
FedDebug: Systematic Debugging 
for Federated Learning Applications

Waris Gill1, Ali Anwar2, Muhmmad Ali Gulzar1

The 45th IEEE/ACM International Conference on Software Engineering

Functional Reusable Available

1 2



Why Federated Learning (FL)?

Hospital, phones and smart devices generate 
wealth of data. 

ML training require transfer of data to the 
central server. 

Central 
Sever

Data Transfer

Simply sending raw data to train an ML model is not feasible:
❑ Data is sensitive
❑ Privacy laws enforced by the governments



What is Federated Learning (FL)?

𝑾𝑨 𝑾𝑩 𝑾𝑪

𝑾𝒈𝒍𝒐𝒃𝒂𝒍 =  𝑾𝒌

Central Server
Step 4:  Server aggregates 
clients’ models (i.e., 𝑊𝑘).

Step 1: Send 
copies of global 
model to clients.

Step 2: Each 
client trains 
received  
model on its 
local data.

Step 3: Each client send 
its local model to server. 

FL trains an AI model without anyone seeing or 
touching private data.

Takeaway: FL trains high quality AI model without accessing clients’ private data.

Real World Examples

❑ Step 1-4 is a single FL training round.  
❑ Training continues for hundreds of 

rounds.

Siri Alexa
Google’s 
Gboard Alice Bob Charlie



Debugging Problem in FL

❑ Suppose that Bob’s model becomes faulty 
during its local training. 

❑ During aggregation, Bob’s model (𝑾𝑩) also 
makes the global model (𝑊𝑔𝑙𝑜𝑏𝑎𝑙) faulty.

How can an FL developer at the central server,  
automatically find Bob?

𝑾𝑨 𝑾𝑩 𝑾𝑪

𝑾𝒈𝒍𝒐𝒃𝒂𝒍 =  𝑾𝒌

Central Server

Alice Bob Charlie

Faulty Client 
❑ Natural (faulty sensor/camera)
❑  Malicious (Backdoor Attack)



Trivial Solution

𝑾𝑨 𝑾𝑩 𝑾𝑪

𝑾𝒈𝒍𝒐𝒃𝒂𝒍 =  𝑾𝒌

Central Server

Alice Bob Charlie

Developer accesses the clients’ data to evaluate 
each model to find the faulty client.

However, FL forbids to access clients’ data.

How do we  find Bob without accessing clients’ data 
or collecting new dataset at the aggregator?



Our Contribution: FedDebug

Interactive 
Debugging

Fault 
Localization

FedDebug’s lightweight Interactive 
debugging assist a developer to 
inspect any FL training round.

FedDebug’s fault localization 
technique finds the faulty client 
(Bob) during interactive debugging. 

Alice Bob Charlie

Step Next

Round 19 Round 20

Fault Localization

Step In

Alice Charlie

Step Out

Resume

FedDebug

Bob

+



Round 18

Background
Breakpoint

Step Next

Round 19 Round 20 Round 21

Round 19 Round 20

Fault Localization

Step In

Interactive Debugging- with a Faulty Client

Alice Bob Charlie
Bob is the faulty client.

Ignore Bob’s contribution, 
during aggregation, from 
this round onwards.

Step Out

Resume

Restart Round

Round 22 Round 23

FedDebug 
Interactive Debugging

If there is no faulty client, FedDebug 
will have nearly no impact on the live 

FL training. 



What information is collected in FedDebug?

FedDebug collects:

Clients’ models

Alice CharlieBob

Reported metrics (e.g., training loss)

Round ID

Round 18 Round 19

Hyperparameters (e.g., learning rate, epochs)

FedDebug does not instrument clients or 
access their private data (i.e., clients’ 

privacy is intact).



Localizing Faulty Clients in FL

Alice Bob Charlie

Now, let's discuss how FedDebug localizes Bob at 
the central server.



How to automatically find a faulty Client in FL?

To find a fault we require two things :

❑Test Input

❑Test Oracle

 

Image (Test input)

Label (Cat)

Corresponding Oracle

In FL,  Developer can’t access 
the clients’ data, which limits 
existing ML testing solutions.

Example: To test a neural network we require 

One possible way to fix this issue is 
with Differential Execution.



Background: Differential Execution

It executes two or more comparable programs on the 
same test input and compare the resulting outputs to 
identify a bug. 

Comparison can be done at different levels: 

• Output comparison

• Byte code execution comparison 

• Crashing Comparison 
Compare 

output No BugBug
Minority Majority

Program V1 Program V2 Program V3

Execute
3

Execute
40

Execute
3

Test Input



Programs Differential Execution FL Clients’ Models Differential Execution

Differential Execution in Federated Learning

Compare 
output

No BugBug
Minority Majority

Infer
cat

Infer
dog

Infer
cat

Alice-NN Bob-NN Charlie-NN

No BugBug
Minority Majority

Program V1 Program V2 Program V3

Execute
3

Execute
40

Execute
3

Problem: The FL developer cannot access 
clients’ data. How can we solve this issue?  

Compare 
output

Test Input

Possible Solution: Generate random inputs 
at central server. 



Clients’ Models Differential Execution on Random Input

Differential Execution in FL: Random Input

• Its impossible to assign a real-label to a random 
input. Each client may produce different outputs.

Compare 
output

No BugBug
Minority Majority

Infer
cat

Infer
dog

Infer
bird

Alice-NN Bob-NN Charlie-NN

Faulty client will have different internal behavior w.r.t others.

• How can we solve it?
Similar to byte code execution comparison, 
compare the internal behaviors of clients’ 
models.



Differential Execution with Neuron Activations

Differential Execution in FL: Capturing Client Behavior

Capture the activated neurons on a 

given input. 

Activated Neuron

Inactivated Neuron
Input

Output
[n1, n2, n3, n5]

n1

n2

n3

n4

n5

Bob is a faulty client as its activations are different w.r.t to other clients. 

Compare
Activations

No BugBug

Minority Majority

Act. Neurons
[n1, n2, n3, n5]

Alice-NN Bob-NN Charlie-NN

Act. Neurons
[n1, n4, n5]

Act. Neurons
[n1, n2, n3, n5]

How do we capture internal behavior of a 

neural network?



FedDebug  Implementation

• FedDebug is supported in IBMFL framework.

• Fault localization is completely independent of IBMFL framework. 



Evaluation Goals

❑Performance

❑Fault Localization Accuracy

❑Localizing Multiple Faulty Clients



Performance: Aggregation Overhead

0

5

10

15

20

25

30

5 10 20 30 40 50 60 70 80 90 100

A
gg

re
ga

ti
o

n
 T

im
e

 (
S)

Number Of Clients

Vanilla IBMFL FedDebug + IBMFL

FedDebug adds about 48% to the aggregation time, but it's 
negligible at just 1.2% compared to round training time.

Example: In 60 Clients 
setting:

• IBMFL aggregation 
time is 4.8 seconds.

• FedDebug+IBMFL 
aggregation time is 
8.7 seconds.



How to make a client (Bob) faulty in FL?

Cat
Real Label

Bird
Flipped Label

Bird

When Bob locally trained its neural network on flipped images, it becomes a faulty client. 

Local Training

Bob’s faulty Neural Network

Strength of a faulty client is determined by the noise rate.

# 𝑜𝑓 𝐹𝑙𝑖𝑝𝑝𝑒𝑑 𝐿𝑎𝑏𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑒𝑙𝑠
=noise rate

After Training

Flipped the labels of the client’s training data.

We constructed 68 unique FL 
configurations by varying datasets, 

clients, architectures, number of  faulty 
client as a benchmark for future research.

GitHub 



What is  a representative noise rate for simulating a 
faculty client.

FedDebug’s resilience against different degrees of 
faults

Fault Localization Accuracy

0

20

40

60

80

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
lo

b
al

 M
o

d
e

l C
la

ss
if

ic
at

io
n

 
A

cc
u

ra
cy

 (
%

) 
 

Noise Rate

CIFAR 10 FEMNIST

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fe
d

D
e

b
u

g 
Fa

u
lt

 L
o

ca
liz

at
io

n
 

A
cc

u
ra

cy
 (

%
)

Noise Rate

 ResNet  DenseNet

FedDebug effectively localizes faulty clients even with 
low noise rates.

73%
69%

50%

57%

Low noise rates up to to 0.7, barely affect the 
global model performance.

53%

100%



Localizing Multiple Faulty Clients

FedDebug identifies multiple faulty clients with an average 
accuracy of 90%.

# of Faulty 
Clients

Total 
Clients

Architecture Localization 
Accuracy (CIFAR)

Localization 
Accuracy (FEMNIST)

5 30 ResNet 100 98

7 30 ResNet 100 97.1

5 30 DenseNet 100 100

7 30 DenseNet 100 100

5 50 ResNet 54 60

7 50 ResNet 57.1 62.9

5 50 DenseNet 100 100

7 50 DenseNet 100 95.7

• DenseNet neurons learns 
better features compared 
to ResNet. 

• Dense concatenation 
among its layers is the 
reason behind this 
advantage.

• Thus, FedDebug performs 
well when the clients 
contain DenseNet.



Conclusion

FedDebug is the first open-source debugging and testing framework for FL applications.

Currently available in IBM FL Framework.  

Porting to Flower FL Framework is in progress. 

Complete artifact is available at https://github.com/SEED-VT/FedDebug

Thank you ☺
Functional Reusable Available

Complete%20artifact%20is%20available%20at%20https:/github.com/SEED-VT/FedDebug.

	Slide 1: FedDebug: Systematic Debugging for Federated Learning Applications
	Slide 2: Why Federated Learning (FL)?
	Slide 3: What is Federated Learning (FL)?
	Slide 4: Debugging Problem in FL
	Slide 5: Trivial Solution
	Slide 6: Our Contribution: FedDebug
	Slide 7: Interactive Debugging- with a Faulty Client
	Slide 8: What information is collected in FedDebug?
	Slide 9: Localizing Faulty Clients in FL
	Slide 10: How to automatically find a faulty Client in FL?
	Slide 11: Background: Differential Execution
	Slide 12: Differential Execution in Federated Learning
	Slide 13: Differential Execution in FL: Random Input
	Slide 14: Differential Execution in FL: Capturing Client Behavior
	Slide 15: FedDebug  Implementation
	Slide 16: Evaluation Goals
	Slide 17: Performance: Aggregation Overhead
	Slide 18: How to make a client (Bob) faulty in FL?
	Slide 19: Fault Localization Accuracy
	Slide 20: Localizing Multiple Faulty Clients
	Slide 21: Conclusion

