
Quantifying Memory Underutilization in HPC Systems and
Using it to Improve Performance via Architecture Support

Gagandeep Panwar∗
Virginia Tech

Blacksburg, USA
gpanwar@vt.edu

Da Zhang∗
Virginia Tech

Blacksburg, USA
daz3@vt.edu

Yihan Pang∗
Virginia Tech

Blacksburg, USA
pyihan1@vt.edu

Mai Dahshan
Virginia Tech

Blacksburg, USA
mdahshan@vt.edu

Nathan DeBardeleben
Los Alamos National Laboratory

Los Alamos, USA
ndebard@lanl.gov

Binoy Ravindran
Virginia Tech

Blacksburg, USA
binoy@vt.edu

Xun Jian
Virginia Tech

Blacksburg, USA
xunj@vt.edu

ABSTRACT
A system’s memory size is often dictated by worst-case workloads
with highest memory requirements; this causes memory to be un-
derutilized in the common case when the system is not running its
worst-case workloads. Cognizant of this memory underutilization
problem, many prior works have studied memory utilization and
explored how to improve it in the context of cloud.

In this paper, we perform the first large-scale study of system-
level memory utilization in the context of HPC systems; through
seven million machine-hours of measurements across four HPC
systems, we find memory underutilization in HPC systems is much
more severe than in cloud. Subsequently, we also perform the first
exploration of architectural techniques to improve memory uti-
lization specifically for HPC systems. We propose exposing each
compute node’s currently unused memory to its CPU(s) via novel
architectural support for OS. This can enable many new microar-
chitecture techniques that use the abundant free memory to boost
microarchitecture performance transparently without requiring
any user code modification or recompilation; we refer to them
as Free-memory-aware Microarchitecture Techniques (FMTs). We
then present a detailed example of an FMT – Free-memory-aware
Memory Replication (FMR). On average across five HPC bench-
mark suites, FMR provides 13% performance and 8% system-level
energy improvement compared to a highly optimized baseline rep-
resentative of modern memory systems. To check the performance

∗The first three authors are first co-authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358267

benefits our simulation reports, we emulated FMR in a real sys-
tem and found close corroboration between simulation results and
real-system emulation results. The paper ends by discussing other
possible FMTs and applicability to other types of systems.

CCS CONCEPTS
• Hardware Dynamic memory; • Computer systems
organization Grid computing ; • Software and its engi-
neering Main memory.

KEYWORDS
Memory Architecture, Memory Management, HPC Systems, Oper-
ating Systems, DRAM, Supercomputing

ACM Reference Format:
Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan De-
Bardeleben, Binoy Ravindran, and Xun Jian. 2019. Quantifying Memory Un-
derutilization in HPC Systems and Using it to Improve Performance via Ar-
chitecture Support. In The 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-52), October 12–16, 2019, Columbus, OH, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3352460.3358267

1 INTRODUCTION
A system’s physical memory size is often determined by the worst-
case memory usage scenario with the highest memory requirement.
However, memory usage varies by workload; much of the memory
in a system is often not in use when running common-case work-
loads that use less memory. Many prior works [20, 24, 42, 55, 73]
have quantified the memory underutilization problem in the con-
text of cloud. Correspondingly, many prior works have explored
techniques to mitigate memory underutilization in cloud; they pro-
pose intelligent ways to colocate heterogeneous workloads (e.g.,
memory-hungry database workloads and compute-intensive work-
loads) on the same machine to improve memory utilization. Ex-
amples include colocating both the memory and computations of
different workloads on the same machine (e.g., Quasar [23], Elas-
ticMem [76], VMMemory Overcommit [8]) and colocating different

https://doi.org/10.1145/3352460.3358267
https://doi.org/10.1145/3352460.3358267

MICRO-52, October 12�16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

workloads' program memory, but not computation (e.g., Disaggre-
gated Memory [27, 52, 53], In�niswap [34]).

In this paper, we perform the �rst large-scale study of HPC
systems' system-level memory usage (i.e., each compute node's
total physical memory usage, encompassing everything from mem-
ory used by the OS, by disk bu�ering/�le caching, and user jobs
themselves, etc). Our study spans four months of operation in four
in-production HPC systems in Los Alamos National Laboratory and
Virginia Tech, totaling seven million machine-hours of observation
and � three billion memory usage measurements. We �nd that the
average system-level memory usage in active nodes running user
jobs is only 24%; as such, memory utilization in HPC systems is
much lower than in cloud, which is> 50%according to prior studies
[20, 24, 42, 55, 73].

Memory utilization enhancement techniques that are e�ective
for cloud, such as OS-directed �le caching and workload co-location,
are ine�ective for HPC systems. HPC workloads are typically compute-
intensive rather than storage-intensive (e.g., like database work-
loads); this minimizes the e�ectiveness of �le caching. HPC work-
loads are also highly parallel; as a single workload often already has
su�cient threads/processes to take up all cores in a compute node,
workload colocation is unsuitable for HPC systems. In fact, many
HPC systems (e.g., in all US national laboratories) deliberately dis-
allow colocation of independent workloads on the same compute
nodes to minimize the negative impact of increased thread/process-
level performance variation on parallel workloads caused by the
resultant inter-workload interference.

In this paper, we perform the �rst exploration of architectural
techniques to improve memory utilization for HPC systems. We
propose exposing each compute node's currently unused memory
to its CPU(s) via novel architectural support for the operating sys-
tem in a user-transparent manner (i.e., user code does not need
to be modi�ed or recompiled). When made free-memory aware,
hardware can leverage HPC systems' abundant free memory in
the common to record arbitrary data to boost microarchitecture
performance. We present a detailed free-memory-aware microar-
chitecture technique � Free-memory-aware Memory Replication
(FMR); FMR e�ectively hides many state-dependent memory laten-
cies by using free memory locations to replicate logical memory
blocks to allow CPU to fetch from the memory location with the
faster state at the time of LLC miss. FMR can be readily deployed on
commodity memory systems with commodity memory chips and
commodity memory modules. We end the paper with discussing
other use cases and applicability to other types of systems.

We make the following contributions in this paper:

� We perform the �rst large-scale study of system-level mem-
ory utilization for HPC systems. We �nd HPC systems su�er
from more severe memory underutilization than cloud.

� We are �rst to explore architectural techniques to address
memory underutilization in HPC systems. We propose ex-
posing each compute node's OS-visible free memory to the
node's CPU(s) to improve performance.

� We are �rst to propose the general concept of Free-memory-
aware Microarchitecture Techniques (FMTs), which oppor-
tunistically records arbitrary data in free memory locations
to boost microarchitecture performance.

� We present a detailed FMT � Free-memory-aware Memory
Replication - that improves performance by13%and system-
level energy e�ciency by8%, on average across �ve HPC
benchmark suites.

� To check the performance bene�ts our simulation reports, we
emulated FMR in a real system and found close corroboration
between simulation and real-system emulation results.

2 QUANTIFYING MEMORY UNDER-
UTILIZATION IN HPC SYSTEMS

While many prior works [24, 50, 80] have studied HPC workload
characteristics, they have only studied program-level memory us-
age. Our study quanti�es system-level memory usage, which in-
cludes all memory usages (e.g., memory used by OS, by disk bu�er-
ing/�le caching, by user jobs themselves, etc.).

We studied for four months the memory utilization of four HPC
systems � Grizzly, Badger, Snow at Los Alamos National Laboratory
(LANL) and Cascade at Virginia Tech. Table 1 describes the studied
HPC systems. We have made the raw measurement data for LANL
systems publicly available athttps://usrc.lanl.gov/data/LA-UR-19-
28211.php. The biggest HPC system we studied � Grizzly - is a mid-
range Top500 supercomputer [2]. All systems deploy the widely-
used SLURM job scheduler. We collect every node's memory usage
once every ten seconds by using the LDMS [5] monitoring tool.
LDMS' "Meminfo/MemFree" output reports how much memory in
the node is currently completely not in use (e.g., not by the user
job, not by the OS, disk bu�ering/�le caching, not by anything); we
refer to such idle memory asfree memory. Each compute node's
system-level memory usage is calculated as the node's physical
memory size minus its free memory.

Figure 1 shows the breakdown of how often active nodes use a
given maximum amount of memory across one hour time intervals;
for example, it shows that in Grizzly, the maximum memory usage
of a node when active is less than 32GB in 79% of all one-hour
intervals over the four-month study. We refer to a node running

Table 1: Description of the studied systems. "System utiliza-
tion" is the fraction of time a system's compute node is run-
ning user job(s), on average across all nodes in the system.

Cluster Name Total Compute Computing hardware Memory per System Age
Nodes per Node Node Utilization

Grizzly 1490 2x 18-core E5 128GB 78% 2 Years
Badger 660 2x 18-core E5 128GB 75% 1 Year
Snow 368 2x 18-core E5 128GB 83% 2 Years

Cascade 190 2x 18-core E5 128GB 71% 3 Years

Figure 1: Distribution of active nodes' hourly memory usage.
A node's hourly memory usage is its maximum usage during
the hour. 79% of hourly memory usages in active nodes in
Grizzly are <= 32GB. All studied system have 128GB/node.

�antifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12�16, 2019, Columbus, OH, USA

user job(s) as an active node; as such, Figure 1 �lters out for each
node all one-hour intervals in which the node did not run any
job(s). The average node-level memory utilization of active nodes
are 18%, 17%, 34%, and 26% for Grizzly, Badger, Snow, and Cascade
respectively. Active nodes use on average< 50%of their memory
for 88% of the time when equally weighing the studied systems.

Figure 2 shows every node's memory utilization; it shows for
each node its maximum memory utilization observed during the
study, the90th percentile memory utilization (i.e., the node's mem-
ory utilization in a one-hour interval that is greater than the mem-
ory utilization of 90% of the node's one-hour intervals), and the
80th percentile memory utilization. Figure 2 also only considers
active intervals in which a node has user job(s). Figure 2 shows
there is a large gap between a node's maximum/worst-case mem-
ory utilization and common-case memory utilization (e.g., memory
utilization for 90% or 80% of the time).

As Figures 1 and 2 report system-level memory usage, they ac-
count for all memory used by existing OS-level optimization. One
important OS optimization is to opportunistically use free memory
to transparently cache accessed �les. The OS community has called
this optimization by di�erent names, such as disk bu�ering, caching,
etc.; we call it the OS �le cache to clearly distinguish it from CPU
caches. One interesting question is why the OS �le cache does not
often expand to occupy all free memory over time, given that it can
accumulate �le pages accessed by all past jobs ran on the node. This
question is particularly intriguing given that all studied systems
are heavily utilized (see Table 1) and none of the studied systems
enforce any size cap for the OS �le cache as we have empirically
veri�ed through our measurements.

In HPC systems, a node's OS �le cache typically grows slowly for
two reasons. First, unlike data center workloads, which are storage-
intensive (i.e., spend short time on computation after accessing
the �le system), HPC workloads tend to be compute-intensive (i.e.,
compute for a long time after reading input �le(s)). Second, inputs
to a node participating in a distributed job often come directly from
a master process (e.g., an MPI master process) through message
passing, not through the �le system and, therefore, are often not
inserted into many participating nodes' OS �le caches. A major
exception to the above is writing checkpoint �les to provide fault
tolerance. However, under network-based �le systems (e.g., NFS,

Figure 2: The maximum, 90th percentile, and 80th percentile
memory utilization of every node when active. Each vertical
slice of three points belong to a distinct node. Nodes within
each system are sorted by their 80th percentile utilization.

HPFS, Lustre), which are commonly used by HPC systems, writing
to �les can cause evictions from client-side caches to help preserve
cache coherence [72].

In HPC systems, a node's OS �le cache often shrinks for multiple
reasons. After a job ends, its input �les are often compressed/archived
and then deleted to preserve precious storage space on storage
servers; deleting a �le evicts its content from OS �le cache. When
running jobs that allocate a large amount of memory, OS also evicts
cached �le pages to make room for program memory; OS does
not refetch evicted �le pages when program ends to avoid costly
storage and network access overheads. Even if OS were to refetch
evicted �le pages, it would only bene�t accesses to few shared �les,
such as executables, but not individual users' �les, because which
nodes are available the next time the same user submits a job are
often di�erent in busy HPC systems.

In short, the slow growth rate of OS �le cache coupled with the
many factors shrinking OS �le cache keeps it small in HPC systems.

A potential simple solution to address memory underutilization
is to turn o� unused memory. O� memory is still under utilized,
however. Turning o� memory can also reduce system performance
by reducing memory rank-level and bank-level parallelism. Further-
more, memory voltage and, thus, power has also been steadily de-
clining [39� 41]; this has reduced memory's contribution to system
power from � 30% in 2009 [9] down to � 18% in 2018 [10]. Another
potential simple solution is to reduce memory system size. However,
this reduces the maximum solvable problem size and, therefore,
reduces the HPC system's capability, which is an important metric
of merit for HPC systems.

Prior techniques that colocate heterogeneous workloads on the
same node to improve memory utilization in cloud [8, 23, 34, 52, 76]
are inadequate for HPC systems. Individual HPC workloads are
highly parallel and, therefore, often occupy all cores in a node; de-
liberately spreading the threads/processes of individual workloads
across more nodes than necessary to colocate di�erent workloads'
threads/processes on the same nodes increases network communi-
cation overheads and, therefore, reduces parallel performance. Also
because they tend to be more parallel than cloud workloads, HPC
workloads are more sensitive to performance variation; slowing
down a single thread can signi�cantly slow down the total execu-
tion time of parallel programs. By making multiple workloads share
the same node's network access, CPU power budget, etc, workload
colocation can cause substantial performance variability; to provide
performance isolation, many HPC systems (e.g., in all US national
laboratories) deliberately disallow workload colocation.

3 ARCHITECTURAL SUPPORT FOR OS TO
EXPOSE FREE MEMORY TO CPU

Ideally, OS should be able to utilize HPC systems' abundant un-
used memory to e�ectively boost performance, just as OS can do
so for data center (e.g., database) workloads via the OS �le cache.
To this end, we propose a novel architectural support for OS to
expose a node's OS-visible free memory to its CPU(s) to enable
Free-memory-aware Microarchitecture Techniques (FMTs), a new
class of microarchitecture techniques that opportunistically record
arbitrary data in free memory to boost microarchitecture perfor-
mance. We observe through the Advanced Con�guration and Power

MICRO-52, October 12�16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

Interface (ACPI), OS in existing systems can already inform CPU
of the underutilization of various hardware resources so that CPU
can opportunistically boost microarchitecture performance. For ex-
ample, OS can instruct CPU to power down cores/caches via ACPI;
conceptually, this tells CPU which cores/caches are not in use and
allows CPU to exploit this knowledge to opportunistically boost
microarchitecture performance (e.g., to turbo-boost the frequency
of the still in-use cores). Based on the above observation, we pro-
pose piggybacking on ACPI to enable OS to inform hardware which
physical memory locations are currently not used by software.

Figure 3 provides an overview of how OS uses the proposed
architectural support. OS maintains a variable-sized continuous free
memory address range within its free list. OS communicates this
large continuous free memory range to hardware by piggybacking
on the existing OS-controlled ACPI interface. CPU then leverages
the OS-exposed free memory to record arbitrary data �for free" to
help boost microarchitecture performance.

The rest of this section describes the new architectural support
and how OS uses it. Section 4 describes a detailed FMT it enables.

3.1 Architectural Support
ACPI de�nes for each processor several hardware registers for OS
to write/set the processor's power states [4]. Similarly, we propose
adding to each processor a hardware memory control register for
OS to record a free continuous memory address range within the
processor's physical memory address range. This register records
the upper and lower addresses of the free continuous physical mem-
ory range. FMTs will be allowed to autonomously write arbitrary
data in arbitrary locations within the free continuous physical mem-
ory range recorded in the register. We refer to this register as the
CPU-visible Free Memory Register (CVFMR) register and refer to
the physical memory region it records as theCPU-visible free page.
OS can expand or shrink the CPU-visible free page by updating
CVFMR via ACPI at runtime. A node's CPU-visible free page can
expand up to 100s to 1000s of gigabytes (e.g., up to almost the entire
memory system) when software-level memory usage is low.

To expand the CPU-visible free page, OS calls ACPI to write a
smaller lower address and/or a greater upper address into CVFMR.
This ACPI call can complete quickly because it simply sets the value
of CVFMR. Writing to hardware ACPI registers is fast as they are
used to manage CPU power modes, which can be updated within
tens of microseconds [56]. Afterwards, CPU asynchronously initial-
izes the pages added to the CPU-visible free page without interrupt-
ing any running programs by using spare bandwidth; initialization
values depend on the FMT(s) in use. By initializing linearly, CPU
can track the yet-uninitialized region via one register; this allows
FMTs to continue to access initialized free memory in parallel. We
note last-level cache (LLC) may evict dirty blocks with physical
addresses that fall within the CPU-visible free page because a pro-
gram can write to a page soon before freeing the page. To handle
write requests LLC sends to MC for such dirty evictions, MC simply
drops all write requests to addresses within CVFMR as free physical
pages only store dead/freed virtual memory objects.

To shrink the CPU-visible free page (e.g., to allocate some of its
physical memory to a requesting process), OS calls ACPI to write a
greater lower address and/or a smaller upper address into CVFMR.

Figure 3: Overview of the proposed architectural support for
OS to expose free memory to hardware.

This ACPI call can also complete quickly because it again simply
sets the value of CVFMR. Afterwards, FMTs cease writing data to
physical addresses outside of the updated address range in CVFMR.
The contents of pages taken away from the CPU-visible free page do
not need to be preserved because these pages hold opportunistically
recorded data that did not exist in the �rst place without the CPU-
visible free page. OS zeros out these physical pages before allocating
them to programs, just as existing OS also zeros out physical pages
before allocating them to enforce inter-process memory protection.

3.2 How OS Uses the Architectural Support
OS tracks the CPU-visible free page in its free list (see Figure 3).
At runtime, OS expands the CPU-visible free page periodically;
periodic expansion enables all nodes in an HPC system to expand
their CPU-visible free pages at the same time to minimize OS jitter,
which is a concern for HPC systems. We propose expanding the
CPU-visible free page once an hour. At the end of each hour, OS
�rst compacts1 all free physical pages outside of the CPU-visible
free page to one or both of its ends and then calls ACPI to expand
the page by writing the widened continuous free memory range to
CVFMR. For our measured systems with128GB/node, expanding
the CPU-visible free page once an hour also limits the maximum
amount of data migrated per node per hour to only128GB.2 We
pessimistically estimate compacting128GBof free memory in an
hour takes128GB•¹14GB•sº = 9 seconds, where14GB•s is the
worse-case memory compaction throughput we observed via real-
system experiments (see detail in Section 6.3)); this translates to a
worst-case overhead of9s•1hr = 0:3%. Common-case overheads
are much lower (see evaluation in Section 6.3).

OS may shrink the CPU-visible free page for memory allocation
requests. OS �rst uses other free pages in the free list to satisfy
memory allocation requests. When the free list runs out of other
free pages, OS decreases the size of the CPU-visible free page to
use physical memory taken away from the CPU-visible free page to
satisfy the memory allocation request. OS shrinks the CPU-visible
free page by calling ACPI to write a smaller address range into
CVFMR. OS takes away pages from the edges of the CPU-visible
free page to maintain its contiguity. We note that after OS runs
out of regular free pages in the free list, calling ACPI to shrink the
CPU-visible free page for every page allocation is expensive. OS
can e�ectively handle this overhead by reducing the size of the

1Memory compaction [21] is an existing OS feature to create huge (e.g., 2MB or 1GB)
memory pages to improve TLB hit rate.
2Each program page is migrated once (e.g., shifted/dropped down once to compact it
into lower physical addresses) regardless of whether it is a regular page or huge page;
as such, the maximum data movement is 128GB.

�antifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12�16, 2019, Columbus, OH, USA

CPU-visible free page by 256MB at a time and, therefore, call ACPI
only once per256MB•4KB = 65536page allocations. OS tracks the
deducted 256MB as regular pages in the free list to quickly satisfy
future allocation requests.

3.3 Discussion
For a node with multiple CPU sockets, the node's OS maintains a
CPU-visible free page for each CPU. Each CPU is typically assigned
its own contiguous physical memory address range [68]; the address
range of a CPU's CPU-visible free page falls within the CPU's
physical memory address range.

Another challenge with migrating pages to create a large contin-
uous CPU-visible free page is that some virtual pages in the kernel
are unmovable after boot up. Today's systems often map these
pages to the lower physical addresses (e.g., within the �rst 4GB)
[43]. Some X86 systems also reserve a physical address range below
4GB for memory-mapped I/O (MMIO) for backward compatibility
with legacy 32-bit systems. To address this issue, OS may set each
CPU's CPU-visible free page's upper address at a very high physical
address (e.g., the CPU's maximum physical address) and grow the
CPU-visible free page downward by decreasing its lower address.

4 FREE-MEMORY-AWARE
MICROARCHITECTURE

Due to the fundamental tradeo� between computation time and
space, exposing free memory to hardware can enable many new
microarchitecture techniques to boost performance. This section
describes in detail one such new microarchitecture � Free-memory-
aware Memory Replication (FMR). We observe DRAM access la-
tency is heavily dependent on the state of the DRAM location at
the time of LLC miss. For example, an LLC miss only incurs DRAM
refresh latency if the memory location storing the requested block
is currently under refresh. Using free memory locations to replicate
the same memory bock across two di�erent DRAM locations can
hide state-dependent latencies by allowing CPU to read from the
location with the faster state at the time of LLC miss. The rest of this
section is organized as follows. Section 4.1 provides the background
on the di�erent state-dependent latencies in DRAM. Section 4.2
describes how to hide state-dependent latencies for read requests.
Section 4.3 describes how to e�ciently write to memory under FMR.
Section 4.4 describes memory layout details.

4.1 Background: State-dependent Latencies
Refresh Latency (tRFC). DRAM requires periodic refresh because
the charge stored in DRAM cells leaks over time. DDRx memory
chips, which are used in HPC systems, are refreshed on a per-rank
basis; a rank is a group of memory chips that are always accessed
in lockstep. A rank cannot be accessed when it is refreshing.

Bus Turnaround Delay (tWTR/tRTW). After writing to a
rank, CPU must recon�gure the rank's I/O circuitry back to read
mode before it can read from the rank [74]; this is known as bus
turnaround. Similarly, after reading a rank, CPU must recon�g-
ure the rank to write mode before writing it. To prevent frequent
stalls due to frequent bus turnaround, modern systems typically
write in large batches [17, 19, 26]; for example, in our microarchi-
tecture parameter design space exploration in Section 5, we �nd

a write batch size of� 100 maximizes the average performance for
the baseline memory system. Note that in addition to minimizing
bus turnaround, large write batch size also helps the scheduler im-
prove write requests' row hit rate (i.e., how often a request accesses
an already opened row). Unfortunately, writing in large batches
requires stalling read requests for a long time.

Row-to-row Delay (tRRD) & Four-activation Window (tFAW).
CPU can only activate (i.e., open a new DRAM row in) a bank in
a rank after tRRD has passed since the last time it had activated a
bank in the same rank. Similarly, CPU can only activate at most
four banks in a rank within tFAW. tRRD and tFAW help to meet
memory chip-level power constraint.

Row-to-column Delay (tRCD) & Precharge Delay (tRP). Prior
to accessing a new DRAM row in a bank, CPU must �rst activate
the DRAM row and wait row-to-column delay. Furthermore, before
CPU activates a new DRAM row in a bank, the bank must be in the
closed state; otherwise, CPU must �rst issue a precharge command
and wait tRP to close the bank before activating a row in the bank.

4.2 Reading from Memory Under FMR
To hide state-dependent latencies, FMR stores a copy of a logical
block in a free location in a di�erent rank. This enables MC to fetch
from the rank with the faster state at the time of LLC miss. To
avoid inconsistency in the cache hierarchy, MC always inserts the
block into the cache hierarchy using LLC misses' original physical
addresses even when MC fetches from replicating locations.

Making Refresh Nonblocking for Read Requests. Existing
systems typically refresh one rank at a time [12] in a memory
channel, which is a group of one or more ranks that share the
same I/O connections (called the memory bus) to the processor.
When there are two copies of a memory block residing in two
di�erent ranks in the same channel, at most one of the two copies
is inaccessible due to refresh at any given time. MC cancompletely
hide all refresh latency for LLC misses by satisfying them using the
copy residing in a rank that is not currently refreshing.

Making Large Write Batches Nonblocking for Read Re-
quests. To prevent a batch of writes from blocking read requests,
MC can write to only one rank in a channel at a time. When a rank
is in write mode, MC can use another rank to satisfyall LLC misses
as long as the latter has a copy of every block in the former.

Mitigating tRRD and tFAW. Having two copies of the same
logical block in two di�erent ranks gives MC the freedom to fetch
from the rank where tRRD and tFAW constraints are already met
to satisfy LLC misses sooner.

Mitigating tRCD and tRP. Having a copy of a logical block in
a second rank and, therefore, bank can mitigate precharge-induced
read stalls by allowing MC to read from a second bank that is
currently closed instead of reading from an original bank that is
currently open. When a pair of banks have identical content due
to memory replication, MC can improve row hit rate and, thereby,
mitigate activation-induced read stalls in two scenarios. First, if
one of the banks in the pair is closed and the other is open, MC can
purposefully cease to speculatively3 close the open bank without
su�ering from increased row con�ict rate (i.e., how often LLC misses
3Some row bu�er policies, such as the closed page policy or timeout policy, predict
whether the currently opened row in a bank is dead (i.e., it will not be accessed in the
near future); if a row is predicted to be dead, MC speculatively closes the row early

MICRO-52, October 12�16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

Figure 4: FMR provides new scheduling choices (shown in
green) for: (A) read requests and (B) row bu�er policy.

access banks currently opened to wrong rows) because a future
LLC miss requiring a new row can be served by the closed bank;
minimizing how often open banks are closed speculatively strictly
improves row hit rate. Second, if both banks in the pair currently
have the wrong row open at the time of LLC miss, MC can close
the less recently accessed bank; keeping more recently accessed
row/bank open longer strictly improves row hit rate.

Figure 4 summarizes the new scheduling choices that FMR pro-
vides for read requests and speculative precharge operations (a.k.a,
the page/row bu�er policy).

4.3 Writing to Memory Under FMR
To hide refresh latency for write requests, we note that write re-
quests are not on the critical path of program execution; as such,
stalling write requests only slows down performance when the
channel's write bu�er is full, which can cause CPU to stall. To pre-
vent CPU from stalling due to write requests to refreshing ranks
clogging up the write bu�er, we add a writeback cache to each
channel between LLC and the channel's write bu�er to cache write
requests to the refreshing rank, similar to [62]. The writeback cache
is only used as a storage bu�er for write requests, unlike regular
write bu�er, which is also used by the memory scheduler to scan for
writes to the same row to increase row hit rate. Write requests are
always �rst placed into the writeback cache and then later drained
to the write bu�er. The writeback cache only drains a write request
to the write bu�er if the rank the request will go to is not currently
refreshing. Because refresh can take a long time (e.g., 550ns for
16Gb DDR4 memory chips [41]), we organize the writeback cache
as a large 16KB 64-way4 set-associative writeback cache.

We also rely on the writeback cache to write to only one rank at
a time to hide read stalls due to batching writes (see Section 4.2).

to speed up future accesses to di�erent rows in the bank due to future LLC misses.
Misprediction reduces row hit rate, however.
4Writeback cache has high associativity because write bu�ers are also highly asso-
ciative (e.g., fully associative). The writeback cache is only accessed when accessing
memory; its energy per access, as obtained from Cacti [35], is < 1%the energy per
memory access as calculated from MICRON DDR4 datasheet [58].

Figure 5: Organization of a memory channel today. Each
rank has a dedicated chip select (CS) bit [57, 59, 61].

Writeback cache starts draining writes to the write bu�er if one of
the sets exceeds a high watermark of 75%. Writeback cache selects
the rank with the highest occupancy in this set and then drains to
the write bu�er write requests belonging to the selected rank by
visiting all sets in a round robin manner and draining one write
when visiting the set. Writeback cache stops draining writes if it no
longer has any write to the selected rank or the write bu�er is full.

For write requests to logical memory blocks with a replica, MC
must update both copies of the block to ensure consistency. To track
which copy still needs to be written, we add two bits to each entry
in the writeback cache to record which copy or copies still need
to be updated/written to. The writeback bu�er removes a write
request only after both of its bits are currently false.

Finally, we note writing memory twice for each write request
doubles memory bus utilization for writes; this can incur high per-
formance overheads for write-intensive applications. To address the
bandwidth overhead to write to both ranks, we observe that multi-
ple ranks in a channel are connected to a shared bus and that the
bus interconnection topology in general bene�ts from the unique
message broadcasting capability that has long been exploited in
on-chip networks to broadcast/multicast coherence messages. We
propose exploiting the multicasting capability of the memory bus
to simultaneously write/update both copies of the same logical
block in a single memory bus transaction and, thereby, avoid band-
width overheads for replication. Note that even in current server
systems, CPU physically broadcasts every message to all ranks
simultaneously over the shared bus and logically directs a message
to the intended rank by asserting the intended rank's dedicated
chip-select (CS) bit (see Figure 5); unintended ranks ignore all mes-
sages on the bus because their CS bits are deasserted. As such, to
enhance CPU to multicast the same message to two ranks in a chan-
nel simply requires it to assert both ranks' CS bits simultaneously
when transmitting the message. We con�rmed with MICRON's
chief technologist [65, 66] that while commodity memory buses
are currently designed to write to one rank in a channel at a time,
reusing them as is to write to two ranks at a time incurs minimal
to no impact on bus signal integrity. Section 4.5 explains in detail.

To exploit memory bus multicasting to simultaneously update
both copies of the same logical block in one bus transaction, MC
must map both copies to identical DRAM locations (i.e., with same
bank ID, row ID, and column ID) across two ranks in the same chan-
nel. Otherwise, CPU must issue two separate write commands, each
communicating a di�erent DRAM location over the bus; since the
two write commands are spread out in time, the subsequent write
data must also be spread out in time, resulting in two completely

	Abstract
	1 Introduction
	2 Quantifying Memory Under- utilization in HPC Systems
	3 Architectural Support for OS to Expose Free Memory to CPU
	3.1 Architectural Support
	3.2 How OS Uses the Architectural Support
	3.3 Discussion

	4 Free-memory-aware Microarchitecture
	4.1 Background: State-dependent Latencies
	4.2 Reading from Memory Under FMR
	4.3 Writing to Memory Under FMR
	4.4 Memory Layout Details
	4.5 Discussion on Memory Bus Signal Integrity

	5 Methodology
	6 Results
	6.1 Memory Behavior Analysis
	6.2 Sensitivity Analysis
	6.3 Real-system Emulation

	7 Generality
	7.1 Other Potential FMTs
	7.2 Applicability to Other Systems

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

