
Counter-light Memory Encryption

Xin Wang∗, Jagadish Kotra†, Alex Jones‡, Wenjie Xiong∗, Xun Jian∗
∗Virginia Tech †AMD ‡ University of Pittsburgh

xinw@vt.edu, jagadish.kotra@amd.com, akjones@pitt.edu, wenjiex@vt.edu, xunj@vt.edu

Abstract—Unlike the well-known counter mode memory en-
cryption (e.g., SGX1), more recent memory encryption (e.g.,
SGX2, SEV) has no counters. Without accessing any counters,
such counterless memory encryption improves performance over
counter mode encryption and gains wide adoption as a result.

Counterless encryption, however, still incurs a costly per-
formance overhead. Under counterless encryption, the cipher
calculations take data as their direct inputs. As such, the ciphers
for decrypting data can only be calculated sequentially after the
missing data arrive from memory; this requires every last-level
cache miss to stall on the cipher calculations after the needed
data arrive from memory. Our real-system measurements find
counterless encryption can slow down irregular workloads by
9%, on average.

We observe while counter mode encryption incurs costly mem-
ory access overhead, its cipher calculations can often complete
before data arrive because they take counters as input, instead
of data, and counters can fit on-chip much better than data. As
such, we explore how to combine both modes of encryption to
achieve the best of both worlds – the efficient memory accesses
of counterless encryption and fast cipher calculations of counter
mode encryption. For irregular workloads, our proposed mem-
ory encryption – Counter-light Encryption – achieves 98% the
average performance of no memory encryption. When memory
bandwidth is starved, Counter-light Encryption is slower than
counterless encryption by only 1.4% in the worst case.

I. INTRODUCTION

While many companies are moving to cloud to reduce

computing cost, cloud computing raises new security and trust

concerns as companies lose control over physical accesses to

the servers running their applications. To protect the confiden-

tiality of sensitive data, the CPU-side memory controller (MC)

encrypts memory values to protect data from attackers.

Older memory encryption (e.g., SGX1 [28]) provides not

only confidentiality, but also protection against physical replay

attacks (i.e., reverting memory blocks to older values via

physical access to memory). Physical replay protection is

achieved by encrypting each block with a counter that in-

creases whenever writing the block to memory and protecting

each counter with a tree of counters called the integrity tree.

The counters, however, incur both costly memory bandwidth

and capacity overheads. Prior Split Counters designs [62]

[70] [67] effectively reduce the memory capacity overhead

down to just 1%; however, the costly bandwidth overhead

to access the counters still remains. While caching counters

can practically eliminate the bandwidth overhead for regular
workloads, irregular workloads suffer from high counter cache

miss rates and, thus, costly memory bandwidth overheads.

Mainstream memory encryption today eliminates all counter

accesses by eliminating counters all together. We refer to this

as counterless encryption. Examples include SGX2 [43], TME

[36], MKTME [35], SME [46] [4], SEV [6], SEV-SNP [7].

Without counters, they only provide encryption and integrity

check, but do not protect against physical replay attack; they

only protect against software replay attacks [7] [35]. Cloud

data centers like Microsoft Azure, AWS, and Google cloud

are deploying counterless encryption widely in their cloud

servers. For example, on AWS, users can launch an Amazon

EC2 instance with SEV turned on [3].

Problem: Counterless encryption, however, still incurs a

costly performance overhead due to its slow cipher calculation

(i.e., AES [20]) for decrypting data; the cipher calculation

slows down every LLC (last-level cache) read miss due to

starting after the arrival of data, which are the direct inputs

to the cipher calculations. While prefetching can effectively

hide this latency overhead for regular workloads, it cannot

for irregular workloads – the important workloads that moti-

vated the move from counter mode encryption to counterless

encryption. On an Intel Silver 4314 CPU, we find turning on

TME, which uses counterless encryption, slows down irregular

workloads by 9%, on average (see Section III).

Observation: We observe while counter mode encryption

accesses memory slower than counterless encryption, it calcu-
lates cipher faster. Its cipher calculations can often complete

before data arrive because they take counters as input, instead

of data, and counters fit on-chip much better than data. While

counter blocks suffer frequent cache misses under irregular

workloads, the AES results of counter values can still be

effectively memoized [74]; a single counter value can be

simultaneously used by many (e.g., millions of) data blocks,

allowing the counter values needed by many (e.g., > 90% of)

LLC read misses to hit in a small memoization table [74].

When a counter arrives from DRAM, fetching the memoized

AES result of the counter’s value bypasses the long latency of

recalculating the AES result from scratch.

Key Idea: To improve performance over counterless

encryption, we propose combining aspects of counter mode

encryption with counterless encryption to achieve the best of

both world in performance – the efficient memory accesses of

counterless encryption and fast cipher calculations of counter

mode encryption. Some current systems (e.g., the one we eval-

uated in Section III) already contain both modes of memory

encryption to give users multiple memory security options;

under the counterless encryption security option, utilizing parts

of the unused counter mode encryption to boost performance

also improves the utilization of valuable on-chip resources.

We refer to our proposed memory encryption combining

724

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00058

���������	
�� �����

������ ����
��� 	���
�����
����

�������	�

 �� �
��
�������������
�	
��
 �������������
������������������
��� �� �
��
������������� �
	������������������������������������

�����	����������������� �������	��
��
����

��������	�����
�����
����

�� �
��
�������������
�������������
������������������
�����	����
������������������ !"������#����� ������

$
��
���������������	� ���
����
�����
���������������
�

"��������������������������������
�������
�����%������������������	������&��� "��������������������

������������
�	
��
 ����������������

�������������
������������������
�����	�����
������������������ !"������#����� ������

�	
��
 ���������������� �
	������������������������������������
��������� ���������	
���
��

'�()���������	*���������
����������������������

Fig. 1: Comparing counterless, Counter-light, and counter mode encryption. Counter-light Encryption achieves the best of both worlds in performance.

both modes as Counter-light Encryption. It encodes each data

block’s current encryption mode and counter value (if any) into

the block’s chipkill-correct ECC. During each LLC writeback,

encoding the data block’s encryption mode in the block’s

ECC allows Counter-light Encryption to dynamically decide

and record the data block’s new encryption mode without

needing any overhead access to record the encryption mode

somewhere else in memory; as such, the blocks being written

can seamlessly switch to counterless encryption for free (i.e.,

no bandwidth overhead involved) to turn off all bandwidth

overheads during fine-grained (e.g., 100us) epochs with high

memory bandwidth utilization (i.e., when bandwidth overhead

is the most harmful). For each LLC read miss, Counter-light

Encryption decodes the arriving data block’s encryption mode

and counter value (if any) from the block’s ECC to decrypt the

arriving data mostly using the fast counter mode decryption

without any overhead access to memory to fetch counters like

counterless encryption.

This paper makes the following contributions:

• We explore and address the performance overhead of

counterless memory encryption.

• We explore how to combine aspects of counter mode

encryption with counterless encryption to improve perfor-

mance over counterless encryption alone. Our proposed

Counter-light Encryption achieves the best of both worlds

- the fast memory accesses of counterless encryption and

fast cipher calculations of counter mode (see Figure 1).

• Our evaluation shows Counter-light Encryption allows

irregular workloads to retain 98% of their average per-

formance over no encryption. Under high memory band-

width utilization, Counter-light Encryption is only 1.4%

slower than counterless encryption in the worst case.

II. BACKGROUND AND RELATED WORK

To enforce the confidentiality of memory in cloud, server

CPUs encrypt memory blocks before writing them to memory

and decrypt them after reading them from memory. The

most time-consuming part of encryption and decryption is

cryptography calculation.

The Advance Encryption Standard [20] (AES) is the most

common cryptography algorithm used by memory encryption.

AES has a fixed size of 128 bits for both input plaintext

and output ciphertext. AES encryption has different encryption

modes [66] (e.g., CTR, XTS, GCM, CFB, ECB, CBC), which

take different inputs. Encryption modes like AES-XTS uses

data values and addresses as the inputs to the AES block

cipher calculation. AES-CTR uses counters and addresses (but

not data) as inputs.

A. Counterless Memory Encryption

Many flavors of counterless memory encryption are being

used today. Total Memory Encryption (TME) [36] and Secure

Memory Encryption (SME) [4] [46] perform system-level

encryption to encrypt the entire memory system using one key.

Memory Encryption-Multi-Key (TME-MK) [35] and Secure

Encrypted Virtualization (SEV) [46] [45] [7] perform per-VM

encryption to encrypt different VMs using different keys.

Intel SGX2 [23], Intel TME [36] and Intel TME-MK [35]

use AES-XTS [56]. AES-XTS is also used [5] by AMD SME

[4] and AMD SEV (+ES/SNP) [53] [46] [22]. AES-XTS uses

data values and address to calculate AES (see Figure 2a).

(a) Counterless. (b) Counter mode.

Fig. 2: (a) Counterless encryption. For each 16B word, it performs two
AES calculations – an address-only AES and a data-dependent AES.
’Tweak(Address)’ is a nonnegative tweak value assigned to each 64B block;
while α is a constant across different blocks, j is the sequence number of
the 16B word in the data block. (b) Counter mode encryption. For each 16B
word, it performs a single AES calculation using both counter and data. The
‘Address’ is for a 16B word, while the ‘Counter’ is for a 64B memory block.

Threat Model and Protection: Counterless encryption

is designed for a threat model where attackers have physical

access to victim systems and, thus, can snoop and tamper with

the data sent over the CPU-memory bus. Malicious personnel

with physical access to Cloud servers (e.g., disgruntled Cloud

employees) can tamper with the memory values of applications

migrated to Cloud. An attacker can use one of the many ex-

isting commercial off-the-shelf memory bus probes, intended

for system-level integration test and debugging, to probe or

even modify values transmitted over the memory bus.

Counterless encryption protects against malicious probing

of memory values on the memory bus because it encrypts

725

memory blocks before writing them to DRAM. To protect

memory from tampering, some counterless encryption designs

[35] maintain message authentication codes (MACs) per data

block. The MAC is calculated from data through a hash

function (e.g., SHA-3 under Intel MKTME [35]) and stored in

DRAM during the LLC writeback. During each LLC miss, the

memory controller (MC) recomputes the MAC and compares

it to the stored MAC to check for MAC mismatch and detect

tampering. MKTME [35] protects each block with a 28-bit

MAC and takes away some of the block’s ECC bits to store

the MAC [17].

Counterless encryption, however, provides no protection

against replay attack over the entire memory block [43] [36]

[35] [46] [45] [7]. An attacker can revert a memory block to

its earlier state by overwriting the block and its MAC with

its older value and older MAC. Because the older MAC is

consistent with the older block value, the MAC check will

pass when the replayed block is accessed later.

B. Counter Mode Memory Encryption

Older memory encryption like Intel SGX1 [28] use counter

mode (e.g., AES-CTR [54]), which encrypts and decrypts data

blocks through One Time Pads (OTPs).

The ciphertext for data is the result of bitwise xoring the

OTP with data (see Figure 2b). The AES calculation for

generating OTP takes the block’s write counter and address as

inputs. Because the XOR of two ciphertexts using the same

OTP is identical to XOR of two plaintexts, re-using counter

values will leak the plaintext information. As such, each write

counter is a nonce (number only used once) that increases each

time the block is written to memory.

On an LLC read miss, after the data block arrives from

DRAM, the MC uses the block’s counter to recompute the

same OTP previously used to encrypt the block and then

bitwise XOR the recomputed OTP with ciphertext to recover

the block’s original plaintext. Unlike data, counters are stored

in memory directly as plaintext.

Threat Model and Protection: Like counterless en-

cryption, counter-mode encryption also protects against ma-

licious probing of memory values; it also protects against

tampering by protecting each block with a MAC. However,

it requires stronger MACs than counterless encryption due

to being more vulnerable to malicious tampering of data;

because Plaintext = Ciphertext ⊕ OTP , an attacker can

intentionally flip a specific bit in the plaintext by flipping the

same bit in the ciphertext. Counterless encryption is secure

against such intentional attacks on specific bit(s) because

flipping one bit in ciphertext will randomly flip half of the

bits in the plaintext. As such, each MAC is 56 [28] or 64 bits

[63] and is calculated from OTP instead of SHA-3. The MAC

is the bitwise XOR between a truncated OTP and a truncated

Galois Field dot product on the plaintext and secret keys [28].

With a MAC alone, however, each data block is still vulner-

able to replay attack like under counterless encryption. When

an attacker replays an old tuple of {Data, MAC, counter} to the

CPU, the MAC cannot detect replay because the replayed data

and counter are consistent with the replayed MAC. Detecting

such replayed tuples requires detecting counter replay.

To detect counter replay and, thus, detect full replay of

{Data, MAC, counter}, counter-mode memory encryption has

a tree of counters called the integrity tree [28]. Each leaf

counter in the integrity tree protects multiple data’s counters

(e.g., eight under Intel SGX1 [28]); each leaf and the data’s

counters the leaf protects collectively calculate a MAC that is

stored in memory. Similarly, for each parent counter and its

child counters, the integrity tree maintains a MAC in memory.

When incrementing a counter for an LLC writeback, the

MC fetches the integrity tree nodes protecting the counter to

increment a counter in each fetched node; the MC also updates

the MACs in the fetched nodes using their new counter values.

As such, a successful replay attack requires also replaying

multiple counters in the integrity tree. But the root counter of

the integrity tree is always stored in the CPU, where it cannot

be replayed; as such, it can guarantee to detect any possible

replay attack in DRAM.

Verifying a counter’s integrity requires fetching all related

counters (e.g., the counter’s parent and other counters pro-

tected by the parent) to recalculate a MAC to compare against

the MAC in memory. To minimize the memory accesses to

fetch the related counters for calculating a MAC, all related

counters in the same level are colocated in a 64B memory

block so that they can be fetched together in one access instead

of many (e.g., eight) memory accesses; these related counters

are stored in one integrity tree block. Similarly, each counter
block stores multiple data’s counters (e.g., the eight counters

of eight adjacent data blocks under SGX1).

C. Prior Works on Memory Encryption

Many prior works have optimized memory encryption (e.g.,

[62] [28] [76] [77] [63] [70] [52] [73] [74] [51]) in the

context of counter mode encryption. As our proposed Counter-

light Encryption seeks to boost performance over counterless

encryption by combining both types of encryption to achieve

the best of both worlds in performance, we describe below

relevant optimizations for counter mode encryption.

Counter Storage Overhead: To minimize the storage

overhead of the counter blocks for data and the integrity tree,

a large body of works over several decades have explored split

counters [62] [70] [76] [33] to pack more counters per block.

With split counters, counter blocks and integrity tree nodes

collectively take up 1.6%− 3.2% of memory.

MAC Storage overhead: A prior work, Synergy [63],

stores a 64-bit MAC in the ECC bits of each block while still

ensuring chipkill-correct, an industry-standard server memory

feature that protects against errors in any single memory chip

per rank (i.e., single-chip error). Explicitly, Synergy uses

MACs to replace the error detection bits in chipkill-correct

ECC. Using the MAC to replace the detection bits saves

space compared to adding MAC on top of the full chipkill-

correct ECC. Figure 3 shows the layout of each data block

under Synergy [63] in DDR5 server memory, which typically

provides 16B of ECC storage per 64B of data. Synergy uses

726

8B of the 16B ECC storage to store an 8B MAC for both
error detection and integrity check. The remaining 8B is

an 8B parity for error correction; the parity is calculated as

Parity = D1⊕D2...⊕D8⊕MAC, where Di is the block’s

data stored in chip i (see Figure 3).

������� ������
�����������	
�
��������������	�	
�
��

�������������
�����
��� !�������������	�����" ������������	#

���

��
�

�" ���$� ���!�%�&

������
��	������	�

Fig. 3: Memory block layout under Synergy in a standard DDR5 DIMM,
which has 8 data chips + 2 ECC chips = 10 chips per rank. The eight chips
store 8 · 8 = 64B of data per block and the two ECC chips can store an
8B MAC and an 8B parity per block. Synergy is widely used in many later
works on memory encryption [62] [80] [24] [58] [31] [69] [32] [73] [75].

When detecting an error via the MAC, Synergy corrects the

error via trial and error. In the first trial, it assumes the chip

storing D1 is faulty and reconstructs D1 as D1′ = Parity ⊕
D2⊕D3...⊕D8⊕MAC and checks whether MAC(D1’, D2,
..., D8, counter) matches the fetched MAC; MAC(...) means

to the MAC encoding function. Synergy then repeats seven

more trials, each assuming the data chip storing D2 or D3 or

... or D8 is faulty. Synergy also repeats a trial assuming the

MAC chip is faulty and reconstructs the MAC as MAC ′ =
Parity ⊕ D1 ⊕ D2... ⊕ D8 to check whether MAC ′ ==
MAC(D1, D2, ..., D8, counter). Synergy reports the error is

uncorrectable if either no trial has MAC match or multiple

trials have MAC match.

Synergy is applicable to the MAC used under both counter

mode encryption and counterless encryption. However, by fo-

cusing on the MAC, Synergy only optimizes integrity checks,

but not decryption.

Reducing Cipher Calculation Overhead for Irregular
Workloads: Irregular workloads have poor low spatial lo-

cality; as such, they can suffer from high counter cache miss

rate. On a counter miss, fetching the counter from DRAM and

then using it to calculate AES to decrypt data can significantly

slow down each LLC read miss; this increases the LLC read

miss latency to the sum of DRAM access latency and AES

calculation latency, instead of just the DRAM access latency.

Prior work (RMCC [74]) memoizes the AES results calcu-

lated from counters to speed up irregular workloads. When

a missing counter arrives from memory, RMCC uses the

counter’s value to look up a memoization table to quickly ob-

tain the counter’s cipher output instead of slowly recalculating

from scratch (see Figure 4).

To achieve high table hit rate, RMCC enhances the counter

update policy for LLC writebacks to increase the counter value

to values whose results are memoized in the table. RMCC

enables ≥ 90% of LLC misses to benefit from memoization

table hit even for irregular workloads.

�������

�	
	'�����

�	
	'�����	�����

�	
	'���

 ���
���	������
�

 �	��� ����
����

� ������
�
�
�

�
�
�

!��������(
��� �	���
������

��������������������	����
����

�

� ����� ���	����
��������

���
�!�����"����#�	������$�������
�

�%���	��������	������$�"�%&� ' ��#

Fig. 4: RMCC [74] memoizes the AES results of counters to quickly use
them when a missing counter arrives from memory, instead of slowly using
the arriving counter to recalculate AES. The final OTP, which combines an
address-only AES and a counter-only AES, considers both counter and address
like a regular OTP (see Figure 2.b).

While memoization effectively reduces the latency overhead

of cipher calculation for irregular workloads, the high counter

cache miss rate continues to incur high memory bandwidth

overhead to access counters. Memoization does not help

reduce any overhead memory accesses as looking up the

memoize table for a data block requires the block’s counter.

III. CHARACTERIZING THE PROBLEM

Without any counters, counterless encryption calculates

ciphers using address and data, instead of address and counter.

As such, to perform decryption for an LLC read miss, the data-

dependent AES calculation (see Figure 2) can only start after

the missing data block arrives. Because AES consists of multi-

ple sequential rounds of linear and non-linear transformations

(e.g., 10 rounds under the commonly-used AES-128), waiting

for the slow AES calculation after the missing data have

already arrived increases the end-to-end LLC miss latency

compared to no encryption; without memory encryption, the

missing data can be used immediately after arriving from

memory, without waiting on the AES calculation latency.

We measure AES latency under counterless encryption in an

Intel Silver 4314 CPU [2] with TME. We write a read-intensive

microbenchmark with 128MB memory size to cause 100%

miss rate in the 24MB LLC. We fixed the CPU frequency to

the CPU’s base frequency 2.4GHz. To minimize measurement

noise, we ensure only one memory access is issued at a time

by turning off all prefetching and using pointer-chasing in the

main access loop; we run the microbenchmark under 2MB

standard huge pages to minimize TLB misses. We use RDTSC

[38] to measure each LLC miss’s latency and calculate the

average across 10 experiments.

With counterless encryption turned on, the per-access mem-

ory latency is 10ns longer than when it is turned off. The

measured 10ns difference is close to the AES latency reported

in prior work [8] that synthesizes AES under 7nm technology.

To evaluate the performance impact on irregular workloads,

we run the same benchmarks as previous memory encryption

works on improving irregular workloads [73] [74]. Details of

these benchmarks are discussed in Section VI.

727

We measure each workload’s total execution time when

TME is turned on to when it is turned off. With counterless

encryption, the average performance drops to only 91% of

without encryption (see Figure 5).

 �)
 !)
*�)
*!)
+�)
+!)

"��)

��
���

��
�

�	�
�

��

�	
���

���
��
���
��
��
�

��
�	�
��
��
�	 ��

�
��
�

�	��
��

��
��
��

�
�
	��
���
��

���
��
�

��	
��
��

��
��	

��
��
��� ��

�
��
��

��
	�

���
�	
�

����� * ���� !"

Fig. 5: Application performance with counterless encryption turned on normal-
ized to when encryption is turned off. We evaluate AES-128 on a real-system
and evaluate AES-256 via simulation.

The slowdown would increase under the stronger but slower

AES-256, which is being adopted for memory [4] to achieve

strong post-quantum cryptography; AES-256 has 14 sequential

rounds so it is slower. We simulate AES-256 in Gem5 [11]

because we do not have root access to a real system with

AES-256 at the time of this writing. Since AES-256 has 14

rounds, we simulate the AES-256 latency as (14/10)∗10ns =
14ns (see more details in Section V). As Figure 5 shows, the

applications slow down by 13%, on average.

One naive approach to reduce the slowdown due to cipher

calculations is to replace AES with faster lightweight ciphers

proposed by prior work [13] [12] [8]. However, lightweight

ciphers are weaker than AES, which contradicts the desire to

adopt even stronger ciphers. For example, [39] shows how to

exploit the structural linear relations that exist for PRINCE

[13] to perform a key recovery attack.

IV. COUNTER-LIGHT ENCRYPTION

To improve performance over counterless encryption, we

propose Counter-light Encryption to combine counterless and

counter mode encryption to achieve the best of both worlds

in performance – the efficient memory accesses of counterless

encryption and fast cipher calculations of counter mode.

For LLC writebacks, we combine both modes of encryption

by dynamically switching between them depending on the

memory bandwidth utilization at the granularity of short 100us
epochs. Since bandwidth overhead is the most harmful when

the memory bandwidth utilization is high, we propose to

dynamically turn off all overhead accesses to counters when

writing to memory during times of high bandwidth utilization

by dynamically using counterless encryption for writebacks.

To gracefully switch between using different encryption modes

for writebacks across different epochs, Counter-light Encryp-

tion individually records in memory the mode used for each
data block when writing it back to memory.

For LLC read misses to data blocks currently using counter

mode, we combine both types of encryption by lightly access-
ing counters to only meet counterless security. As such, for

LLC read miss, Counter-light Encryption uses only a single
counter – just the missing block’s own counter.

Design Challenges: For each LLC writeback, recording

the written block’s encryption mode to memory incurs a new

bandwidth overhead that can prevent our goal of dynamically

turning off all writeback bandwidth overheads during times of

high memory bandwidth utilization. For an LLC read miss to

each block currently using counter mode, the one remaining

overhead access to the missing block’s individual counter can

still incur costly latency overhead because the counter access

can sometimes complete later than the data access. The LLC

read miss stalls at least until after the counter arrives.
Observation and Optimization: We observe each block’s

individual counter value and encryption mode record are small

– small enough to fit within each data block itself. As such, we

propose encoding them into each data block’s chipkill-correct

ECC in server memory, without sacrificing the amount of ECC

in each block. Encoding a data block’s counter into a data

block’s ECC ensures the counter always arrives at the same

time as the data; encoding a data block’s encryption mode into

the block’s ECC means recording the block’s latest encryption

mode on-the-fly with writing the block to memory without

incurring any bandwidth overhead. Our final design strictly

speeds up LLC read misses at the cost of incurring memory

traffic overhead only for LLC writebacks (but not LLC read

misses), and only when memory has spare bandwidth. Figure

1 compares and contrasts Counter-light Encryption with prior

memory encryption designs.

A. Serving LLC Read Misses and the Design Challenge
When reading data blocks currently in counter mode,

Counter-light Encryption uses only a single counter - the miss-

ing block’s individual counter (see Figure 6.b). Accessing just

a single counter is enough to match the security of counterless

mode (i.e., providing encryption and integrity check, without

physical replay protection [35] [7]). In comparison, on each

LLC read miss, prior counter mode designs use one or more

memory block(s) worth of counters (see Figure 6.a); using so

many counters is to detect counter replay and, thus, all physical

replay attacks (see Section II-B).

�����������

���������	�
���
��������������
�
�������	�
��

	
 	� �
�	

	
 	� �
�	

���������������
�
�����������
������
��

��������
���
�
�����
�

����
������
���
�
��������

�����������

���������	�
���
��������������
�
�������	�
��

	
 	� �
�	
����
������
���
�
��������

��� ���

Fig. 6: (a) An example of how prior counter mode designs use counters to
verify and decrypt data for LLC read misses. The example shows miss of
counter block but hit of the counter block’s parent counter. All counters in
the missing counter block and the counter block’s parent counter are used.
(b) Using only a single counter per LLC read miss.

Compared to counter mode encryption, only using the

data block’s individual counter, instead of block(s) worth of

728

counters, can effectively reduce the bandwidth overhead of

counter mode encryption.

Compared to counterless encryption, using the results mem-

oized for the counter value to complete cipher calculations

(see Figure 7.b) reduces LLC read miss latency over how

counterless encryption calculates cipher from scratch after the

missing counter arrives from memory (see Figure 7.a).

�� 	�����

�������� ������
���������		

�� 	�����

��������
���������

�� 	�����

�������

����� �������

�	���������� ����������������������

�����������

�� 	�����

��������
�� 	�����

�������

����� �������

�	���������� ����������������������

�����������
�
�������������	����������������

���

���

���

Fig. 7: (a) LLC miss under counterless encryption. (b) LLC miss under counter
mode encryption with memoization (see Figure 4) when counter arrives at
the same time as data. (c) The design challenge is that the counter can
sometimes also arrive later than data, making counter mode decryption slower
than counterless encryption.

Design Challenge: Even though Counter-light Encryption

only uses one counter per LLC read miss, this one access

can still incur a costly latency overhead as it can sometimes

complete later than the data access and slow down the overall

LLC read miss (see Figure 7.c). For example, the counter

access can sometimes incur a row conflict, which is slow, while

the data access experiences a row hit or row miss, which is

faster. Furthermore, on an LLC read miss, counter access to

DRAM always begins after data access and, therefore, often

completes later. This is because each counter access to DRAM

must first wait for the counter cache access to complete;

speculatively accessing counter in DRAM without waiting for

the counter cache to report whether the cache access hits or

misses can result in unnecessary counter accesses to DRAM.

To quantify how often counters arrive later than data for

LLC read misses, we simulate RMCC (see Section II-C) by

using the same benchmarks and simulation methodology as

RMCC. Figure 8 shows how often a data block’s counter

arrives from memory after the data block has arrived and

by how much. Counter arrives later than data for 22% of

all LLC misses. As such, this counter access alone reduces

performance by 7%, on average (See Figure 9). It is almost

as high as the total overhead of counterless encryption.

B. Serving LLC Writebacks and the Design Challenge

Unfortunately, to preserve the same security as counterless

encryption in the presence of physical replay attack, LLC

writebacks still require updating multiple blocks of counters,

including counters in the integrity tree. Under counterless

encryption, an attacker can only replay an old data block,

revealing no new data. But under counter mode encryption,

replaying a counter value prior to an LLC writeback can reveal

the newly written data. As Figure 10 shows, through replaying

��	

	
�	

�
	
��	
�
	
��	

�
���

��

��
����

�
��

�

���
���

���

��
���
��

���

�

���
���

���

��
���
��

���

�

���
���

���
��

��
�

���

	
��
���

��
��

���
��

Fig. 8: Distribution of counter arrival time minus data arrival latency across
all LLC misses (i.e., across both LLC misses that hit and miss in the counter
cache). For example, counter access completes later than data access by >
0ns but ≤ 5ns for 13% of all LLC misses.

	,

,
�,
�,
-,

	,

,

�,

��
���

��
�

���
��
	�
���

���

���
��
���

�	
��

�

��
���

�	
��
�� ��

�
��
�

����
��
��	

��
��

 ��
���

 �!
���

���
��
��

 ��
��
��

��
���

��
��
��� ��

"
��

��

#�
��

$��
%�

��
��

� 	�������� �����&����� ���� �	����������&�"���''	���

Fig. 9: The performance overhead strictly due to accessing the missing block’s
one counter on each LLC read miss; it is simulated by dropping all counter
accesses for LLC writebacks and dropping all integrity node accesses across
both LLC misses and writebacks. The performance overhead of counterless
encryption in the same simulation window is shown as a reference.

a counter 3 , an attacker can calculate the plaintext of the new

data just by xoring one known plaintext 1 and two observed

ciphertexts 2 4 .

	�� ����

����	
����
���

��	���	�	

����	��������
�����
�
���������.

�
����	���� ������	����!"#/�0�
�$�%%�
��	���	�	

!�0

!�0

!�0

&	'�����'�
�
�	�	�&����

"#1���(�!.0
������
�&����

������
��.!	0

�	�	�&����
"#""��(�!20

������
�&����
������
��2

�	�	�&����
"#""��(�!20

������
�&����
������
��.

�	�	�&����
"#/���(�!20

������
�&����
������
��2

�	����	���"#""�!"#""��(�!200�!"#/���(�!200�3�"#/�

)����
�$ *���
�$��

4

/ 5 *���
�$�� 4

1

5

/
&	'�����'�
�

&	'�����'�
�

&	'�����'�
�

Fig. 10: An example showing how a physical replay attack on counter before
LLC writeback can reveal the plaintext of new data (i.e., 0x1A).

Preventing this attack requires that for LLC writebacks,

Counter-light Encryption continue to access the integrity tree

to verify the counter values are not replayed, in exactly the

same way as traditional counter mode encryption.

As such, for LLC writebacks, Counter-light Encryption still

reintroduces costly accesses to the counter blocks and the

integrity tree, even though it introduces no accesses to the

integrity tree for LLC read misses.

Even if we were to compromise on security by removing

the integrity tree, a data block’s counter must still be updated

when writing the block to memory (or there would be no

729

counter mode encryption at all). The overhead access to just
update the counter alone can incur a costly write overhead.

To minimize the performance overhead due to the band-

width overhead for LLC writebacks, we note our goal of

reintroducing counter accesses is only to improve performance

over counterless encryption; as such, when counter accesses

harm instead of improving performance, they can be turned

off. As such, when memory bandwidth utilization is high,

Counter-light Encryption dynamically turns off all writeback

bandwidth overheads by switching to using counterless en-

cryption for writebacks.

To measure bandwidth utilization, Counter-light Encryption

counts the total number of memory accesses (i.e., LLC misses

+ writebacks + counter accesses) during each 100us epoch.

If the utilization is < 60% (i.e., if observed accesses exceeds

a threshold number of accesses equal to 60% of the maximum

possible accesses in the epoch), Counter-light Encryption uses

counterless encryption for LLC writebacks during the next
epoch; otherwise, Counter-light Encryption uses counter mode

for writebacks in that new epoch until either the end of the

epoch or the number of observed accesses in the epoch exceeds

that same threshold number of accesses. Large studies report

the median bandwidth utilization in cloud is only 10% [44]

[25]; as such, a 60% threshold can allow most LLC writebacks

to use counter mode encryption. The orange parts in Figure

11 illustrate how to dynamically switch the encryption mode.

To dynamically decide which encryption mode to use for

LLC writebacks in fine-grained epochs, Counter-light En-

cryption cannot afford to globally re-encrypt all memory

blocks during a new epoch. Instead, Counter-light Encryption

individually records for every block its current encryption
mode so that blocks receiving LLC writebacks can be switched

dynamically to a new encryption mode without forcing unwrit-

ten blocks to also switch to the new mode.

The design challenge is how to address the overhead

accesses to the per-block records of encryption modes. For

every LLC writeback, Counter-light Encryption must also

write to memory the encryption mode used for the writeback.

An alternative is writing the encryption mode to memory

only if it changes; however, this alternative incurs even more

overhead because checking whether the mode changes for each

writeback requires adding an extra read access to memory to

fetch the block’s encryption mode for each writeback, even if

the written block’s encryption mode remains the same.

Having to also write to memory a block’s latest encryption

mode for every LLC writeback would defeat our goal of

dynamically turning off all writeback bandwidth overheads

during times of high memory bandwidth utilization.

One potential solution is to store encryption mode bits in

memory blocks and cache them like counter blocks. Each 64B

block of encryption mode can serve 512 blocks; this is close

to how each counter block under Split Counters serves 128

data blocks (see Section II-C). But our evaluations of irregular

workloads (see Section VI) find that accesses to Split Counter

blocks for LLC writebacks suffers from ≥ 98% miss rate in the

counter cache. As such, we expect the encryption mode blocks

would also suffer from high miss rate for LLC writebacks.

Worse, the encryption mode of a block must also be read

from memory for every LLC miss so that MC can use the

correct decryption mode for the block; having to also wait on

the encryption mode block, in addition to counter block, will

further slow down read LLC misses.

C. Addressing the Unique Challenges

To address the unique design challenges that Counter-light

Encryption faces for LLC read misses and writebacks, we

note the extra information Counter-light Encryption needs

per memory access are small – just the block’s encryption

mode and one counter. Being small, they can fit in the data

block itself to enable Counter-light Encryption to update and

access them without any overhead accesses. ‘Fitting’ a block’s

counter in the data block itself also ensures the counter always

arrives at the same time as the data and eliminate the latency

problem in Figure 7.c. This in turn ensures LLC misses always

complete quicker than counterless like in Figure 7.b.

We encode a data block’s encryption mode and counter

value into the block as one unified word that we call

EncryptionMetadata. In epochs that use counter mode
for LLC writebacks, the EncryptionMetadata to encode

into each written block is the block’s counter value after it

has been verified via the integrity tree; the maximum allowed

counter value is 2n−2 when choosing an EncryptionMetadata
size of n bits. In epochs that use counterless encryption for
LLC writebacks, the EncryptionMetadata to encode into

each written block is the maximum possible word value of

2n − 1; this serves as a flag value to indicate the encryption

mode is counterless instead of counter mode.

We only encode EncryptionMetadata into data blocks,

but not counter blocks and integrity tree blocks. These blocks

are only accessed by Counter-light Encryption for writebacks;

writebacks are not performance-critical.

To encode an EncryptionMetadata into each data block,

we note prior works [64] [29] [68] encode into the ECC of a

block some extra information that are not related to reliability.

Encoding the extra information into ECC does not increase the

size of the block as the information is not physically stored in

any dedicated space in the block. On LLC read miss, the extra

information can be decoded from the block’s ECC without

physically fetching it from memory.

However, none of the prior works can be directly reused

because the ECC used in server memory today is different

from the ECC used in prior works. Prior works are designed

for single-bit error correction (a.k.a, SECDED), which is used

in GPUs and older memory systems; modern servers, however,

commonly use chipkill-correct ECC to protect against single-

chip failure per rank [9] [34] [30] [21] [26] [27] [79] [15] [42]

[47] [40] [41] [72] [78].

As such, we explore how to encode EncryptionMetadata
into chipkill-correct ECC. To the best of knowledge, our paper

is the first work to encode into chipkill-correct ECC extra

730

�������������	
����
��
�����	����

�����
����
+()�,

��������(��

����(��
�*(��	�����+��
������,

(��
������

������
��'' ��	

��

���

��	
��

���
�����
��	���	�
��

���	
������������
�	
����
�������������

��
� ���
� ����

��
��
��!��
�

��

���

�
�����
��	��	�"��
�#$$���%&���

��
���

'���	
�(
 ��&���
�(

%	���
�

66

7
)$8

�����	��������	�����
����� �	
	��
	���������	
����
������	�
�����������

���	
������ *���
%	���
�

 ��
	���!"#�

 ��
	���!"#�

 ��
	���!"#�

,�	����
������������������$	�����

��+����
��	 ��,��
����
��	���-������	
����

�%.

��&�����.��
%��

%	��
��

Fig. 11: Architecture overview of the full design of Counter-light Encryption. Green and orange highlight the key differences from prior works. Orange
especially highlights the dynamic switching of encryption mode discussed in Section IV-B. ‘EncMeta’ means ‘EncryptionMetadata’.

information that are unrelated to reliability, without needing

to spend dedicated physical bits per block to store them.
The EncryptionMetadata should ideally be encoded not

just into any chipkill-correct, but one specialized for encrypted

memory. We encode EncryptionMetadata into a prior ECC

design widely used in many prior works in memory encryption

- Synergy [63] (see Figure 3).
Figure 11 provides an architecture overview of the full

design of Counter-light Encryption.
LLC Writeback: Counter-light Encryption encodes each

block’s EncryptionMetadata into the block’s parity by

calculating parity = EncryptionMetadata⊕D1⊕D2...⊕
D8⊕MAC, where Di is the block’s ciphertext data in chip

i (see Figure 12). Later, when the block is read, this new

parity allows the block’s EncryptionMetadata to be quickly

decoded as parity⊕D1⊕D2...⊕D8⊕MAC, incurring the

delay of log2(9) = 4 XOR gates.

�����������

��������������
�) */���������!"

��������!����������	

��
�������������

�� �� �� �� �� �� �� �� ��� ��� !�

����"#��$��

�� �� %

%�������	�
���
���
�� !&����� �����'#!����

 (��)�

��������	�
���
���

Fig. 12: Full memory layout under Counter-light Encryption. Each counter
(i.e., C1, C2...) in the counter block logically encodes a 4B counter value. C1
protects the expanded data block shown in the figure. Each Di (1 ≤ i ≤ 8),
MAC, and Parity in the data block is 8B. Unlike Synergy in Figure 3, Counter-
light Encryption also uses a data block’s EncryptionMetadata as an input
when calculating the block’s parity and MAC.

Since each parity is 8B, the EncryptionMetadata can also

be up to 8B; but we make it 4B, to leave 4B to encode other

extra information (e.g., locks for spatial safety [68]) to avoid

sacrificing other extra information proposed by prior works.

When a block’s counter value increases beyond the maximum

word value of 232 − 2 and reaches the counterless flag of

232−1, the block naturally switches to counterless encryption

permanently until the next system reboot. In a 64GB memory

channel that does nothing but continuously write at the full

DDR5 transfer rate of 6400MT/s for eight years, at most 1.4%

of blocks will permanently switch to counterless mode and

cease to benefit from Counter-light Encryption.

The MAC in each block also takes the block’s

EncryptionMetadata as an input (see Figure 12) so that

the MAC can later detect during LLC read misses whether

the decoded EncryptionMetadata may be erroneous. Under

counter mode, the OTP for calculating the block’s MAC takes

by default a counter value as an input (see Section II-B); the

EncryptionMetadata for counter mode is the same as the

counter value. Same as Synergy, the MAC has 64 bits. Under

counterless mode, we add the EncryptionMetadata as an

input to the SHA-3 used for the counterless MAC (see Section

II-A); to keep hardware regular, we keep the MAC 64 bits,

instead of using a smaller (e.g., 28-bit) MAC [37] for the

counterless mode.

LLC Miss: After a data block arrives, Counter-light

Encryption decodes the block’s EncryptionMetadata from

the block’s parity, and uses it to decrypt the block; the

correctness of data and parity-decoded EncryptionMetadata
are checked by using them to recalculate the block’s MAC to

compare against the fetched MAC.

The common case is that fetched data block has no hardware

error and is not tampered with. In this case, the two MACs

always match and the check passes. Figure 13 illustrates the

steps for this common case. If the data block uses counter

mode, Counter-light Encryption saves the AES latency from

the critical path of LLC miss; else, the LLC miss latency is

the same as today’s counterless encryption.

Error Correction: If the fetched data block is bad or

731

*�����
���	��	

������������������	
�
 !���	��
����������

�
��
�����������!���
�� ���
�
������������� �����	������ ��

�
�

�������	��� ����
������
�	��
����������

�	 �
��
�����������!���
�� ���
�
������������� �����	����

�	����	������������

!���
����������� ��� ��!"�+

���	��	

������
���� ��	��

Fig. 13: A fault-free LLC read miss under Counter-light Encryption.

tampered with, the check fails. Reusing the error correc-

tion procedure in Section II-C requires the original parity

in Figure 3 (i.e., the parity without EncryptionMetadata
xored into it). The original parity can be obtained by xoring

EncryptionMetadata with the parity fetched with the block;

xoring the same value twice into another value cancels it out

from the other value.

But when a block is erroneous, so can its

EncryptionMetadata decoded from the parity. The

correct EncryptionMetadata can be either the flag for

counterless encryption or the counter value recorded in the

block’s counter block. As such, Counter-light Encryption

separately assumes the two possible EncryptionMetadata
values and attempts correction under each assumption (see

Figure 14). The correction under the wrong assumption will

use the wrong method to recalculate MACs (i.e., use SHA-3

when OTP should be used or vice versa) and mismatch the

fetched MAC or parity-corrected MAC (see Section II-C). But

the correction assuming the correct EncryptionMetadata
will succeed 1 2 (i.e., have MAC match) if only one chip

has error. When multiple chips have problems, all correction

can fail 3 as chipkill-correct is primarily designed to correct

errors only in one chip; this leads to a detectable uncorrectable

error (DUE) and renders the block’s value unusable.

�������������	 ��
������
���	 �
 ���������������������������

������	����	��������	��
�	�����

 ���������������������������
������	����	��������
���	��	�������

����
�������������
������������	��
�	�����
����������������������������

��������	����������� ����������	������
��������	�������	��	�	����������	������
�������

��������	�������	�
�

������������

����������
��

�
�

�
�

Fig. 14: Error correction under Counter-light Encryption. MAC uses SHA-3
under counterless and uses AES and dot product under counter mode.

D. Implementation Details and Overheads

Latency: Compared to no memory encryption, LLC misses

under Counter-light Encryption are only 0.75ns slower in the

common case when the missing block uses counter mode and

its counter value hits in the memoization table. After half of

the data block arrives (i.e., 1.25ns before the entire block

arrives), the MC has the 4B of parity needed to decode the

4B counter value (i.e., the EncryptionMetadata). The total

latency to fetch memoized AES result for the counter value

and then combine it with the address-only AES to generate

the OTP takes 2ns (see Figure 4). So the OTP is available

2ns−1.25ns = 0.75ns after the whole data block arrives and,

thus, the 0.75ns latency overhead compared to no encryption.

While MAC verification/error detection also requires calcu-

lating the dot product using the arrived data and secret keys

and xoring it with the OTP (see Section II-B), dot product

can start without waiting for the OTP. Also note that in a

system without encryption, using standard ECC instead of the

MAC to detect error takes 1ns. As such, as long as the dot

product takes < 0.75ns + 1ns = 1.75ns, it will not cause

any additional latency overhead over no encryption beyond

the 0.75ns latency overhead to wait for OTP generation; note

that the eight products summed together to produce the dot

product can be calculated in parallel.

Memory Overhead: Counter-light Encryption needs an

integrity tree to preserve the confidentiality of data blocks

with counter mode encryption (see Section II-B). A single

tree is enough considering memory encryption today - either

total/system memory encryption or per-VM encryption - has

no integrity tree. Counter-light Encryption is compatible with

recent Split Counters design [62], which only uses 1.6% of

memory to store both the counter blocks and tree nodes; each

counter value to encode into a data block is a full counter

value (i.e., the sum of a major and a minor counter, but the

minor counter value by itself).

CPU Area Overhead: Counter-light Encryption inherits

from RMCC a 4KB memoization table that records the AES

results calculated from a single global key. Only the few

blocks using counterless mode have a need for per-VM
keys. If the same key were used for all VMs, counterless
encryption would produce the same ciphertext for the same

data stored at the same block, which enables the ciphertext

side-channel attack [22]. In this attack, an attacker knowing

the plaintext and ciphertext of a block in the attacker’s VM can

precisely infer the plaintext of a later VM that reuses the block

and writes the same ciphertext to the block. Counter mode
encryption, however, can use the same key for all VMs because

different VMs writing the same value to the same block always

write different ciphertexts as the counter is different each time.

Like existing memory encryption [35] [7], all the encryption

keys are maintained in hardware and completely hidden from

software (e.g., host OS, guest OS, etc).

Summary of Counter Block Accesses: Counter-light En-

cryption accessing the counters and integrity tree nodes when

writing back data. Counter-light Encryption also accesses them

in the rare case that a block is erroneous and requires error

correction (see Figure 14). To minimize the traffic overhead to

access counters and integrity nodes, we use a 64KB counter

cache in Section VI. Because Counter-light Encryption does

not access any counter blocks on LLC misses, Counter-light

Encryption does not cache counters during LLC misses.

E. Reliability

The error correction procedure in Synergy [63] (see detail

in Section II-C) has a small 2−61 probability of reporting

correction fails (e.g., a detected uncorrectable error or DUE)

when only one chip is bad; in the rare case that two trials

experience MAC matches (i.e., one for the right correction

assuming the right bad chip and one for a wrong miscorrection

732

assuming the wrong bad chip), Synergy cannot tell which

one is wrong. Counter-light Encryption doubles the total

number of trials due to also guessing two possible values of

EncryptionMetadata; as such, Counter-light Encryption can

double the DUE rate to 2−60. But 2−60 is still small.

If needed, Counter-light Encryption can be enhanced to

only marginally increase the original DUE probability of

2−61, instead of doubling it. We note that wrongly de-

crypting encrypted data (e.g., due to using the wrong

EncryptionMetadata) is the same as re-encrypting the al-

ready encrypted data; in general, ciphertext is highly random

(i.e., has high entropy). As such, we expect wrongly decrypted

data to be characterized by high entropy. We evaluate the

entropy of all benchmarks used in Section IV-A and find

≥ 99.9% of LLC read misses for each benchmark have a

entropy of ≥ 5.5 for wrongly decrypted data out of the

theoretical maximum entropy 6, while all original plaintexts

have a entropy < 5.5. As long the decrypted data under

only one of the two encryption modes have an entropy of

≥ 5.5, the MC can decide this mode is incorrect and that the

other encryption mode is correct. In this way, Counter-light

Encryption only adds 2−61 · (1−99.9%) = 2−61 ·0.001 to the

original DUE probability of 2−61.

Because error correction requires reading the counter

block, Counter-light Encryption gets no benefit from encoding

counter value and encryption mode into bad blocks with

permanent hardware faults. Existing server CPUs can detect

permanent faults in a bank or rank to activate the rank-level

spare bits to remap data out of the faulty chip [57]. Counter-

light Encryption may permanently switch back to counterless

encryption an entire bank or rank that is diagnosed with

permanent fault. For such a faulty bank or rank, Counter-light

Encryption always uses only counterless encryption for LLC

writebacks, misses, and error correction.

F. Security

If an attacker tampers with a block’s parity to cause the

parity to decode the wrong EncryptionMetadata, the block’s

MAC can securely detect a wrong EncryptionMetadata.

The possibility of wrong EncryptionMetadata passing

the MAC verification is 2−64 because the MAC has 64

bits. In the rare event the wrong EncryptionMetadata
passes the MAC verification, decrypting data using wrong

EncryptionMetadata produces garbage plaintext, without

harming confidentiality. While an attacker can always replay

the whole data block to pass the integrity check, there is no

loss on integrity compared to counterless encryption, which

also does not detect physical replay attacks.

The prior memoization work [74] combines counter-only

AES and address-only AES using carry-less multiplication,

which is a linear operation; but linearity is undesirable in

security. A naive approach to make the combining logic of

counter-only AES and address-only non-linear is to use a

lightweight cipher. But this is an overkill because a main

design target of ciphers is to protect against known-plaintext

attack [20], where an attacker extracts the secret key by

selecting plaintexts and examining their ciphertext outputs to

analyze correlations; the input to the combining logic – the

address-only AES and counter-only AES – are unknown to

attackers because they are both AES outputs, not plaintext an

attacker can choose or even observe.

���

����	
��

���������������

����

���

��������

����

����

����

���

���� �!�" #$ �!�" #$ %��" ��� ���"

(a)

�����
���	

����

��������
�����

����

����
�������

	��

����

�������
��� ���

��������
�����

���	

��������� ������� ������� ��������

(b)

Fig. 15: (a) RMCC combines the address-only AES result and counter-only
AES result using carry-less multiplication and truncation to generate the
OTP; these are weak linear operations. (b) Counter-light Encryption combines
address-only AES result and counter-only AES result using barrel shifting for
diffusion and using nonlinear S-Box transformation for confusion.

Although counter-only AES and address-dependent AES are

unknown to attackers, a plausible attack is to solve for these

unknowns by setting up algebraic equations (i.e., algebraic

attack [19] [18] [50]); if an attacker can solve these unknowns,

he/she can then combine them to calculate many OTP values

and use them to decrypt other data blocks. Explicitly, an at-

tacker can set up a system of bit-level (i.e., boolean algebraic)

equations based on observing multiple OTPs for multiple

data blocks sharing multiple counters, where each equation

is translated from the combinational circuit to calculate one
OTP bit; each equation uses each bit in the counter-only AES

and address-only AES as a boolean variable and uses each

bit in the observed OTPs as a constant. When α memory

blocks share c different counter values, the OTPs of the α
blocks are calculated from α address-dependent AES results

and c counter-dependent AES results. Because each AES result

is 128 bits and each bit in the AES results is an unknown

variable, the total number of unknowns n is:

n = 128(α+ c). (1)

Because the α memory blocks sharing c different counter

values can have α·c 128-bit OTPs, the total number of boolean

quations m is:

m = 128α · c. (2)

A system of equation is solvable when the number of

equations is equal to the number of unknowns. The simplest

solvable case occurs when α = 2 and c = 2; here, m = 512
and n = 512 according to Equation (1) and (2).

A system of equations that is theoretically-solvable, how-

ever, can still be unsolvable in practice if they are too
complex, especially when the equations are non-linear. For

example, even for a pair of known plaintext and ciphertext

under AES, attackers can set up a system of 128 equations with

128 unknowns (i.e., the 128-bit key) but cannot practically

solve the equations. In comparison, the minimal solvable

system of equations under our proposed combining logic has

512 unknowns; these equations are also non-linear.

733

To check whether the equations are indeed too complex to

solve, we attempt to solve them using a SAT solver (Minisat

[65]). Even with the simplest case (i.e., α = 2 and c = 2),

which is intuitively the easiest to solve, the SAT solver fails

to find a solution after more than two months. The solver’s

progress estimate ceases to increase after the first day. After

exhausting heuristical algorithms, the SAT solver falls back

on the brute-force approach that is O(2n) with the number

of variables; here, n > 512 because transforming the initial

512 equations to the CNF form required by the SAT solver

introduces many new intermediate variables.

We also examine a more advanced algebraic attack that

transforms the equations to Multi-Quadratic (MQ) form [71]

[18] [19], instead of CNF; a system of m independent MQ

equations with n variables can be solved in polynomial time if

m ≥ n(n−1)/2 [71]. As such, checking whether the equations

transformed into MQ form can be solved in polynomial time

requires comparing m and n.

We transform the system of original equations obtained

from A * C One-Time Pads (OTPs) to m MQ equations, where

m = 760α · c+ 160(α+ c). (3)

Transforming the original equations to MQ form adds many

intermediate variables in addition to the original 128(α + c)
bits of AES results. As such, Equation (1) can be extended to:

n ≥ 128(α+ c). (4)

By using Equation (3) and Equation (4), we can compare m
and n and conclude that m < n(n− 1)/2 (i.e., the equations

are NP hard, not polynomial in complexity).

While our setup of MQ equations may be simplified, doing

so will only reduce m, without affecting the conclusion

that m < n(n − 1)/2. Meanwhile, adding more redundant

equations to the system (e.g., adding multiple transformations

of the same equations) is useless just like how doing so is

useless under regular algebra.

V. METHODOLOGY

Using Gem5 [11], we evaluate Counter-light Encryption

using the same workloads as Section III. These benchmarks

include IBM graphBIG [59], which uses IBM’s System G

framework, a set of industrial graph computing toolkits used

by many commercial clients. We run GraphBig as four threads

using Facebook-like dataset [1] as input. We simulate graph-

Big executing under multi-threading. We also select from

SPEC2017 [14] and PARSEC [10] another four benchmarks -

canneal, streamcluster, omnetpp and mcf, which are used by

recent prior works on speeding up irregular workloads [55]

[61]. We evaluate the SPEC/PARSEC benchmarks through

running multi-programmed workloads; each workload contains

four instances of the same benchmark.

Using Gem5’s KVM mode, we fast forward each benchmark

into its region of interest. Then we use atomic simulation

to warm up the integrity tree and memoization table for 25

billion instructions. After warming up in atomic mode, we run

the workload for 20ms in Gem5’s atomic mode and 20ms in

detailed mode to warm up caches and branch predictor. Lastly,

we measure performance within a 20ms observation window

in Gem5’s detailed mode.

CPU 4 OoO cores, 3.2 GHz
Prefetchers Next-line: L1$, L2$

Stride: L1$(degree 1), L2$(degree 2)
L1d$/L1i$/L2$/L3$ 32KB/64KB/1MB/8MB; 2/2/4/17ns
Counter$/Memoization Table 64KB 32-way, 4KB
AES-128/AES-256/sha3 10ns/14ns/1ns
Memory 128 GB, 25.6 GB/s
tCL/tRCD/tRP 13.75ns/13.75ns/13.75ns
Channels/Ranks 1/8
Bandwidth Utilization Threshold 60%

TABLE I: System Configuration.

Table I shows the system setting of performance evaluation

in Gem5. We use the 64KB counter cache only for LLC

writebacks and an 128-entry memoization table for counter-

mode encryption. We use Ramulator [49] and DRAMPower

[16] to model 128GB of DRAM in Gem5.

VI. RESULTS

Figure 16 shows the performance of Counter-light Encryp-

tion and counterless encryption normalized to without memory

encryption. Counter-light Encryption incurs only ≤ 2% slow-

down, on average, normalized to without encryption. Only

omnetpp suffers up to 5% slowdown; omnetpp incurs high

bandwidth overhead (e.g., 96%, see Figure 18).

��)

*�)

+�)

���)

��
)��

��
�

)��
�&

��
���

 �)

���
��

���
$��

��

$�)�
��

���
�� �(� �(�

�� �
�)
���
�
��

!&�
���
!��

��&

���
��

��

!��
��
���

!��
�

��
��
��� ���

���
�

+�
��

��
 (�

$�
��
���

��
��

��

�� ������!!"�"�"�#* �� ����"�)&�"�"�"�#*
�� ������!!"�"�"#$% �� ����"�)&�"�"�"#$%

Fig. 16: Performance of Counter-light Encryption and counterless encryption
normalized to without encryption, under AES-128 and AES-256.

Compared to counterless encryption, Counter-light Encryp-

tion improves performance by 11%, on average across AES-

128 and AES-256. The performance benefit increases with

higher AES latency. Figure 16 shows the average performance

improvement increases from 8.6% to 13.0% when increasing

AES latency from 10ns to 14ns (i.e., when going from AES-

128 to AES-256). Counter-light Encryption is tolerant to

higher AES latency because it encrypts most blocks using

counter mode, which can reuse memoized AES results, instead

of calculating them from scratch, after the requested data ar-

rives. Counterless encryption, in comparison, always calculate

AES from scratch after data arrive for every LLC miss. The

improvement comes from reducing LLC miss latency. Figure

17 shows the average LLC miss latency overhead of coun-

terless encryption and Counter-light Encryption, compared to

without encryption. Under AES-128, Counter-light Encryption

saves, on average, 7.2ns on LLC data miss latency compared to

734

�

&

��

�&

��

��
)��

��
�

)��
�&

��
���

 �)

���
��

���
$��

��

$�)�
��

���
�� �(� �(�

�� �
�)
���
�
��

!&�
���
!��

��&

���
��

��

!��
��
���

!��
�

��
��
��� ���

���
�

'�
��
��
���

'�
�&

��
$�
(�
!�

�� ������!!)�"�)��- �� ����)�)&�)�"�)��-
�� ������!!)�"�)�&* �� ����)�)&�)�"�)�&*

Fig. 17: Average LLC miss latency overhead of counterless encryption and
Counter-light Encryption compared to no encryption.

counterless encryption. The saving increases to 11.2ns under

AES-256.

Bandwidth Utilization: While Counter-light Encryption

incurs a memory write bandwidth overhead over counterless

encryption, the impact of this overhead on performance is

small because there is often bandwidth to spare. As Figure

18 shows, the average bandwidth utilization is 22% under

25.6GB/s DRAM bandwidth when encryption is turned off;

while Counter-light Encryption increases the average band-

width utilization to 36%, there is still a lot of spare bandwidth.

�+
#�+
��+
��+
,�+
-�+
.�+
/�+
0�+
1�+

#��+

��
)�

��
�

)��
�&
��
���

 �)

���
��

���
$�
��
�

$�)�
��
��
��� ��� ���

���	

�

�
�
��

�

���
��

���
	��

�	

	�

���

	

��
���

�
�

��

��� ���
�
	

�	

�

�
��

��
��

���
��	

���

���������
�������
��� !"�#� ���
�
���������� !"�#�
���������
�������
�! $"�#� ���
�
��������! $"�#�

Fig. 18: DRAM bandwidth utilization of Counter-light Encryption and coun-
terless encryption under DRAM with 25.6GB/s and 6.4GB/s bandwidth.

Energy and Power: Counter-light Encryption provides

DRAM energy savings of 5.1% per instruction compared to

counterless encryption (see Figure 19). The saving comes

from improving performance and, thus, reducing idle DRAM

energy; idle power dominates in the large memory systems

typical in server systems. Only omnetpp has higher energy

due to receiving relatively small performance benefit.

��%
�,%
&�%
&,%

 ��%
 �,%
 �%

!�
�	�

��
�

�"�
!�
��
���

��

���
��
���
	�
�

�

	�
���
��
��
�� �

�
�

�

��
�
��
���
��
��

���
���
���
���

���
��
��

���
��

�
���
���

�

��
���
�

�

�
��

��
�

���
��

��
��

�
��

Fig. 19: Energy per instruction of Counter-light Encryption under AES-128,
normalized to counterless encryption.

Sensitivity to Bandwidth Utilization: To explore how

Counter-light Encryption works under high DRAM bandwidth

utilization, we also perform stress test for DRAM with only

6.4GB/s bandwidth, similar with peak bandwidth of DDR2.

Under 6.4GB/s bandwidth, the bandwidth utilization increases

significantly to 73% (see Figure 18). The performance degra-

dation of Counter-light Encryption in the worst case is 1.4%

of counterless encryption (see Figure 20). Counter-light En-

cryption dynamically reverts the data blocks to counterless

encryption when the bandwidth utilization is high and thus

has nearly the same performance as counterless encryption

for most benchmarks.

!��

���

 ��

$��

���

���

����

��
���

��
�

���
��
��
���

��

���
��
���
	�
�

�

	�
���
��
��
�� �

� �

�

��
�
��
���
��
��

���
���
���
���

���
��
��

���
��

�
���
���

�

��
���
�

�

�
��

��
�

��

#�

	�
��

���
�

��
��

����������� �������$�
��� �������$�
����%
������
�	���%
���
��

Fig. 20: Performance under a low 6.4GB/s DRAM bandwidth; everything is
normalized to without encryption.

As sensitivity analysis, we also evaluate what would happen

if Counter-light Encryption never switches any block back

to counterless mode. Without dynamic mode switching, the

average performance degradation over counterless encryption

is 20%. Omnetpp suffers from the most slowdown (i.e.,

51%) because the overhead bandwidth normalized to without

encryption under counter mode is high (i.e., 96%, see Figure

18). However, benchmarks with very few LLC writebacks

(e.g., the number of LLC writebacks is ≤ 1% of the number

of LLC misses for streamcluster) only have slight traffic

overhead in the absence of dynamic mode switching and suffer

little degradation. GraphColoring actually performs better. Its

traffic overhead under counter-mode encryption is very low

- 3%; thus, the benefit of faster cipher calculation due to

always using counter mode encryption outweighs the small

performance loss caused by the small bandwidth overhead.

Sensitivity to Bandwidth Utilization Threshold: We

evaluate different bandwidth thresholds – 10%, 60%, and

80% – for switching encryption mode. Figure 21 shows that

under the low 6.4GB/s DRAM bandwidth, as the threshold

increases from 10% to 80%, the number of LLC writebacks

using counterless encryption reduces from 100% down to

70%. Under our default threshold 60%, 91% of all LLC

writebacks use counterless encryption; but under the regular
25.6GB/s DRAM bandwidth, only 3% of LLC writebacks use
counterless encryption.

Figure 22 shows performance under the different utilization

thresholds assuming the 6.4GB/s DRAM bandwidth.

Sensitivity to Workload Type: To explore how well

Counter-light Encryption works under different workload

types, we also evaluate workloads with regular access patterns

735

��
���
���
 ��
���
!��
"��
&��
#��
$��
����

'	
%&�

��
�

���
�	
�

�
�
���

�
��

��
��

�
�

��
���
��
��
�� ��

� ��
�

����
��
���

�
��

�	

���
���
��	

��
��
��

���
��
��
���
���

�
��
��� �

�
��
��

�
��

���
��

�

��

��������	����������
�� 	���	
��!� "#� $#� %#�

Fig. 21: LLC writebacks using counterless encryption normalized to total LLC
writebacks under a low 6.4GB/s bandwidth.

&')

*')

+')

('')

((')

('')

��
'(�

�

(

'��
��
��

���
�
'

��

(

��(
��

��
�

�(
'�(
(�
(

�� ��
�

��
�

����

'

�(�
��

�

���
��(

���
���

��

(
��

���
(�

��
���

�(�

��

(

��� ���
�(
�

��
��

��
�)(

��
�(

���
��

�

�(��
�����������������	�
��
������ ��) ��) *�)

Fig. 22: Performance of using different bandwidth utilization thresholds under
the low 6.4GB/s bandwidth, normalized to counterless encryption.

from SPEC2017 [14]. The average performance of Counter-

light normalized to without encryption is 99.5%; for counter-

less, it reduces to 96.6% (see Figure 23). It is well-known

that all memory encryption modes (including counter mode)

work well for workloads with regular access patterns. Same

as most memory encryption designs, Counter-light Encryption

performs well for workloads with regular access patterns. We

��)

*�)

+�)

���)

��
���
��
��

�	�

��

� ���

�	�
	�
���

�
���

�

��
��
���
�� ��

��
	�

��
��

	�
���

��
��

���
��

	�
��

����
���������
� �* ����
�������
���
� �*
����
���������
��!� ����
�������
���
��!�

Fig. 23: Performance of Counter-light Encryption and counterless encryption
under 25.6GB/s bandwidth, normalized to without encryption. The results are
for other workloads with more regular memory access patterns.

also evaluate these workloads using quarter DRAM bandwidth,

where bandwidth overheads are costly. Under Counter-light

Encryption, these workloads still retain 99.5% of their perfor-

mance as counterless encryption.

VII. RELATED WORK ON STORING ADDITIONAL

INFORMATION IN EACH DATA BLOCK

Other prior works have explored how to store additional

information in each data block.

Prior works [60] [48] find that > 90% of data blocks can

be compressed slightly to free up 4B to 8B per block; they

propose using the compression-freed space to store additional

values (e.g., additional ECC). However, this approach is not

applicable to encrypted memory. Slightly-compressed blocks

with a compressed plaintext size of 60B (i.e., 64B - 4B) or 56B

(i.e., 64B - 8B) still produce 64B ciphertext because AES al-

ways outputs a multiple of 16B. An alternative is compressing

EncryptionMetadata and data together before encrypting

the block. However, encrypting EncryptionMetadata by

itself will cause cyclic dependency during decryption; thus,

this alternative will not work.

Encoding EncryptionMetadata into Chipkill-correct ECC

cannot simply reuse prior methods of encoding into SECDED

some extra information unrelated to reliability. While an older

work NIM6133 [64] extracts the encoded extra information at

the end of full SECDED error correction, full error correction

is slower under chipkill-correct ECC, especially Synergy,

which requires many trials and errors (see Section II-C). Fur-

thermore, NIM6133 can only encode four extra bits, which is

not enough to encode EncryptionMetadata. While a recent

work [68] can encode 2B of extra information in each 32B

GPU memory block, the ‘enhanced’ code only serves like a

checksum to detect whether an equivalent 2B information from

the CPU (e.g., a spatial safety key) is correct; the code cannot

recompute on its own the full value of the extra information

encoded into it. Counter-light Encryption, however, must pre-

cisely reconstruct the full value of EncryptionMetadata.

VIII. CONCLUSION

Mainstream server memory has moved from earlier counter

mode encryption to counterless encryption to boost memory

performance. But cipher calculations in counterless encryption

slow down every LLC read miss. We note counter mode

encryption may complete the calculations on or prior to

data arrival. As such, we propose Counter-light Encryption

to achieve the best of both worlds in performance across

counterless and counter mode encryption while meeting the

security of counterless encryption. Our evaluation shows irreg-

ular workloads achieve 98% of their average performance over

no encryption, up from the 88% normalized performance under

counterless encryption. When memory bandwidth utilization is

high, the performance degradation of Counter-light Encryption

over counterless encryption is only 1.4% in the worst case.

ACKNOWLEDGMENT

We thank the National Science Foundation (NSF) for

its generous support through grant 1850025. We thank Dr.

Atul Mantri for his insightful feedback. We thank Advanced

Research Computing (ARC) at Virginia Tech for providing

computational resources. We also thank the reviewers for

providing helpful comments to improve the paper.

AMD, the AMD Arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

736

REFERENCES

[1] “Facebook dataset.” [Online]. Available: https://atlarge.ewi.tudelft.nl/
graphalytics/zip/datagen-8 5-fb.zip

[2] “Intel® xeon® silver 4314 processor.” [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/215269/intel-
xeon-silver-4314-processor-24m-cache-2-40-ghz/specifications.html

[3] Amazon, “Amd sev-snp.” [Online]. Available: https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/sev-snp.html

[4] AMD, “4th gen amd epyc™ processor architecture.” [Online].
Available: https://www.amd.com/system/files/documents/4th-gen-epyc-
processor-architecture-white-paper.pdf

[5] AMD, “Sev secure nested paging firmware abi specification.” [Online].
Available: https://www.amd.com/content/dam/amd/en/documents/epyc-
technical-docs/specifications/56860.pdf

[6] AMD, “Secure encrypted virtualization api version 0.24,” 2020.
[Online]. Available: https://www.amd.com/content/dam/amd/en/
documents/epyc-technical-docs/programmer-references/55766 SEV-
KM API Specification.pdf

[7] AMD, “Strengthening vm isolation with integrity
protection and more,” 2020. [Online]. Available:
https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf

[8] R. Avanzi, “The qarma block cipher family. almost mds matrices over
rings with zero divisors, nearly symmetric even-mansour constructions
with non-involutory central rounds, and search heuristics for low-latency
s-boxes,” IACR Transactions on Symmetric Cryptology, pp. 4–44, 2017.

[9] M. V. Beigi, Y. Cao, S. Gurumurthi, C. Recchia, A. Walton, and
V. Sridharan, “A systematic study of ddr4 dram faults in the field,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 991–1002.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 72–81.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[12] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in Cryptographic Hardware and Embedded Systems-
CHES 2007: 9th International Workshop, Vienna, Austria, September
10-13, 2007. Proceedings 9. Springer, 2007, pp. 450–466.

[13] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger et al., “Prince–a
low-latency block cipher for pervasive computing applications,” in Ad-
vances in Cryptology–ASIACRYPT 2012: 18th International Conference
on the Theory and Application of Cryptology and Information Security,
Beijing, China, December 2-6, 2012. Proceedings 18. Springer, 2012,
pp. 208–225.

[14] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[15] S. Cha, O. Seongil, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S.
Choi, G. Y. Jin, Y. H. Son, H. Cho et al., “Defect analysis and cost-
effective resilience architecture for future dram devices,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 61–72.

[16] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens,
“Drampower: Open-source dram power & energy estimation tool
(2012),” URL: http://www. drampower. info (visited on 11/14/2017),
2017.

[17] P.-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel tdx demystified: A top-down
approach,” arXiv preprint arXiv:2303.15540, 2023.

[18] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms
for solving overdefined systems of multivariate polynomial equations,”
in International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 2000, pp. 392–407.

[19] N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers
with overdefined systems of equations,” in Advances in Cryptol-
ogy—ASIACRYPT 2002: 8th International Conference on the Theory

and Application of Cryptology and Information Security Queenstown,
New Zealand, December 1–5, 2002 Proceedings 8. Springer, 2002, pp.
267–287.

[20] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[Online]. Available: https://www.cs.miami.edu/home/burt/learning/
Csc688.012/rijndael/rijndael doc V2.pdf

[21] T. J. Dell, “A white paper on the benefits of chipkill-correct ecc for pc
server main memory,” IBM Microelectronics division, vol. 11, no. 1-23,
pp. 5–7, 1997.

[22] Z.-H. Du, Z. Ying, Z. Ma, Y. Mai, P. Wang, J. Liu, and J. Fang, “Secure
encrypted virtualization is unsecure,” arXiv preprint arXiv:1712.05090,
2017.

[23] M. El-Hindi, T. Ziegler, M. Heinrich, A. Lutsch, Z. Zhao, and C. Bin-
nig, “Benchmarking the second generation of intel sgx hardware,” in
Proceedings of the 18th International Workshop on Data Management
on New Hardware, 2022, pp. 1–8.

[24] A. Fakhrzadehgan, Y. N. Patt, P. J. Nair, and M. K. Qureshi, “Safeguard:
Reducing the security risk from row-hammer via low-cost integrity pro-
tection,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2022, pp. 373–386.

[25] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
Acm sigplan notices, vol. 47, no. 4, pp. 37–48, 2012.

[26] E. Fujiwara and D. K. Pradhan, “Error-control coding in computers,”
Computer, vol. 23, no. 7, pp. 63–72, 1990.

[27] S.-L. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez, “Duo:
Exposing on-chip redundancy to rank-level ecc for high reliability,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 683–695.

[28] S. Gueron, “A memory encryption engine suitable for general purpose
processors.” 2016. [Online]. Available: https://eprint.iacr.org/2016/204.
pdf

[29] R. H. Gumpertz, “Combining tags with error codes,” ACM SIGARCH
Computer Architecture News, vol. 11, no. 3, pp. 160–165, 1983.

[30] S. Gurumurthi, “Advanced memory device correction (amdc) for
servers,” AMD Whitepaper, 2020.

[31] S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K.-H. Kim, and
M. Healy, “Attaché: Towards ideal memory compression by mitigat-
ing metadata bandwidth overheads,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 326–338.

[32] J. Huang and Y. Hua, “A write-friendly and fast-recovery scheme for
security metadata in non-volatile memories,” in 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2021, pp. 359–370.

[33] R. Huang and G. E. Suh, “Ivec: off-chip memory integrity protection
for both security and reliability,” ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 395–406, 2010.

[34] IBM, “Introduction to ibm® power® reliability, availability, and service-
ability for power10 processor-based systems using ibm powervm™.”
[Online]. Available: https://www.ibm.com/downloads/cas/2RJYYJML

[35] Intel, “Intel® architecture memory encryption technologies.”
[Online]. Available: https://cdrdv2-public.intel.com/679154/multi-key-
total-memory-encryption-spec-1.4.pdf

[36] Intel, “Intel® total memory encryption white paper.” [Online].
Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/vpro/hardware-shield/total-memory-encrpytion.html

[37] Intel, “Intel® trust domain extensions.” [Online]. Available: https:
//cdrdv2.intel.com/v1/dl/getContent/690419

[38] Intel, “Using the rdtsc instruction for performance monitoring.”
[Online]. Available: https://www.ccsl.carleton.ca/∼jamuir/rdtscpm1.pdf

[39] J. Jean, I. Nikolić, T. Peyrin, L. Wang, and S. Wu, “Security analysis
of prince,” in International Workshop on Fast Software Encryption.
Springer, 2013, pp. 92–111.

[40] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, “Low-power,
low-storage-overhead chipkill correct via multi-line error correction,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[41] X. Jian and R. Kumar, “Adaptive reliability chipkill correct (arcc),”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2013, pp. 270–281.

[42] X. Jian, V. Sridharan, and R. Kumar, “Parity helix: Efficient protection
for single-dimensional faults in multi-dimensional memory systems,” in

737

2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 555–567.

[43] S. Johnson, R. Makaram, A. Santoni, and V. Scarlata, “Supporting
intel sgx on multi-socket platforms,” Intel Corp, 2021. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf

[44] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 158–169.

[45] D. Kaplan, “Protecting vm register state with sev-es,” White paper,
p. 13, 2017. [Online]. Available: http://events17.linuxfoundation.org/
sites/events/files/slides/AMD%20SEV-ES.pdf

[46] D. Kaplan, J. Powell, and T. Woller, “Amd
memory encryption,” White paper, 2016. [Online].
Available: https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/white-papers/memory-encryption-white-paper.pdf

[47] J. Kim, M. Sullivan, and M. Erez, “Bamboo ecc: Strong, safe, and
flexible codes for reliable computer memory,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2015, pp. 101–112.

[48] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez, “Frugal ecc: Efficient and
versatile memory error protection through fine-grained compression,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[49] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
dram simulator,” IEEE Computer architecture letters, vol. 15, no. 1, pp.
45–49, 2015.

[50] A. Kipnis and A. Shamir, “Cryptanalysis of the hfe public key cryptosys-
tem by relinearization,” in Annual International Cryptology Conference.
Springer, 1999, pp. 19–30.

[51] D. Kline, R. Melhem, and A. K. Jones, “Counter advance for reliable
encryption in phase change memory,” IEEE Computer Architecture
Letters, vol. 17, no. 2, pp. 209–212, 2018.

[52] T. S. Lehman, A. D. Hilton, and B. C. Lee, “Poisonivy: Safe speculation
for secure memory,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[53] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “Cipherleaks: Breaking
constant-time cryptography on amd sev via the ciphertext side channel,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
717–732.

[54] H. Lipmaa, P. Rogaway, and D. Wagner, “Ctr-mode encryption,” in First
NIST Workshop on Modes of Operation, vol. 39. Citeseer. MD, 2000.

[55] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 1023–1036.

[56] L. Martin, “Xts: A mode of aes for encrypting hard disks,” IEEE
Security & Privacy, vol. 8, no. 3, pp. 68–69, 2010. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5470958

[57] S. Micro, “Memory ras configuration.” [Online].
Available: https://www.supermicro.com/manuals/other/Memory RAS
Configuration User Guide.pdf

[58] S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common counters:
Compressed encryption counters for secure gpu memory,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2021, pp. 1–13.

[59] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
understanding graph computing in the context of industrial solutions,”
in SC’15: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2015, pp.
1–12.

[60] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Cop: To compress and
protect main memory,” ACM SIGARCH Computer Architecture News,
vol. 43, no. 3S, pp. 682–693, 2015.

[61] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, Every
Walk’s a Hit: Making Page Walks Single-Access Cache Hits. New
York, NY, USA: Association for Computing Machinery, 2022, p.
128–141. [Online]. Available: https://doi.org/10.1145/3503222.3507718

[62] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 416–427.

[63] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018, pp. 454–
465.

[64] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and
D. A. Wood, “Fine-grain access control for distributed shared memory,”
in Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems, 1994, pp.
297–306.

[65] N. Sorensson, “minisat.” [Online]. Available: https://github.com/
niklasso/minisat

[66] W. Stallings, Cryptography and network security, 4/E. Pearson Educa-
tion India, 2006.

[67] G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36. IEEE, 2003, pp. 339–350.

[68] M. B. Sullivan, M. T. I. Ziad, A. Jaleel, and S. W. Keckler, “Implicit
memory tagging: No-overhead memory safety using alias-free tagged
ecc,” in Proceedings of the 50th Annual International Symposium on
Computer Architecture, 2023, pp. 1–13.

[69] M. Taassori, R. Balasubramonian, S. Chhabra, A. R. Alameldeen,
M. Peddireddy, R. Agarwal, and R. Stutsman, “Compact leakage-free
support for integrity and reliability,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 735–748.

[70] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2018, pp. 665–678.

[71] E. Thomae and C. Wolf, “Solving underdetermined systems of multivari-
ate quadratic equations revisited,” in International workshop on public
key cryptography. Springer, 2012, pp. 156–171.

[72] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N. P. Jouppi, “Lot-ecc: Localized and tiered reliability mechanisms for
commodity memory systems,” ACM SIGARCH Computer Architecture
News, vol. 40, no. 3, pp. 285–296, 2012.

[73] X. Wang, J. B. Kotra, and X. Jian, “Eager memory cryptography in
caches,” in 2022 55th IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2022, pp. 693–709.

[74] X. Wang, D. Talapkaliyev, M. Hicks, and X. Jian, “Self-reinforcing
memoization for cryptography calculations in secure memory systems,”
in 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 678–692.

[75] X. Xin, W. Zhu, and L. Zhao, “Architecting ddr5 dram caches for non-
volatile memory systems,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 1057–1062.

[76] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Im-
proving cost, performance, and security of memory encryption and
authentication,” ACM SIGARCH Computer Architecture News, vol. 34,
no. 2, pp. 179–190, 2006.

[77] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting soft-
ware piracy and tampering,” in Proceedings. 36th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, 2003. MICRO-36. IEEE,
2003, pp. 351–360.

[78] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main memory,”
in Proceedings of the fifteenth International Conference on Architectural
support for programming languages and operating systems, 2010, pp.
397–408.

[79] D. Zhang, V. Sridharan, and X. Jian, “Exploring and optimizing chipkill-
correct for persistent memory based on high-density nvrams,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 710–723.

[80] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019, pp. 157–168.

738

