40] and work with differential privacy and real-
world data distributions among FL clients.

Source Code. TraceFL’s artifact is available at https://github.
com/warisgill/TraceFL.

II. BACKGROUND AND MOTIVATION

A. Federated Learning

It enables multiple clients (e.g., mobile devices, organiza-
tions) to train a shared model without sharing their data. This
allows the model to be trained using distributed data, which
can be useful in cases where data is distributed across multiple
devices or organizations and cannot be easily collected and
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Fig. 1: Illustration of training, testing, and localization phases of the real-world motivating example. The FL global model
correctly classifies two colon pathology images (original labels ‘Cacner-associated Stroma’ and ‘Mucus’). During responsible
client localization, TraceFL accurately identifies the client most responsible for the prediction, i.e., clients trained on data points
with labels Mucus (Hospital H2) and ‘Cancer-associated Stroma’ (Hospital H6).

centralized. One algorithm of FL is Federated Averaging
(FedAvg) [1], which uses the following equation to update
the global model at each round of the training process:

W t+1
global =

K∑
k=1

nk

n
W

(t)
k (1)

where W
(t)
k and nk represent received weights and size of

training data of client k in each round t, respectively. The
variable n represents the total number of data points from all
clients, and it is calculated as n =

∑K
k=1 nk. The equation

states that the global model W t+1 at the next round is the
average of the local models from all participating clients at the
current round. In each round, the clients first train their local
models using their own data, then send the parameters (e.g.,
W

(t)
k , nk) to the central server. The central server averages

the model parameters to produce a global model, which is
then sent back to the participating devices. This process is
repeated for multiple rounds (e.g., t from 1 to 100), with each
client updating its local model using the global model from
the previous round. The final global model is the result of the
federated averaging process.

B. Motivation

This section presents a real-world FL application that mo-
tivates the need for TraceFL in two common scenarios.
Incentivization. Suppose a developer deploys an FL system to
diagnose colon diseases based on colon pathology images, as
shown in Figure 1. In this FL system, ten hospitals, identified
as H0 to H9, collaborate to train a global FL model. Each
hospital trains its local model, which is then aggregated to
form a global model. The classification stage in Figure 1 shows
a scenario where the global model makes a correct prediction
on new test colon pathology images (e.g., ‘Cancer-associated
Stroma’ and ‘Mucus’). Since these are correct predictions,
the FL developer aims to determine which hospital is most
responsible for these correct predictions so that it can be
encouraged to participate in future rounds. Since the training

data is protected under the privacy of medical records and
inaccessible to the developer, it is challenging to identify
the responsible hospital by inspecting the raw model weights
shared by the hospitals.

To address this issue, the developer decides to use TraceFL
to identify the most responsible client behind the correct
predictions. When enabled during the global model’s pre-
diction, TraceFL localizes the hospital with H2 as the one
responsible for the prediction of ‘Mucus’, and the hospital
H6 as the one responsible for the prediction of ‘Cancer-
associated Stroma’. More specifically, as shown on the right
in Figure 1, TraceFL ranks hospitals (i.e., clients) based on
their contributions to each prediction. The score associated
with each hospital quantified how responsible a hospital is
for that prediction. The training data distribution on the left
shows that H2’s training data include data points labeled ‘Mu-
cus’, whereas H6’s training data include data points labeled
‘Cancer-associated Stroma’.

Conversely, hospital H1’s contribution is 0.02 and 0.001
in the two predictions because it does not have any data
points with the labels ‘Mucus’ or ‘Cancer-associated Stroma’,
respectively. Detailed evaluations on two real-world medical
imaging datasets are presented in Section V-A. Localizing the
clients responsible for the prediction with TraceFL serves as
a basis for designing advanced incentivization approaches.
Interpretability and Accountability. In addition to incentiviza-
tion, TraceFL can effectively assist FL developers in localizing
the hospital responsible for misprediction. Suppose the global
model makes an incorrect prediction (e.g., predicts a cancer-
associated stroma as mucus or vice versa). In such cases, FL
developers can also use TraceFL to identify the root cause
of the issue. Existing techniques [41]–[47] are designed to
interpret a single model and cannot be applied to the complex
global models of FL, which are the fusion of many clients’
models. By utilizing TraceFL, FL developers gain valuable
insights into the composition of the global model. TraceFL
tracks the flow of information between hospitals and the
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global model at a fine-grained level. It can identify the most
influential neurons of the global model for a given prediction
and trace their origin to find the potential hospital(s) primarily
responsible for incorrect predictions.

III. CHALLENGES IN DEBUGGING FL

Federated Learning poses several challenges in designing
a debugging technique that reasons about a global model’s
prediction on an input. Unlike traditional ML training, where
training data can be easily analyzed, the FL global model
(W t+1

global) is not directly trained on the data. Instead, the global
model is generated by fusing clients’ models together across
many rounds using popular fusion algorithms. With no insight
into the training, it is challenging to identify how different
clients influence the global model’s behavior.

State-of-the-art neural networks, such as Transformers
(BERT, GPT) and CNNs (ResNet, DenseNet), have varying
structures, activation functions, and numbers of parameters.
For example, GPT [29] is a 37-layer (12 block) Transformer
architecture with Gaussian Error Linear Unit (GELU) [23]
activation function and 117 million parameters.DenseNet [27]
has 121 layers, 8 million parameters, and uses the Rectified
Linear Unit (ReLU) [22] activation function. For instance, in
a single FL round with 10 clients using GPT, 10×117 million
parameters are fused to form a new global model. The fusion
algorithm or the global model does not inherently provide
any information about individual clients’ contributions. Thus,
tracking a client’s contribution among millions of parameters
is a significantly challenging task.

Moreover, the data distribution across FL training rounds
is non-identical; clients rarely share the same data point. Not
all clients participate in every round, and some clients may
contain only a few data points to train their local model.
The class label distribution also varies across clients. Such
variability causes more hurdles in precisely reasoning about
a global model’s behavior. Simply tracking the static weights
of the global model is inadequate, as different sets of neurons
are activated on different inputs. Inspecting individual clients’
models does not help understand the client’s contribution to the
global model prediction, as it will not capture the cumulative
behavior of the global model.

IV. DESIGN OF TRACEFL

TraceFL addresses the aforementioned challenges using
neuron provenance. At a high level, TraceFL dynamically
tracks the lineage of the global model at the neuron level
and identifies the most influential clients against a given
prediction by the global model (W t+1

global) on an input. Enabling
provenance at the neuron level solves the complexities of
different neural networks architectural design (e.g., number
of layers and parameters, different activation functions) and
enable it to work in cross domains such as image and text
classification tasks.

TraceFL comprises the following steps: First, TraceFL iden-
tifies the activated influential neurons in the global model for a
given test input. Next, TraceFL traces the contribution of each

Algorithm 1: TraceFL’s Approach
Input: Let clients be the list of clients’ models participating in the

FL training round.
Input: Let global model be the aggregated global model of

clients models after the end of a training round
Input: Let test input be an input
Output: client2norm contribution contains the contribution of

each client in the prediction of test input
1 activated neurons = [];
// Section IV-A (Equation 2)

2 y = global model(test input);
3 for each activated neuron in global model do
4 activated neurons.append(neuron);

5 neuron2grad = y.backward();
// Section IV-B

6 neuron2prov = {};
7 for neuron in activated neurons do
8 neuron2prov[neuron] = {};
9 for client in clients do

10 cont = 0;
11 for feature in neuron.input features do
12 cont+ = client.weight(neuron, feature)× feature.value;

13 neuron2prov[neuron][client] = cont × neuron2grad[neuron];

// Section IV-C
14 client2contribution = {};
15 for client in clients do

// Equation 6
16 contribution = 0;
17 for neuron in neuron2prov do
18 contribution+ = neuron2prov[neuron][client];

19 client2contribution[client] = contribution;

// Equation 7
20 client2norm contribution = Softmax(client2contribution.values);
21 return client2norm contribution;

client to all the activated neurons. Finally, TraceFL computes
the total contribution of each client to the global model.
These steps collectively construct a comprehensive end-to-end
provenance graph, which is used to debug the contributions of
clients in the given prediction of the global model. Algorithm 1
outlines the design of TraceFL.

A. Determining Influential Neurons

TraceFL first aims to identify neurons that actively par-
ticipate in an FL global model’s prediction. Traditional data
provenance approaches must trace the participation of all input
data records in the operation for completeness, eventually
mapping them to individual outputs of the operation. However,
tracking the provenance of all neurons is wasteful because
not all neurons participate equally in a model’s prediction.
Therefore, tracking the behavior of all neurons in a model may
lead to over-approximation (i.e., more than expected clients are
classified as contributors) when provenance is used to identify
the contributing clients.

The behavior of a neural network on a given input is
determined by the set of activated neurons in the network,
and different sets of neurons are activated on different inputs.
We leverage this insight and apply TraceFL’s neuron prove-
nance to dynamically quantify the influence of global model
neurons on each prediction for the given input. This reduce
the likelihood of over-approximation by excluding the neurons
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that may distort the outcome when the lineage of a specific
neuron is used to localize the influential client.

Mathematically, the output of a neuron is z = σ(w · z),
where w is the set of weights of the neuron, z is the input
to a neuron, and σ is the activation function. One of the
commonly used activation functions (σ) is ReLU (Rectified
Linear Unit) [22]. The output of σ is called the activation
or output of the neuron. A neuron with ReLU function is
consider active if z > 0. Note that the output of a neuron
(z) is part of the input to the neurons of the next layer.
Next, TraceFL computes the activation of each neuron in
the network. Suppose that nj represents the j-th neuron in a
neural network and the set of all the outputs (i.e., activations)
of all the neurons in a neural network can be represented
as {zn1 , zn2 , ..., znj}, which captures the complete dynamic
behavior of the network on a given input x. Note that for the
first layer, the input z to neurons will be the x i.e., z = x for
the first layer of the neural network.

After computing the global model neurons activations,
TraceFL’s goal is to find their measurable contribution towards
the global model’s prediction (y) on an input. In the output
(y) of the global model, not all the activated neurons carry
equal importance. For instance, neurons in the last layers learn
better and more rigorous features than neurons in the initial
layers of the network [24]. Since TraceFL aims to localize
the client that contributed the most towards a prediction,
assigning equal importance to all activated neurons will again
cause over-approximation or even wrong client localization.
To enable precise and accurate provenance, we must measure
the individual influence of a neuron on the final prediction.

TraceFL quantifies the impact of the output of a neuron on
the global model’s prediction by computing the gradient w.r.t.
every activated neuron on a given input to W t+1

global. Similar to
taint analysis in program analysis, gradients are sophisticated
taints that encapsulate the impact of a neuron output on the
output (y) of the global model. The intuition behind this is that
the neurons with a higher gradient will likely cause a bigger
change in prediction. Thus, such neurons are likely to be more
influential to a model prediction. We use the aforementioned
insight to find the influence of a neuron in the prediction (y) of
the global model. The influence, denoted by cnj

, of a neuron
nj in the output (y) is the partial derivative of y with respect to
znj , which measures how much y changes when znj changes
slightly. Mathematically, we write it as:

cnj =
∂y

∂znj

(2)

TraceFL computes the gradients using the automatic dif-
ferentiation engine of PyTorch [48]. TraceFL starts from the
output layer and goes back to the input layer, using the chain
rule of differentiation at each step. By the end of this phase,
TraceFL determines the gradient (influence) of global model
neurons on its output (y). For instance, in the presence of a
disease in a medical imaging input (e.g., predicting colorectal
cancer (CRC) from histological slides of tumor tissue), the
fused neurons of the global model that have learned the

representation of that particular disease during FL training will
significantly influence the model’s output (y). These gradients
are essential in mapping neurons of clients’ models to the most
influential ones in the global model.

B. Neuron Provenance Across Fusion

In this step, TraceFL accurately determines the individual
contribution of each corresponding neuron from every partic-
ipating client to the neurons of the global model. In essence,
TraceFL maps the outputs of the global model neurons to
clients’ neurons during prediction. Finding such a mapping
and its magnitude has two challenges. First, FL uses fusion
algorithms to merge clients’ neurons statically. Instrumenting
the fusion algorithms to trace the flow of weights across fusion
is prohibitively expensive, as numerous clients participate in
a round where each model may have millions of neurons.
Second, the influence of clients’ neurons on the neurons of the
global model (W t+1

global) is directly impacted by the output of
the preceding layer in the global model, i.e., the output of the
neuron in the global model’s previous layer is the combined
output of the corresponding neurons of each client in that
layer. Consequently, attempting to determine clients’ neurons’
contributions by feeding input to the clients’ model in isolation
will lead to incorrect neuron provenance, as it cannot capture
the overall impact of other clients.

TraceFL leverages the insight that the set of weights of
a single neuron in the global model is determined by the
corresponding weights of the neurons in the clients’ models.
Mathematically, the weights of a single neuron in the global
model, represented as wg = [w1

g , w
2
g , · · · , wi

g], are given by
the following equation:

wi
g =

K∑
k=1

pk ∗ wi
k

= p1 ∗ wi
1 + p2 ∗ wi

2 + · · ·+ pk ∗ wi
k

(3)

Here, wi
k is the i-th weight of the neuron in the k-th client

model. The variable pk is nk/n, where nk represents the size
of training data of client k, and n represents the total number
of data points from all clients, and it is calculated as n =∑K

k=1 nk (Equation 1). Given an input z to the neuron wg of
W t+1

global, a client’s contribution can be calculated as follows:

zout = wg ∗ z
= [w1

g , w
2
g , · · · , wi

g] ∗ [z1, z2, · · · , zi]
= w1

g ∗ z1 + w2
g ∗ z2 + · · ·+ wi

g ∗ zi

= [p1 ∗ w1
1 + p2 ∗ w1

2 + · · ·+ pk ∗ w1
k] ∗ z1

+ [p1 ∗ w2
1 + p2 ∗ w2

2 + · · ·+ pk ∗ w2
k] ∗ z2

+ · · ·
+ [p1 ∗ wi

k + p2 ∗ wi
2 + · · ·+ pk ∗ wi

k] ∗ zi

(4)

Here, zi is the i-th input feature to the neuron and zout is
the output of the neuron. Thus, the contribution of a client k,
denoted by [tk], in a neuron nj of the global model (W t+1

global)
is given by the following equation:
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[tk]nj = (pk ∗ w1
k ∗ z1 + pk ∗ w2

k ∗ z2 + · · ·
+ pk ∗ wi

k ∗ zi) ∗ cnj

= (pk ∗ [w1
k ∗ z1 + w2

k ∗ z2 + · · ·+ wi
k ∗ zi]) ∗ cnj

= cnj
∗ pk ∗

∑
i=1

wi
k ∗ zi

(5)

In the above equation, pk ∗
∑

i=1 w
i
k ∗ zi is the exact con-

tribution of a client k in a neuron nj of the global model.
The global gradient of neuron nj is cnj

which is multiplied
with client contribution to find its actual contribution (i.e.,
influence) towards the prediction of the global model. For
instance, if the contribution of a client k is high in a neuron
nj but globally the neuron nj has minimal influence on
the global model prediction then cnj

will scale down the
contribution of the client in the given neuron nj . Note that zi

represents the i-th output of the previous layer in the global
model during prediction. At the end of this stage, TraceFL
constructs a neuron provenance graph that traces a global
model’s prediction to influential neurons in the global model
(W t+1

global), which are further traced back to individual neurons
in the clients’ models.

C. Measuring Client’s Contribution

To find the end-to-end contribution, we must accumulate
neuron-level provenance, cnj ∗ pk ∗

∑
i=1 w

i
k ∗ zi, of a given

client’s model to derive its complete contributions toward the
global model’s prediction. A client’s overall contribution to
the global model prediction is determined by the sum of
the client’s contribution to the neurons of the global model.
Specifically, if the set of activated neurons of the global model
is denoted by n1, n2, · · · , nj , then the total contribution (Tk)
of the client k can be calculated using Equation 5 as follows:

Tk = βn1
∗ [tk]n1

+ βn2
∗ [tk]n2

+ · · ·+ βnj
∗ [tk]nj

= ([cn1
∗
∑
i=1

wi
k n1

∗ zin1
]n1

+ [cn2
∗
∑
i=1

wi
k n2

∗

zin2
]n2

+ · · ·+ [cnj
∗
∑
i=1

wi
k nj

∗ zinj
]nj

) ∗ pk

(6)

β is an importance factor that TraceFL computes using
an exponential decay method for each neuron based on its
position in the neural network. Specifically, TraceFL assigns
higher importance to the last layers and lower importance
to the earlier layers to minimize the noisy contributions,
based on the evidence presented elsewhere [24]. [tk]nj is the
contribution of the client k in neuron nj , zinj

is the i-th input
feature to neuron nj , and wi

k nj
is the i-th weight of neuron

nj in the client k model. Using Equation 6 we can compute,
for each client k, the total contribution towards the global
model prediction. Thus, the client with max contribution is
the client that has the most influence on the global model
prediction. To make the client contribution more interpretable,
we normalize the client contribution by using the softmax
function as follows:

T̃k =
eTk∑K
i=1 e

Ti
(7)

T̃k is the normalized contribution of the k-th client, which
is now a probability value between 0 and 1, representing the
relative influence of client-k on the global model output y for
a given input.

TraceFL concludes its neuron provenance capturing tech-
nique by listing the total contribution of each participating
client in an FL round towards a global model’s prediction
on a given input. The magnitude of the contributions can be
interpreted as a confidence level of TraceFL in identifying the
source of the global model’s prediction. Given that the total
confidence scores of all clients cannot exceed 1, if a client has
a contribution score of 0.6, it implies that no other client can
surpass a score of 0.4. This makes the client most influential
in determining the global model prediction and most likely
responsible for the prediction.
Enable TraceFL to Use GPU. By design, TraceFL is com-
patible with hardware accelerators and can fully harness their
parallelizability. The primary dependency of TraceFL is cap-
turing the output of previous layer neurons in the global model
for input to the next layer neurons, which inherently exists in
inference as well. Additionally, TraceFL computes gradients
using Equation 2, leveraging the chain rule of differentiation
that the hardware accelerators can parallelize. Next, Equation 5
dissects the global model neuron and computes the contribu-
tion based on the previous layer neurons’ outputs (z) of the
global model, which is the cumulative output of all clients’
neurons in that previous layer. This is the only dependency in
TraceFL. Once TraceFL has the cumulative output from the
previous layer neurons, it parallelizes the process to find the
contribution of a client in each neuron of the global model in
the current neuron layer and ultimately the total contribution
using Equations 6 and 7. These optimizations in TraceFL
enable neuron-level provenance for neural networks primarily
deployed on GPUs, such as GPT.

V. EXPERIMENTAL EVALUATIONS

We design experiments to evaluate TraceFL’s accuracy in
localizing the client responsible for a global model’s prediction
on an input. We ask the following research questions.

• How accurate is TraceFL in identifying the client(s)
responsible for a global model’s prediction?

• Is TraceFL equally accurate on FL of different models
and architectures such as LLMs and transformers?

• How accurate TraceFL is in localizing clients responsible
for mispredictions by global model?

• Does TraceFL remain effective with varying data distri-
butions and differential privacy?

• Can TraceFL scale to a large number of clients?
• What is the runtime performance of TraceFL?

Models and Datasets. We evaluate TraceFL on state-of-the-
art and commercially used CNNs, including ResNet-18 [26]
and DenseNet-121 [27], as well as the two most popular
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transformer models, BERT [28] and GPT [29] to demonstrate
the wide applicability of TraceFL. We train ResNet and
DenseNet on CIFAR-10 [49] and MNIST [50]. These network-
dataset combinations are widely used in practice and serve
as standardized benchmarks in practice [1], [37]. We also
evaluate TraceFL on real-world medical imaging datasets,
including the Colon Pathology dataset [30] and Abdominal
CT dataset [31], [32], to demonstrate its usability in complex
real-world FL systems. The Colon Pathology dataset contains
107,180 biomedical images representing nine classes of colon
pathology, while the Abdominal CT dataset contains 58,830
images of abdominal CT scans representing 11 classes. More
details about these datasets can be found in [51], [52]. For
NLP tasks, we evaluate TraceFL on BERT and GPT models
trained on the DBpedia [53] and Yahoo Answers [54] datasets.
The DBpedia dataset contains 560,000 training samples and
70,000 testing samples, while the Yahoo Answers dataset con-
tains 1,400,000 training samples and 60,000 testing samples,
representing 14 and 10 classes, respectively.
Data Distribution Among Clients. We use Dirichlet distribu-
tion in FL to distribute non-overlapping data points among
clients in each round. This is the standard FL data distribution
method proven to produce real-world distribution [37], [38],
[55], [56]. The parameter (α) in Dirichlet ranges from [0,
∞), determining the level of Non-IID in experiments. For
instance, when α equals 100, it replicates uniform local data
distributions, while smaller α values increase the probability
that clients possess samples from a single class [56]. A value
of 0.5 is a common practice in prior work [37], [55]. We
use an even stricter parameter value of 0.3 to stress test
TraceFL and demonstrate its usability in more challenging
cases. Nevertheless, Section V-C1 performs sensitivity analysis
by varying α from 0.1 to 1.
Experimental Environment. To resemble real-world FL, we
deploy our experiments in Flower FL [39], running on
an enterprise-level cluster comprising six NVIDIA DGX
A100 [57] nodes. Each node is equipped with 2048 GB of
memory, at least 128 cores, and an A100 GPU with 80 GB
of memory. We vary training rounds between 15 to 80 with
clients ranging from 100 to 1000, thus testing TraceFL on
more configurations than any related work [56], [58]. Ten
randomly selected clients participate in each round, reflecting
a real-world scenario where not all the clients participate in
the given round [59]. We evaluate TraceFL with FedAvg [1].
Localization Accuracy. To measure the performance of
TraceFL, we evaluate the accuracy of TraceFL in finding the
responsible clients. For brevity, we refer to this as localization
accuracy, which is defined as follows: Given the z number of
test inputs to the global model (W t+1

global), if TraceFL accurately
locates m times the clients responsible for the z predictions,
then the localization accuracy is m∗100

z .

A. TraceFL’s Localization Accuracy in Correct Predictions

Identifying the clients most responsible for correct pre-
diction is a key debugging objective that helps encourage
future participation of those clients to improve the overall
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Fig. 2: TraceFL performance on multiple datasets and models
both on text and image classification tasks.

FL accuracy. Note that TraceFL directly does not improve
the FL model accuracy. Instead, it reasons about the behavior
of the FL global model which an FL developer can use to
improve the FL model accuracy (e.g., selecting clients which
are contributing more in the FL global model predictions.)
TraceFL’s neuron provenance traces predictions back to clients
trained on those labels, ranking clients by their contribution.
TraceFL returns a ranked list of clients in descending order of
responsibility towards a prediction, where the client with the
highest score is likely to be most responsible.

We evaluate TraceFL’s localization accuracy on two real-
world medical imaging datasets, two standardized image
datasets, and two NLP classification datasets using ResNet,
DenseNet, BERT, and GPT models resulting in over 12 FL
configurations spanning a total 400 FL rounds and 4000
models. We verify if the most responsible client returned by
TraceFL contains the data with the label that was correctly
predicted by the global model. We measure the accuracy on 10
test inputs. Figure 2 shows TraceFL’s performance in localiz-
ing responsible clients.The X-axis represents training rounds,
while the Y-axis shows the FL global model’s classification
accuracy and TraceFL’s localization accuracy.

We include the FL global model’s accuracy to demonstrate
the training progression. Higher global model accuracy im-
proves neuron provenance confidence, aiding TraceFL’s effec-
tiveness. Global model accuracy helps calibrate the provenance
results because lower model accuracy leads to low confidence
in prediction, which transitively reduces the confidence of
neuron provenance, causing additional challenges for TraceFL.
As training progresses and more clients with unique labels
participate, the global model’s accuracy improves.

Our results indicate that TraceFL consistently localizes
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Domain Dataset Dirichlet
Distribu-
tion (α)

FedDebug
Accuracy
(%)

TraceFL
Accuracy
(%)

Image

Abdominal-CT
0.3 0.00 100
0.7 21.5 100
1.0 44.4 100

Colon-Pathology
0.3 0.00 100
0.7 54.7 100
1.0 68.7 100

CIFAR10
0.3 20.0 100
0.7 11.3 100
1.0 22.0 100

MNIST
0.3 14.0 100
0.7 86.0 100
1.0 36.0 100

Text

DBpedia
0.3 NA 96.7
0.7 NA 94.0
1.0 NA 97.3

Yahoo-Answers
0.3 NA 100
0.7 NA 100
1.0 NA 100

TABLE I: Comparison of TraceFL with FedDebug on lo-
calizing clients responsible for misprediction. FedDebug is
compatible with image classification only and is effective
under specific data distribution (i.e., α = 1).

responsible clients regardless of the global model’s perfor-
mance, neural network architecture, number of training rounds,
or dataset. it accurately identifies contributions even from
clients participating for the first time. Across different FL
settings, TraceFL’s average localization accuracy on image
classification tasks is 98.96%, and in text classification tasks,
it is 99.59%, demonstrating its broader effectiveness and
applicability to domains other than image classification.
Takeaway. On average, TraceFL achieves localization accuracy
of 99.12% across all FL experiments settings.

B. TraceFL’s Localization Accuracy in Mispredictions

FL’s global model can exhibit unwanted behavior (e.g.,,
mispredictions) due to intentional or unintentional faults in
the training data of clients. Mislabelling in training data may
occur due to faulty sensors, human error in labeling data, or,
in some cases, adversarial attacks [1]–[5]. Finding a client
responsible for such behavior is a crucial debugging goal that
helps FL developers exclude such clients from participating in
future rounds to improve the global model’s quality.

To evaluate TraceFL’s localization accuracy on mispredicted
labels by a global model, we design the following experiments.

Similarly to prior work on fault localization in FL [33],
we select one client in an FL round and flip a specific label
in its training data to make it faulty. The inclusion of such
clients influences the global model to make mispredictions.
For instance, in the medical dataset, we flip the label ‘Cancer-
associated Stroma’ to ‘Adipose’ in the Colon Pathology dataset
to reflect a faulty hospital containing incorrect label data that
may occur due to misdiagnosis. Using this setting from Fed-
Debug [33] also offers fair experiment settings that compare
TraceFL’s localization accuracy with FedDebug’s, which is the
most recent work on fault localization in FL.

Table I shows the results. TraceFL outperforms FedDebug
significantly and can operate in cross-domain tasks of image
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Fig. 3: TraceFL performance on different data distributions.

and text classification without any change in its approach.
FedDebug, by construction, is limited in two ways. First, it
is only designed and evaluated on image classification tasks,
while TraceFL works with both image and text classifica-
tion tasks. Second, it is limited to a very specific set of
non-IID data distributions, whereas TraceFL performance is
consistent across varying data distributions. Nevertheless, the
results show that even on image classification tasks, TraceFL
outperforms FedDebug in terms of localization accuracy. For
instance, in Abdominal-CT with α = 1, FedDebug’s average
accuracy is 44.4% while TraceFL’s accuracy is 100%.
Takeaway. TraceFL’s achieves 99.3% average localization
accuracy across 18 FL settings, whereas FedDebug’s average
localization accuracy is only 32% on image classification.

C. TraceFL’s Robustness

Varying the client’s data distribution and applying differ-
ential privacy (DP) techniques in FL pose additional hurdles
to FL in achieving high model accuracy, which, in turn, may
pose challenges to TraceFL in keeping its high localization
accuracy. Therefore, to add rigor to our experiments, we
evaluate the impact of these two additional FL settings on
TraceFL localization accuracy. In this section, we only include
results from the most challenging experiment setting due to
space constraints.

1) Varying Data Distribution: Different distributions of
data among clients can impact the FL training process. For
instance, in a highly challenging data distribution (α = 0.1),
FL training suffers from low global model accuracy. This
is a known phenomenon in FL [37], where the FL fusion
algorithm struggles to aggregate clients’ models trained on
severely heterogeneous training data. To mitigate bias towards
a specific Dirichlet data distribution, we evaluate TraceFL on
varying the value of α from 0.1 to 1.0, showing the impact of
different data distributions on TraceFL’s localization accuracy.

Figure 3 shows the results of this experiment on all six
datasets. The X-axis represents the value of α in the Dirichlet
distribution, while the Y-axis represents the accuracy. For a
value of α, we report the maximum accuracy achieved by
the global model across all the rounds as FL model accuracy
and the average accuracy of TraceFL across all the rounds as
localization accuracy of TraceFL.
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DP Noise DP Sensitivity FL Model Ac-
curacy

TraceFL Avg.
Accuracy

0.003 15 97.36 100
0.006 10 97.90 100
0.012 15 88.81 100

TABLE II: Results of TraceFL with DP in FL.
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Fig. 4: Impact of DP noise on FL training accuracy.

As expected, the FL training accuracy decreases as the
value of α decreases. This is because the clients have varying
data both in terms of quantity and labels. For instance, when
α = 0.1 in Figure 3-(a), the maximum FL global model
accuracy observed across all rounds is 35.25% and when
α = 0.5 the maximum accuracy is 83.4%. Since GPT is
an advanced neural network architecture that learns better in
comparison to DenseNet, the FL training accuracy is higher in
GPT on lower α values as well. Overall, TraceFL localization
accuracy is 99.76%, on average, across all values of α. The
line plots show no significant change in TraceFL localization
accuracy, demonstrating TraceFL’s robustness in challenging
real-world data distributions.

2) Differential Privacy-Enabled FL: Differential privacy
(DP) is a privacy-preserving mechanism that ensures that the
output of a model does not reveal any information about
the individual data points. DP in FL [60] adds noise to the
weights of a model to protect against an adversary stealing
or recovering the individual training data points. However,
a delicate balance is needed in DP between the noise to be
added and model accuracy, as adding too much noise severely
decreases the model’s accuracy.

We evaluate TraceFL’s robustness when DP is enabled in
FL, using standard DP settings in FL that provide optimal
privacy and model accuracy, as mentioned in prior work [60].
Table IIpresents the results of this experiment, and Figure 4
shows the impact of noise on the FL training accuracy. As
expected, the FL model’s accuracy decreases when the DP
noise increases and vice versa. However, TraceFL maintains
its performance in DP-enabled FL. As DP adds noise to the
model weights, the global model’s output is still based on its
neurons’ activations on the given input. Thus, TraceFL’s work-
ing principle remains intact, and it successfully traces back
to the source of the prediction based on the global model’s
neuron provenance. We want to emphasize that TraceFL does
not recover the individual clients’ data points. It only identifies
the responsible clients in ranked order. Overall, we find that
TraceFL is robust against the use of differential privacy in FL
where it achieves an average localization accuracy of 99% in

Total Clients FL Model Accuracy
%

TraceFL Avg. Accu-
racy %

200 98.49 99.76
400 98.29 99.76
600 98.39 100
800 98.10 100
1000 98.05 99.52

TABLE III: Scalability results of TraceFL with different
number of clients with GPT.
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Fig. 5: TraceFL’s scalability when # of rounds increase

GPT and DBpedia dataset (Figure 4 and Table II).
Takeaway. TraceFL is robust to challenging real-world data
distributions and the use of differential privacy, achieving
approximately 99% localization accuracy.

D. TraceFL’s Scalability

We asses the scalability of TraceFL across three different
dimensions: (1) by increase the total clients, (2) by increasing
the client participation, and (2) by increasing the number of
rounds. First, we vary the number of clients from 200 to
1000 and measure if TraceFL can still accurately localize the
responsible client. We use the state-of-the-art neural network
GPT and the DBpedia dataset. Table III presents the results
of the scalability experiment. We observe that TraceFL’s
performance remains consistent, with an average localization
accuracy of 99% across 200 to 1000 clients over a total of 75
FL training rounds. This experiment significantly exceeds the
scale of experiments performed by prior work [33].

When we vary the number of participating clients per
round from 20 to 50, TraceFL’s performance remains stable,
achieving 100% localization accuracy across 60 FL training
rounds. Prior work has shown that even at an enterprise scale,
only a few clients participate in a single FL round [34], [36].
Furthermore, we evaluate the scalability of TraceFL over up to
80 rounds with 400 clients in total. Figure 5 demonstrates that
TraceFL maintains consistent performance with an average
localization accuracy of 98%. These results indicate that
TraceFL is scalable and can handle a large number of clients
and rounds without compromising its performance.
Takeaway. Overall, TraceFL is capable of handling the prove-
nance of millions of neurons in the neural network to accu-
rately identify the most responsible client. In FL settings of up
to 80 FL training rounds and 1000 clients using large models
such as GPT and BERT—and 6 different datasets, TraceFL
achieves an average localization accuracy of 99.20%.
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Fig. 6: Client localization of TraceFL vs. FedDebug.

E. TraceFL’s Localization Time

We evaluate the runtime performance of TraceFL by mea-
suring the time TraceFL takes to accurately localize the
responsible clients in FL. As mentioned before, there is
no existing method that localizes the responsible clients for
both correct and incorrect predictions. The closed related
work to TraceFL is FedDebug, which only localizes faulty
clients. Thus, we compare TraceFL’s localization time with
FedDebug’s faulty localization time.

Figure 6 presents the localization times per dataset for both
TraceFL and FedDebug, averaged across faulty client local-
ization settings. Note that FedDebug is not compatible with
the text classification models; therefore, its localization times
for the two text datasets are not available. TraceFL takes, on
average, 3.7 seconds to localize the responsible client, whereas
FedDebug’s faulty client’s localization time is 1.1 seconds
on average. This is expected as TraceFL requires computing
gradients of neuron outputs, whereas FedDebug compares raw
neuron activations. While TraceFL’s localization time is higher
than FedDebug, it is almost negligible compared to the FL’s
per round training time (in minutes if not hours [33]).
Takeaway. TraceFL compensates for the marginally slower
localization time with much broader debugging support for
model architecture, text data domains, and general-purpose
reasoning in FL.

F. Threat to Validity and Limitations

There are two primary threats to the validity of the results
presented. First, in our experiments, we select a randomly
selected subset of clients to participate in every FL round. A
different sequence of randomly selected participating clients
may alter the TraceFL’s accuracy. We mitigate this threat
by performing responsible client localization on every round
and then reporting the average localization accuracy across
all rounds. Second, the same Dirichlet distribution (α) may
provide a different distribution of the training data across
clients. Even when the value α is the same, the localization
accuracy of TraceFL may vary slightly. We mitigate this
threat by averaging the localization accuracy across rounds and
also measuring the localization accuracy on different datasets
and models. As with any other research, TraceFL also has
limitations. TraceFL is designed for classification tasks in FL.

It may not be directly applicable to non-classification tasks
such as text generation in GPT.

VI. RELATED WORK

Debugging in Machine Learning. As the complexity of
neural network models continues to increase, the need for
interpretability techniques becomes more crucial and impor-
tant. Interpretability techniques are used to understand the
inner workings of a neural network. These techniques try
to explain the decisions made by the model, and how the
model makes these decisions. This is important for many
reasons, including the ability to explain which input features
are important to a model’s output, to understand the model’s
behavior, and to identify potential biases and errors in a
trained model. Several approaches, such as Integrated Gradi-
ents [41], Gradient SHAP [42], DeepLIFT [43], Saliency [44],
Guided GradCAM [45], Occlusion (also called sliding window
method) [46], and LIME [47], exist which evaluate the contri-
bution of each input feature to model’s output. For instance,
Integrated Gradients [41] evaluates the contribution of each
input feature by calculating the integral of gradients w.r.t.
input. This is done along the path from a selected baseline to
the given input. Occlusion involves replacing each contiguous
rectangular region with a predetermined baseline or reference
point and measuring the difference in the model’s output. This
approach is based on perturbations and provides a way to
evaluate the importance of input features by measuring the
change in the model’s output.

Almost all existing provenance and interpretability ap-
proaches are inapplicable in FL, as by design, they solve an
orthogonal problem — identifying the important feature in
the input responsible for a prediction instead of clients. This
distinction is critical because the training data or the training
process are completely inaccessible in FL. Existing approaches
require access to the client’s data. Furthermore, they are only
designed for a single neural network but FL global model is
a mixture of clients’ models participating in the given round.
Operating these techniques on FL would require us to first
identify a suspicious client’s mode–a problem that TraceFL
solves. Even if such techniques are applied to a client’s model,
the resulting feedback is not immediately actionable and
constructive. TraceFL is designed to address the limitations
of the existing debugging approaches and added challenges of
FL such as distributed training, inaccessibility to clients, and
the mixture of models.

There has been recent work on ensuring accountability
in FL systems. A vast majority of solutions leverage the
blockchain to ensure accountability [61]–[65]. Some of these
works (BlockFLow [64], BlockFLA [65]) design an FL system
that uses the Ethereum blockchain to provide accountability
and monetary rewards for good client behavior. However,
all these systems require utilizing the blockchain and entail
significant modifications to the existing FL system, presenting
a barrier to adoption. TraceFL in contrast can work with any
existing system without modifications.
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Provenance Approaches in ML. Provenance has been ex-
tensively studied for both ML and dataflow programs [18]–
[20], [66], [67]. They address various issues such as re-
producibility [17], [68]–[71], provide debugging and testing
granularities [67], explainability [20], and mitigating data poi-
soning attacks [14]–[16]. In the context of machine learning,
provenance tracks the history of datasets, models, and exper-
iments. This information is used to select the interpretability
of neural network predictions and reproducibility. Provenance-
based approaches are important to create ML systems that
generate reproducible results [17], [68]–[71]. For instance,
Ursprung [17] captures provenance and lineage by integrating
with the execution environment and records information from
both system and application sources of an ML pipeline.
Ursprung does not require changes to the code and only adds
a small overhead of up to 4%.

VII. CONCLUSION

In this paper, we introduced the concept of “neuron prove-
nance” and developed a debugging tool, TraceFL, for Feder-
ated Learning (FL). TraceFL accurately identifies the primary
contributors to a global FL model’s behavior. Our evaluations
show that TraceFL achieves an impressive average localization
accuracy of 99%. Additionally, TraceFL also outperforms the
existing fault localization technique. We provide a reusable,
functional artifact of TraceFL in Flower framework to have
an immediate practical impact in real-world FL deployment.
In conclusion, our work represents a significant step forward
in addressing the open challenges of debugging in FL.
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[70] S. Samuel, F. Löffler, and B. König-Ries, “Machine learning pipelines:
Provenance, reproducibility and fair data principles,” in Provenance and
Annotation of Data and Processes: 8th and 9th International Provenance
and Annotation Workshop, IPAW 2020+ IPAW 2021, Virtual Event, July
19–22, 2021, Proceedings 8. Springer, 2021, pp. 226–230.

[71] D. Xin, H. Miao, A. Parameswaran, and N. Polyzotis, “Production
machine learning pipelines: Empirical analysis and optimization op-
portunities,” in Proceedings of the 2021 International Conference on
Management of Data, 2021, pp. 2639–2652.

13


	Introduction
	Background and Motivation
	Federated Learning
	Motivation

	Challenges in Debugging FL
	Design of TraceFL
	Determining Influential Neurons
	Neuron Provenance Across Fusion
	Measuring Client's Contribution

	Experimental Evaluations
	TraceFL's Localization Accuracy in Correct Predictions
	TraceFL's Localization Accuracy in Mispredictions
	 TraceFL's Robustness
	Varying Data Distribution
	Differential Privacy-Enabled FL

	TraceFL's Scalability
	TraceFL's Localization Time
	Threat to Validity and Limitations

	Related Work
	Conclusion
	References

