
Self-Reinforcing Memoization for Cryptography Calculations
in Secure Memory Systems

Xin Wang∗, Daulet Talapkaliyev∗, Matthew Hicks∗, Xun Jian∗
∗Virginia Tech

xinw, kosovo, mdhicks2, xunj@vt.edu

Abstract—Modern memory systems use encryption and
message authentication codes to ensure confidentiality and
integrity. Encryption and integrity verification rely on cryp-
tography calculations, which are slow. To hide the latency
of cryptography calculations, prior works exploit the fact
that many cryptography steps only require a memory block’s
write counter (i.e., a value that increases whenever the block
is written to memory), but not the block itself. As such,
memory controller (MC) caches counters so that MC can start
calculating before missing blocks arrive from memory.

Irregular workloads suffer from high counter miss rates,
however, just like they suffer from high miss rates of page
table entries. Many prior works have looked at the problem
of page table entry misses for irregular workloads, but not the
problem of counter misses for the irregular workloads.

This paper addresses the memory latency overheads that
irregular workloads suffer due to their high counter miss rate.

We observe many (e.g., unlimited number of) counters
can have the same value. As such, we propose memoizing
cryptography calculations for hot counter values. When a
counter arrives from memory, MC can use the counter value
to look up a memoization table to quickly obtain the counter’s
memoized results instead of slowly recalculating them.

To maximize memoization table hit rate, we observe when-
ever writing a block to memory, increasing its counter to
any value higher than the current counter value can satisfy
the security requirement of always using different counter
values to encrypt the same block. As such, we also propose
a memoization-aware counter update: when writing a block to
memory, increase its counter to a value whose cryptography
calculation is currently memoized.

We refer to memoizing the calculation results of counters
and the corresponding memoization-aware counter update
collectively as Self-Reinforcing Memoization for Cryptography
Calculations (RMCC).

Our evaluations show that RMCC improves average per-
formance by 6% compared to the state-of-the-art. On average
across the lifetimes of different workloads, RMCC accelerates
decryption and verification for 92% of counter misses.

Keywords-memory confidentiality and integrity; counter-
mode AES; memory subsystem; memoization

I. INTRODUCTION

Moving computing in Cloud can lower cost for many
companies. However, Cloud computing raises new security
concerns as companies no longer control physical accesses
to the servers running their applications.

To improve security, secure memory systems (e.g., Intel
SGX [1]) ensure confidentiality and integrity. Hiding mem-

ory values from attackers ensures confidentiality; securely
detecting malicious tampering of memory values ensures
integrity. Specifically, when writing a memory block to
memory, CPU ensures confidentiality by encrypting the
block and ensures integrity by protecting the block with
a message authentication code (MAC); when reading an
encrypted block from memory, CPU decrypts the block and
verifies its correctness via the MAC.

Cryptography calculations, such as Advanced Encryption
Standard (AES), are at the heart of decryption and verifi-
cation. Most steps of cryptography calculations require a
block’s counter (a.k.a, write counter value) as input. Each
block has a dedicated counter; a block’s counter increases
whenever the block is written to memory.

Cryptography calculations are slow (e.g., evaluated as
40ns under recent prior works [2][3]), however. In this
paper, we assume and evaluate 15ns - 22ns, according to
AES latencies reported under 7nm synthesis [4]. This 15ns
overhead equates to doubling DRAM row buffer hit latency.

To hide this long latency, CPUs today leverage the fact
that many steps of cryptography calculations only require
a block’s counter, but not the block itself. As such, CPU’s
memory controller (MC) caches the counters [1] so that if a
block’s counter hits in the cache, MC can start calculating
for the block before the block arrives from memory.

However, caching counters work poorly for large and/or
irregular workloads. Even under space-efficient counter de-
signs, a 64B counter block covers only one [5] or two [6]
4KB physical pages. As such, a counter block provides
similar coverage as a normal page table entry. It is well-
known that large and/or irregular workloads suffer from high
miss rates of 4KB page table entries in the TLB. Many works
have looked at high TLB miss rates for large and/or irregular
workloads [7][8][9][10][11][12][13][14].

This paper addresses the memory latency overheads that
large and/or irregular workloads suffer from due to their
high counter miss rates. We observe many (e.g., an unlimited
number of) counters can have the same value. For example,
after an overflow under split counters [5][6], all blocks
in the same page have the same counter value. Based
on this observation, we propose memoizing cryptography
calculations for hot counter values (see Figure 1). Because
a counter value can cover many more memory blocks than

678

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00055

For write: memoize
AES Results

Covered
Counters

Big
Counters

AES

<Counter Value A, AES(A)>
<Counter Value B, AES(B)>
<Counter Value C, AES(C)>

Small
Counters

For write: Increase
counters to values in

the table … …

Memoization Table

For read: RMCC uses those covered counters as index to access their AES
results in the Memoization Table for quicker decryption/verification.

Figure 1: High-level overview of Self-Reinforcing Memo-
ization for Cryptography Calculations (RMCC).

a counter block, memoizing calculations for counter values
can be more space-efficient than caching counters. When
a missing counter arrives at MC from memory, MC can
use the counter value to look up a memoization table to
quickly obtain the counter’s memoized result instead of
slowly recalculating the results.

A challenge with memoization is that although many (e.g.,
tens of thousands or more) counters can have the same
values, it does not mean they actually do at runtime. For
memoization to be more effective than counter caching,
many counter values must actually be the same at runtime.

To address this challenge, we note counter mode encryp-
tion provides strong memory security by encrypting the same
block differently every time the block is written to memory;
we observe that simply increasing a block’s counter value
whenever it is written to memory, regardless of which higher
value to increase the counter to, can ensure always using
different counter values to encrypt the same block. As
such, we propose memoization-aware counter update: after
writing a block to memory, increase the counter to a value
whose cryptography calculation is currently memoized. Over
time, more and more counters will conform to values whose
calculations are currently memoized. As a result, a few (e.g.,
128) counter values will cover nearly all active blocks.

We refer to memoizing the results calculated from coun-
ters and the corresponding memoization-aware counter up-
date collectively as Self-Reinforcing Memoization for Cryp-
tography Calculations (RMCC).

To maximize coverage, RMCC only memoizes the arith-
metic contribution of counters, instead of the full cryptogra-
phy calculation, which also depends on address. Because
a memory address is unique to a block, memoizing any
address-dependent calculation benefits just one block and,
thus, is ineffective. To memoize and reuse just the arithmetic
contribution of counters, we propose a modified cryptogra-
phy calculation that independently computes a partial result
only from a block’s counter and independently computes a
partial result only from the block’s address; RMCC quickly
combines the two to derive the final result for encryption
and verification. While only memoizing calculation results
for counters does not speed up calculations for addresses,
calculations for addresses are already fast because MC
always knows addresses, unlike counter values, which must

be fetched from memory when they miss in the cache.
This paper makes the following contributions:

• We address the latency overheads faced by large and/or
irregular workloads due to frequent counter misses.

• We propose Self-Reinforcing Memoization for Cryp-
tography Calculations (RMCC) to address the latency
overheads of cryptography calculations after counter
misses. RMCC accelerates decryption and verification
for 92% of counter misses.

• RMCC improves average performance by 6% over a
state-of-the-art baseline - Morphable Counters [6].

II. BACKGROUND

For some companies, cloud computing can reduce cost
compared to computing onsite. However, moving to Cloud
requires companies to surrender control of physical accesses
to the computing infrastructure. This opens up the possibility
for malicious personnel with physical accesses to Cloud
servers (e.g., disgruntled Cloud employees) to snoop and
tamper with the memory values of applications migrated
to Cloud. An attacker can use one of the many existing
commercial off-the-shelf memory bus probes [15], intended
for system-level integration test and debugging, to read all
values and commands transmitted over the memory bus.

To improve memory security and trust for Cloud com-
puting, Intel SGX [1] enforces memory confidentiality and
integrity. Obfuscating memory values from attackers ensures
confidentiality; securely detecting malicious memory tam-
pering ensures integrity. When writing a block to memory,
a CPU with SGX ensures memory confidentiality by en-
crypting the block and ensures integrity by protecting the
block with a message authentication code (MAC); when
reading from memory, CPU decrypts the block and checks
its integrity by recomputing the MAC from the block and
comparing it against the block’s MAC stored in memory.

Memory encryption and verification rely on cryptogra-
phy calculations. SGX uses Advanced Encryption Standard
(AES) as its main cryptography calculation.

A. Memory Confidentiality

Before MC writes a block to memory, SGX first encrypts
the block by calculating an AES result and bitwise XORs
the result with the block’s value to produce the ciphertext
(see Figure 2a); MC only writes ciphertexts to memory.

Encryption: A primary input to AES is the write counter.
The write counter input enables AES to always calculate
different results whenever MC writes to memory, even for
the same memory block. Hence, the AES results are called
One-time Pads (OTPs). To calculate different OTPs for the
same block, SGX protects every block with its own write
counter and increases a block’s counter each time MC writes
the block to memory.

679

µ��
���E�

$GGUHVV�
���E�

:RUG��
LQGH[���E�

&RXQWHU�
���E�

$(6

3ODLQWH[W
�&LSKHUWH[W�
����E�

.H\

273�����E�

&LSKHUWH[W
�3ODLQWH[W�
����E�

µ��
���E�

$GGUHVV�
���E�

&RXQWHU
���E�

$(6

;25�DQG�
7UXQFDWH

273����E�

0DF�
���E�

.H\:RUG��
«

:RUG��

'RW�SURGXFW
��E

.H\��
«

.H\��

'DWD�
EORFN

(a) Encryption and Decryption

µ��
���E�

$GGUHVV�
���E�

:RUG��
LQGH[���E�

&RXQWHU�
���E�

$(6

3ODLQWH[W
�&LSKHUWH[W�
����E�

.H\

273�����E�

&LSKHUWH[W
�3ODLQWH[W�
����E�

µ��
���E�

$GGUHVV�
���E�

&RXQWHU
���E�

$(6

;25�DQG�
7UXQFDWH

273����E�

0DF�
���E�

.H\:RUG��
«

:RUG��

'RW�SURGXFW
��E

.H\��
«

.H\��

'DWD�
EORFN

(b) MAC Calculation.

Figure 2: Encryption, decryption, and MAC calculation for
a block. Dashed steps can complete without the block.

Counters are stored in memory as 64B blocks, which
we call counter blocks. Each counter block has eight 56-
bit counters. SGX stores counters in memory as plaintext,
unlike normal blocks.

Another input to AES is a block’s memory address. Note
that, in general, AES has a fixed input and output size of 128
bits. Because each block is 512 bit (i.e., 64B), encrypting
a block requires four AES calculations, one for each of the
four 128-bit words in the block. The four calculations use
four different memory addresses, each for one of the four
128-bit words in the block.

Decryption: After reading the ciphertext of a block from
memory, SGX decrypts the block. SGX first uses the block’s
addresses and write counter to recompute the block’s OTPs
and then bitwise XORs them with the ciphertext to recover
the block’s plaintext.

B. Memory Integrity

To reliably detect malicious tampering of memory values,
SGX protects every memory block with a 56-bit MAC.
When MC writes a block to memory, SGX calculates the
block’s MAC as the bitwise XOR between an OTP and a
Galois Field (GF) dot product involving the block’s values
(see Figure 2b); the MACs are stored in memory. After
fetching a block from memory, SGX recalculates the block’s
MAC and compares it with the MAC in memory to reliably
detect differences and, thus, malicious tampering.

Like encryption, SGX uses a block’s address and counter
as inputs to generate the OTP to calculate the block’s MAC.

To protect counter blocks themselves from malicious
tampering (e.g., to launch replay attacks), SGX also protects
counter blocks with MACs. Calculating a MAC for each
counter block takes another write counter as input (i.e., each
counter block itself is protected by another counter). SGX
organizes those counters protecting counters in a tree, called
the integrity tree.

C. Counter Cache

AES is the most time-consuming calculation for both
decryption and verification. AES requires many serial rounds
of computation, where each round consists of four serial
transformations. SGX uses AES-128 (i.e., AES with 128-
bit keys) [16]; AES-128 requires 10 sequential rounds.
The stronger AES-256, which is quantum safe, requires
14 sequential rounds. In comparison, the remaining steps
under decryption (i.e., bitwise XOR of ciphertext and OTP)
and under verification (i.e., dot product) are much faster; in
general, bitwise XOR and dot product are highly parallel.

The AES calculations to generate OTPs for decrypting
and verifying a block does not use the block itself as input
(see Figure 2); as such, MC can generate OTPs for a block
before the block arrives from memory, as long as MC has
the block’s counter. Therefore, SGX caches the counters in
the memory controller (MC) [1]; if the counter block hits in
the counter cache, MC can hide most of the latency of AES.
Counter blocks are more cache-friendly than normal blocks
because each counter block covers eight normal blocks. MC
accesses a counter block whenever MC accesses any of the
eight normal blocks in memory; as such, each counter block
has the combined locality of eight normal blocks.

When a counter block misses in the counter cache, the
counter block must be fetched from memory and then veri-
fied; verifying a counter block fetched from memory requires
using the counter block’s counter block to recalculate a MAC
for the counter block. To reduce the bandwidth overhead of
accessing the integrity tree to verify counter blocks, MC also
caches counter blocks’ counter blocks (i.e., the integrity tree
nodes) in the counter cache.

D. Prior works on Improving Counter Cache Hit Rate

Split counter designs (e.g., SC-64 [5], Morphable Coun-
ters [6]) pack many times more counters in each 64B counter
block to cover more normal blocks per counter block. Unlike
SGX, where each counter in a counter block is 56 bits, each
counter in SC-64 [5] is only 7 bits; as such, SC-64 increases
the number of normal blocks that each counter block covers
from eight to 64. Covering more blocks per counter block
exponentially increases the coverage of integrity tree nodes;
for example, the number of normal blocks that each level-
1 node in the integrity tree increases from 64 to 4096 - a
factor of 82 increase. A later split counter design, Morphable

680

Counters [6], increases the number of blocks that each
counter block protects even further - from 64 to 128,

One drawback of split counters is incurring bandwidth
overhead by causing overflows. An overflow occurs when a
counter value increases to a value that cannot be encoded
by the smaller counter with fewer bits. SC-64 encodes each
normal block’s counter value as the sum of a 64-bit major
counter shared across all 64 normal blocks in a page and a 7-
bit minor counter dedicated to each block in the page. When
a minor counter overflows, SC-64 increases all encoded
counter values in the counter block to the maximum encoded
counter value in the block. SC-64 does so by updating the
shared major counter and all of the minor counters in the
counter block; correspondingly, SC-64 fetches all normal
blocks that the counter block covers, uses their new encoded
counter values to compute their new ciphertext and MAC,
and then writes the new ciphertexts and MACs to memory.

III. CHARACTERIZING THE PROBLEM

As dataset and memory system sizes increase over time,
the memory size of many real-world applications have
increased to hundreds of gigabytes [7][17][18][19]. Big
in-memory datasets are general features of many server
workloads such as data analytics frameworks and databases
[20][21][22][23][24]. Many big memory workloads also
have irregular memory access patterns. Large memory foot-
print and/or irregular memory access patterns causes high
TLB miss rates. Many prior works have looked at the
performance overhead that large and/or irregular workloads
suffer due to their page table entries (PTEs) missing in TLBs
[8][9][10][11][12][13].

Although the latest split counter design, Morphable Coun-
ters [6], provides a high coverage of 128 blocks or 8KB of
memory per counter block, this coverage is still comparable
to the coverage of PTEs; a PTE typically performs address
translation for 4KB of memory content. Because counter
block has comparable coverage as PTEs, which suffer from
high miss rate for large and/or irregular workloads, we
hypothesize that these workloads also suffer from high
counter cache miss rate.

To test our hypothesis, we model Morphable Counters
in Pintool [25] to measure counter cache miss rates for
several workloads across their lifetimes. We select IBM
GraphBig [26], which covers a broad scope of graph com-
puting applications with irregular access patterns. We run
GraphBig as four threads using the 8 5 − fb Facebook-
like dataset [27] as the input. We also evaluate canneal,
omnetpp and mcf, which are used by recent prior works
on improving address translation for irregular workloads
[7][14]. We simulate 2MB of LLC per thread and 32KB
of counter cache per thread. We run all Pintool experiments
under 2MB standard huge pages to maximize counter hit
rate for Morphable Counters. Morphable Counters is sub-
optimal under 4KB pages; while each counter block in

Morphable covers two adjacent 4KB physical pages (i.e.,
128 continuous physical memory blocks), OS may map two
adjacent 4KB virtual pages to two far-apart physical pages
when using 4KB pages. Two far-apart physical pages require
two different Morphable counter blocks, instead of one; this
increases counter misses.

To measure the similarity between TLB miss rate and
counter miss rate, we also measure TLB miss rate by using
hardware performance counters to observe native executions
of workloads on an Intel(R) Xeon(R) Gold 5120 CPU.

Figure 3 shows counter miss rate for LLC misses (i.e.,
what fraction of LLC misses suffer from counter cache miss)
as measured in Pintool. Figure 4 show the number of TLB
misses normalized to LLC misses as measured by hardware
performance counters. The counter miss rate in Figure 3
correlates well with the TLB miss rate in Figure 4. Counter
miss rate is generally high for workloads with high TLB
miss rate (e.g., canneal); for workloads with low TLB miss
rate (e.g., mcf), counter miss rate is also low.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

pageRan
k

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngle

Count

shorte
stP

ath

canneal

omnetpp
mcf

mean

Co
un

te
r m

iss
es

Figure 3: Total counter cache misses due to LLC misses
normalized to total LLC misses

Figure 4 also shows TLB miss rate when running the
workloads under 2MB huge pages. TLB miss rate is very
low under huge pages. This is because each 2MB PTE covers

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

page
Ran

k

gr
aphColorin

g

co
nnecte

dCom
p

degr
eeCentr

DFS BFS

tri
angle

Count

sh
orte

stP
ath

ca
nneal

om
netp

p
m

cf

m
ean

TL
B

 m
is

se
s

pe
r

m
em

or
y

ac
ce

ss 4KB page size 2MB page size

Figure 4: Total TLB misses (i.e., including TLB misses
for accessing data that hit in cache) normalized to total
LLC misses under normal page and huge page, respectively,
during native execution without Pintool.

681

tens of thousands of memory blocks.
Unfortunately, there is no equivalent of 2MB pages for

counters. We seek to achieve similarly high coverage for
counters, so that counter values buffered in the MC can each
cover over tens of thousands of memory blocks.

IV. SELF-REINFORCING MEMOIZATION FOR
CRYPTOGRAPHY CALCULATIONS IN SECURE MEMORY

To address the high latency overhead of counter misses,
we observe many counters can have the same value. For
example, after an overflow, split counter designs increase the
counters of all blocks in a page to the same counter value. In
fact, because current CPUs and prior works independently
update the counter values of unrelated memory blocks,
unlimited number of memory blocks can happen to share
the same counter value. As such, counter values can have
orders of magnitude higher coverage than counter blocks.

Based on our observation above, we propose memoizing
the arithmetic contribution of frequently-used counter values
to OTPs and reuse these memoized results to accelerate
decryption and verification for many normal blocks. We refer
to the arithmetic contribution of a counter to an OTP as
counter-only result and refer to the arithmetic contribution
of an address to an OTP as address-only result. We propose
only memoizing counter-only results because calculating
address-only result is fast; address is always known when a
memory request arrives at MC. Section IV-C5 describes how
to independently calculate counter-only results and address-
only results and combine them to produce the final OTPs to
encrypt/decrypt/verify data.

Memoizing counter-only AES results can hide up to the
full latency of AES calculation for counter misses.

Figure 5 illustrates the memory latency savings due to
hiding the latency of calculating counter-only AES results.
Without memoization, MC can only start calculating the
OTP when the missing counter arrives from memory; serially

DRAM access of data

Data-only

DRAM access of ctr

Data-onlyLookup Memoization Table and combine AES results

Saving: 13ns

AES(addr)

Total Mem Access Latency
with Memoization

DRAM access of data

Data-only

DRAM access of ctr

Lookup MC's Private Counter cache

Total Mem Access without Memoization

AES(ctr, addr)

Figure 5: An example showing why memoizing AES re-
sults decreases total memory access latency. The example
assumes DRAM row buffer miss and 15ns AES.

computing OTP only after counter arrives increases the end-
to-end latency of securely accessing memory. With mem-
oization, when the missing counter arrives from memory,
MC uses the counter’s value to look up the memoization
table to get the counter-only result and then combines the
memoized counter-only result with the quickly calculated
address-only result to produce the final OTP; this eliminates
the long latency of slowly using the missing counter value
to recalculating AES.

Memoization also applies to counters in the integrity tree
(e.g., L1 or higher counters), instead of just normal blocks’
counters (i.e., L0 counters). Under current systems and prior
works, after fetching an L0 counter block from memory, MC
verifies the L0 block by using the L0’s block’s counter; this
is also called the normal block’s L1 counter. Calculations
using an L1 counter are stalled when the L1 counter block
misses in the counter cache; as such, also memoizing AES
results for L1 counters can further improve performance.

A. Challenges for Memoization

Challenge 1: One challenge is that while many (e.g., tens
of thousands or more) counters can have the same values,
they may not actually do at runtime. For example, different
blocks can receive writebacks at different rates. Over a long
time, different blocks’ counter values can diverge vastly. For
memoization to be more effective than just caching, many
counters must actually have the same values at runtime.

Challenge 2: Another challenge is how to accurately
identify hot (i.e., frequently-used) counter values. Getting
frequent benefits from the memoization table requires mem-
oizing AES results for hot counter values. Note that a
counter value covering many blocks (i.e., many blocks
currently have that same counter value) may not be a hot
counter value; if the many blocks that a counter value
covers are accessed rarely, memoizing the calculation for
the counter value is useless.

Challenge 3: Even if the table currently memoizes a
counter’s AES result, a little later the table may not when
MC updates the counter’s value due to a memory write. As
such, how to achieve high memoization table hit rate for
frequently written data is another challenge.

B. Memoization-aware Counter Update

To address all three challenges above, we observe that
when writing to a block, the block’s counter can increase to
any value. Counter mode encryption provides strong security
by ensuring the same counter value will not be reused to
encrypt the same data block; when writing a block back to
memory, simply increasing the block’s counter value, and
not necessarily by just one, can ensure not reusing the same
counter value to encrypt the same block.

Based on our observation, we propose a memoization-
aware counter update policy to effectively address all three

682

%ORFN�LG�RI�ZULWHEDFNV
�PHPRU\�DGGUHVV����

&RXQWHU�EHIRUH�
ZULWHEDFN�

&RXQWHU�DIWHU��
ZULWHEDFN

7DEOH�FRYHUDJH
��EORFNV�

���� ���� ���������� �
���� ���� ���������� �
���� ���� ���������� �

���������� ������������ ���������� ����������

,P
SURYHP

HQW

3YV�TSPMG]�MRGVIEWIW�XLIQ�XS������������FIGEYWI�XLI�I\EQTPI�XEFPI�
GYVVIRXP]�QIQSM^IW�XLI�%)7�VIWYPX�JSV�GSYRXIV�ZEPYI������������

Figure 6: Memoization-aware counter update for an example
memoization table that memoizes the counter-only result of
just one counter value (i.e., counter value 20,000,000). The
example spans 10 million memory writes. The table goes
from covering only one block to covering 10 million blocks.

challenges in Section IV-A: when writing a block to mem-
ory, increase the block’s counter to the nearest counter
value currently in the memoization table. Over time, this
memoization-aware counter update reinforces the counter
values in the memoization table to have higher and higher
coverage and become increasingly hot. It also enables a
block to consecutively hit in memoization table after consec-
utive update of the block’s counter value due to consecutive
writebacks of the block to memory.

Specifically, memoization-aware counter update addresses
Challenge 1 because, over time, it increases all accessed
blocks’ counters to counter values in the memoizaton table
to maximize the table’s coverage (see an example in Figure
6). It also addresses Challenge 2 because blocks that are
more frequently read from memory also tend to be more
frequently written back to memory; as such, the counter val-
ues of more frequently accessed blocks can be more quickly
increased to counter values in the table. Memoization-aware
counter update also addresses Challenge 3 because, during
consecutive writebacks to the data block, it consecutively
increases the block’s counter value to the next value in the
memoization table (see example in Figure 7).

We refer to our ideas of memoizing counter-only results
and the corresponding memoization-aware counter update
collectively as Self-Reinforcing Memoization for Cryptog-

Memoization
Table:

Counter Value
of Block X:

35, AES(35) 40, AES(40) 42, AES(42) 46, AES(46)

23 è 35 è 40 è 42 è 46
1st write 2nd write 3rd write 4th write

Figure 7: An example of how memoization-aware counter
update addresses Challenge 3. The memoization table keeps
covering a block’s counter value even after the block un-
dergoes many (e.g., N) writebacks to memory, assuming a
table with many (e.g., N) entries.

Data Encryption and MAC
Updating

128 entries for
Level-0 counters

…

128 entries for
Level-N

counters

Memoization-aware
Counter Update

Data Decryption and Verification

Memoization Table

Memoization-accelerated
OTP Calculation

Memory Controller

Figure 8: Architecture overview of RMCC.

raphy Calculations (RMCC). Figure 8 provides an architec-
tural overview of RMCC. We find that a 128-entry table can
cover 92% of LLC misses that suffer from counter miss.

C. Addressing other Practical Challenges

1) Read-heavy or Read-only Blocks: Another issue is that
some blocks may write back rarely; as such, RMCC has
little chance to increase their counter values to values in the
memoization table. To address this issue, for read requests
whose required counters miss in the table, RMCC also
applies memoization-aware counter update to the block’s
counter, even though they are read requests, not writebacks.

Increasing counter values for memory reads, not just for
memory writes, incurs a bandwidth overhead, however. To
cap this bandwidth overhead, RMCC has a 1% budget of
bandwidth overhead. The budget is replenished at the begin-
ning of every epoch of 1,000,000 memory accesses. RMCC
tracks the overhead traffic it causes due to memoization-
aware counter update for data read requests whose counter
values miss in the memoization table. When exceeding its
budget, RMCC stops memoization-aware counter update for
data read requests for the rest of the epoch. Leftover budget
from one epoch is carried over to the next epoch.

2) Bandwidth Overhead when Applied to Split Counters:
Split counters [6][5] can suffer from frequent counter over-
flows due to having few bits per counter; counter overflows
incur costly bandwidth overhead (see Section II). When
applied to split counters, RMCC can increase the rate of
counter flows because memoization-aware counter update
can increase the value of a counter by more than one (i.e.,
to match counter values in the memoization table).

To minimize the bandwidth overhead due to increasing
counter overflows, RMCC always inserts a group of con-
tiguous counter values (i.e., values X, X+1, X+2...) into
its memoization table. Always inserting a group causes
memoization-aware counter update to naturally increase
counter values by just one for most memory writes; this
reduces the rate of causing extra counter overflows. Specifi-
cally, RMCC always memoizes groups of eight consecutive
counter values. We refer to a group of consecutive counter
values whose counter-only results are recorded in the table
as a Memoized Counter Value Group. The 128 memoization
table entries in MC are organized as 16 Memoized Counter
Value Groups (see Figure 9).

683

Group 0: <start value A, use count>

Group 15: <start value P, use count>
Group 16: <start value, use count>

Group 31: <start value, use count>

Memoization Table’s Tag Array

16 Recently
Evicted Groups

16 Memoized
Groups

…
… AES(A) AES(A+1) … AES(A+7)

AES(P) AES(P+1) … AES(P+7)

Memoization Table’s Data Array

… … … …

Max-Counter-in-Table

Figure 9: Memoization table organization.

Despite memoizing the counter-only results at the gran-
ularity of contiguous counter value groups, memoization-
aware counter update still occasionally increases counter
values by more than one and, therefore, can still incur some
bandwidth overhead due to incurring extra counter overflow.
We cap this bandwidth overhead within the per-epoch budget
of 1% (see Section VI); 1% is a global budget that is shared
across all sources of memory traffic overheads.

When budget runs out during an epoch, RMCC switches
back to the baseline counter update policy for the rest of
the epoch for most memory writes; RMCC only applies
memoization-aware counter update to memory writes where
the baseline counter update policy would also incur counter
overflows. In this scenario, memoization-aware counter up-
date relevels the counter values of an overflowing page to
the nearest higher counter value in the table.

3) Counter Blocks with Very High Counter Values:
Another issue is that some counters can have values that
are bigger than the maximum counter value (i.e., Max-
counter-in-Table) in the table. As such, memoization-aware
counter update cannot increase these counters to counter
values currently in the memoization table.

To address this issue, if during the epoch, RMCC en-
counters many (e.g., 2K) read requests whose counter values
are greater than Max-counter-in-Table, RMCC inserts a new
Memoized Counter Value Group; the values in the new
group are higher than the current Max-counter-in-Table.
Ideally, the new Memoized Counter Value Group should
be higher than the counter values used by most (i.e., 98%
of) read requests during the epoch. As such, RMCC mon-
itors the following high counter values: X+1+8*i (i=0..16),
X+129+2j (j=4..17), where X is Max-counter-in-Table (see
Figure 9); RMCC tracks during each epoch how many read
requests use a counter value that is smaller than each of the
monitored values. For the start value of the new Memoized
Counter Value Group, RMCC selects the smallest monitored
counter value satisfying the 98% requirement.

When inserting a new Memoized Counter Value Group,
the memoization table needs to replace an old Memoized
Counter Value Group. RMCC replaces the least frequently
used Memoized Counter Value Group. As such, RMCC

tracks how frequently each Memoized Counter Value Group
is used via a frequency counter per group that increments
every time a value in a group is used to decrypt/verify a read
request. After evicting a Memoized Counter Value Group,
RMCC continues to maintain the group’s use frequency
counter, in a similar way in concept as shadow tags in
prior works on cache replacement policies. RMCC maintains
the use frequency counter for the 16 most recently evicted
groups. We refer to the 16 most recently evicted groups as
Evicted Counter Value Groups. At the end of each epoch,
RMCC selects the 15 mostly frequently used groups out of
all 32 groups and memoizes the counter-only results of their
counter values.

4) Harnessing Evicted Counter Value Groups: Counter
values within Evicted Counter Value Groups can still cover
many blocks; memoizing AES results for these counter
values can be beneficial. However, memoizing the AES
results for all such counter values can double the size of the
memoization table. Instead, RMCC memoizes the calcula-
tions for up to 16 most-recently-used counter values that fall
under Evicted Counter Value Groups. Figure 10 shows that
this additional optimization increases memoization hit rate
by 6%, on average (see Section V Lifetime Characterization
for methodology details). Because the composition of these
16 most-recently-used counter values can change with every
memory access, RMCC’s memoization-aware counter up-
date does not seek to increase counters to have these values.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

page
Rank

gra
phColorin

g

co
nnecte

dComp

degre
eCentr DFS BFS

tri
angleCount

sh
orte

stP
ath

ca
nneal

omnetpp
mcf

mean

M
em

oi
za

tio
n

hi
ts

Due to memoized recently used AES results
Due to Memoized Counter Value Groups

Figure 10: Memoization hit rate for counter misses.

684

5) Calculating OTP from Independently-Calculated
Counter-only Result and Address-only Result: In current
systems and prior works, each OTP is obtained from a
single AES calculation that simultaneously takes as input
both a data block’s counter value and address(es).

RMCC calculates OTPs slightly differently; RMCC first
independently calculates an address-only AES result and a
counter-only AES result and then uses a truncated carry-
less multiplication (see Figure 11) to combine the two
into an OTP. The new OTP calculation enables MC to
independently and quickly calculate address-only AES (e.g.,
without waiting for the counter to arrive from memory
in the event of a counter miss); if the counter value hits
in the memoization table, RMCC performs a fast carry-
less multiplication on the address-only AES result and the
recorded counter-only result to produce the final OTP.

For all OTP calculations (i.e., for encryption, decryption,
and MAC), counter-only AES is calculated from scratch only
if the counter value misses in the memoization table.

$(6 $(6

&DUU\�OHVV�PXOWLSOLFDWLRQ

7UXQFDWH
�NHHS�����ELWV�LQ�WKH�PLGGOH�

���E ���E

���E

���E
273

$GGU���E� µ����E�µ����E� &WU���E�

.H\

Figure 11: How RMCC calculates OTP. This OTP is a drop-
in replacement for the OTPs for encryption and verification
in Figures 2. RMCC also uses different keys for address-
only AES calculation while calculating OTP for encryption,
compared to calculating OTP for MAC, to ensure OTPs for
encryption and MAC are different for the same block (like
SGX [1]).

D. Security Analysis

Compared to existing CPUs and prior works, RMCC
modifies OTP calculation and counter update policy. We
discuss the security impact of both of these modifications.

1) RMCC’s new OTP calculation: SGX’ OTP calculation
in Figure 2 guarantees no repeat within an unrealistically
long lifetime of 256 writebacks (i.e., until a 56-bit counter
reaches an unencodable value of 256) [1]. When calculating
OTPs by multiplying two values together, however, repeats
are possible because A) multiplication is commutative (e.g.,

6·20 = 20·6) and B) multiplying completely different values
can produce the same result (i.e., 6 · 20 = 3 · 40).

RMCC eliminates type A) repeats by prefixing a counter
value with 72 bits of zeros when calculating AES for
counter and appending 64 bits of zeros to an address when
calculating AES for address (see Figure 11); this ensures
that the OTP of the block at address x and with counter
value y differs from the OTP for the block at address y and
with counter value x.

However, type B) repeats can still occur under RMCC, but
with only a very small chance. Because the output of AES
are random numbers, the truncated carry-less multiplication
of two random numbers (i.e,. multiplication of a counter-
only AES result and an address-only AES results) is also a
random number. Because each OTP is 128 bits, the chance
of any repeating OTP occurring during the targeted system
lifetime of 256 writebacks (i.e., the chance of having any
repeat after generating 256 OTPs) is the probability that
out of 256 numbers randomly chosen out of 2128 possible
numbers, at least two are equal. Using the Birthday Problem
formula, we calculate that only one in one hundred thousand
machines will have repeat during their unrealistic lifetimes.
For the one unlucky machine, an attacker cannot tell which
two writebacks, out of the 256, have repeating OTP; even
if the attacker can tell, he/she only gains the XOR of the
two random/undecidable writebacks’ values - a small loss,
given such a miraculous attack.

Another security question that RMCC’s OTP calculation
may raise is that since OTPs are calculated by multiplying
address-only AES and counter-only AES, can an attacker
break a subset of OTP values back down to individual
address-only AES results and counter-only AES results? If
so, attacker can use the derived address-only AES results and
counter-only AES results to calculate many more valid OTPs
and use them to decrypt many other data blocks. Note that
attackers can derive a subset of OTP values via known-text
attacks (e.g., the ciphertexts of all-zero pages in memory are
simply OTPs, under both baseline designs and RMCC). Also
note that an attacker has to derive counter-only AES and
address-only AES because RMCC only uses the final OTP
to encrypt contents in memory; RMCC never directly use
counter-only or address-only AES results to encrypt contents
in memory.

Attackers cannot decompose OTPs into individual
address-only and counter-only AES results through a better-
than-brute-force attack. To understand why, consider the
following worst-case scenario: A) all data blocks in memory
have the same counter value and an attacker knows this
(i.e., baseline systems store counter values in plaintext in
memory) and, simultaneously, B) the attacker knows all 4N
16B OTPs in a memory system with N 64B blocks. For
each OTP, the attacker can set up a new equation in the
form of known OTP = truncate (unknown counter-only AES
times unknown address-only AES). Specifically, the attacker

685

can use the 4N OTPs to set up 4N equations with 4N+1
unknowns (i.e., 4N different unknown address-only AES
results and a single unknown counter-only AES result).

In the above worst-case scenario, the system of equations
is unsolvable because the number of unknowns exceeds the
number of equations.

Note that even if the attacker can set up a system with
more equations than unknowns, the equations are still un-
solvable. Because RMCC truncates 128 bits of information
after multiplying counter-only and address-only results (see
Figure 11), RMCC’s OTP calculation is a highly lossy and,
therefore, irreversible function that does not support any use-
ful symbolic/algebriac manipulations; as such, the system of
equations lacks all basic primitives for any analytic solution.
The alternative of numerical solution would be prohibitively
costly; it would involve creating for every equation a list
containing all possible guesses of counter-only AES and
address-only AES pairs and then cross examining all guess
lists (e.g., find guess pairs where the guessed counter-only
AES results match). However, since our OTP calculation
cuts out 128 bits of information, the size of each equation’s
guess list is ∼2128. As such, the computation effort of
populating just one equation’s guess list can exceed that of
a brute force attack on AES-128.

Most of the analysis above hinges on the assumption that
our OTP calculations generate random numbers. We check
this assumption empirically via NIST randomness tests [28].
Our OTPs pass NIST randomness tests at the same rate as
the two streams of AES outputs used to calculate the OTPs.

2) Memoization-aware Counter Update: When applied to
split counters, memoization-aware counter update can cause
more frequent counter overflows by sometimes increasing
split counter values by more than one. An attacker may
launch a DoS attack by maliciously manipulating counter
values to greatly increase the frequency of split counter
overflows. However, DoS, which seeks to slow down appli-
cations by many factors or order(s) of magnitude, requires
many overflows; such a large number of overflows would
be hard to miss. As such, after encountering a large number
of overflows in an epoch, RMCC can adaptively pause
memoization-aware counter update and revert to baseline
counter update policy.

When a block’s counter value reaches 256, the block will
start reusing old counter values because each counter has
only 56 bits; reusing the same counter values for the same
block is highly insecure. Preserving security when memory
block(s) start reusing old values requires using a new key to
encrypt everything in memory (e.g., via a system reboot), a
very costly operation. By increasing each counter by only
one per writeback, SGX can bound the frequency of reboot
to no more than once per 256 writebacks; the guaranteed
256 writebacks without reboot corresponds to the worst
case of always writing to just one and the same memory
block. Guaranteeing no reboot before 256 writebacks makes

rebooting a negligible problem (e.g., less than once per eight
years in the worst case [1]).

Memoization-aware counter update, however, increases
counter values faster than SGX. Specifically, the choice of
new Memoized Counter Value Groups, directly as described
in Section IV-C, can cause an unrepresentable counter value
before 256 writebacks. Consider the worst-case scenario of
always writing to just one and the same block; as the
possible new Memoized Counter Value Groups start in
counter values with large jumps in-between, memoizing
a new Group in the table can cause memoization-aware
counter update to increase the one and only written block’s
counter by more than one and, thus, cause counter reuse
before 256 writebacks in this worst-case scenario.

To bound the frequency of reboot to no more than once
per 256 writebacks just like SGX, RMCC can track the
maximum encountered counter value for any data block (i.e.,
in an Observed System Max Counter Value Register) and
only select new Memoized Counter Value Groups that start
below System Max + 1. This ensures that the biggest counter
value in the system (e.g., the counter value of the one and
only written block in memory under the worst-case scenario)
only increments by one at a time.

In practice, the maximum counter value in the system
increases much slower than the worst-case of always writing
to the same memory block. Our Pintool modeling and mea-
surements across the entire lifetime of our target applications
finds that RMCC increases the maximum counter value
in the system by 24% over our baseline (i.e., Morphable
Counters), on geometric mean across different applications.

E. Area Overhead

The memoization table requires 4KB to store 128 32B
entries for Memoized Counter Value Groups; each entry
has 16B AES result for decryption and 16B AES result
for verification since decryption and verfication use dif-
ferent AES keys. The table needs 1KB to implement 64
16B counters to track the access rate for current groups,
recently evicted groups, and new counter candidates. MC
may maintain multiple tables (e.g., for different levels of
counters/integrity tree.)

RMCC requires a truncated 128X128=128 carry-less mul-
tiplier to calculate OTP (see Figure 11). A fast design is to
use 12K xor gates to compute and 16K inverters to increase
the fanout of inputs. Assuming each XOR is 2X of an
SRAM cell [29] and each inverter is half of an SRAM cell,
the carry-less multiplier incurs an equivalent area of 4KB
SRAM. The maximum gate depth is log2(128) = 7 XOR
and log4(128) = 3 inverters.

V. METHODOLOGY

We evaluate performance using Gem5 [30], a cycle-
accurate simulator. We evaluate the workloads used by
recent prior works [7][31] on improving address translation.

686

Like our Pintool experiments in Section III, our Gem5
simulations run the workloads under 2MB huge pages. We
use Ramulator [32] to simulate 128GB DDR4.

Baselines: We compare against Morphable Counters [6]
as our primary baseline. As such, our evaluation applies
RMCC on top of this baseline. We also evaluate the older
Split Counters SC-64 [5].

Under Morphable Counters, extracting a block’s counter
value from a counter block requires decoding the counter
block. Counter decode first requires extracting the corre-
sponding minor counter from Morphable Counter block;
this can take several cycles because counter blocks contain
a variable and non-power-of-2 (e.g., 36, 42, 51) number
of non-zero minor counters. Second, calculating the end
counter value from a minor counter requires adding two
major counters and the minor counter. We simulate 3ns
counter decoding latency both for the baseline and RMCC.

Morphable Counters and SC-64 are split counter designs.
Split counters require reading and writing entire memory
page(s) to re-encrypt them when a writeback causes a
counter overflow. We simulate at most two outstanding
overflows at a time (i.e., MC rejects all LLC requests
after encountering a writeback that would incur a third
overflow). In the background, MC continuously generates for
outstanding overflow(s) a limited number of 64B requests at
a time to prevent them from occupying more than eight slots
in the read/write queue at any time; this prevents overflow-
related requests from seizing up the entire read/write queue.

Warmup and Observation Window: We fast forward
each benchmark using Gem5’s KVM mode with native
execution speed to let each benchmark run into its region
of interest. Then, similar to the Morphable Counters [6],
we use atomic simulation to warm up the integrity tree for
25 billion instructions. After warming up the tree, we run
the workload for 20ms in Gem5’s atomic mode and 20ms
in detailed mode to warm up caches and branch predictor.
Lastly, we measure performance within a 20ms observation
window in Gem5’s detailed mode.

Simulator Configuration: Table I shows the system
setting of performance evaluation in Gem5. We use 128KB
counter cache for RMCC, like Morphable Counters. We
model the four-level integrity tree and counter overflows in
Morphable Counters. Like [6], we co-locate data, its MAC,
and error correction code in the same memory block; this
enables data, its MAC, and ECC to be accessed together
in one DRAM access without any memory traffic overhead.
Figure 12 shows a breakdown of bandwidth utilization for
different types of accesses under Morphable Counters.

To evaluate RMCC, we use two memoization tables, one
for L0 counters and one for L1 counters. Each memoization
table consists of 16 groups; each group memoizes AES
results for eight consecutive counters.

We evaluate GraphBig [26] workloads under multi-
threading. We evaluate each SPEC or PARSEC benchmark

CPU X86, 4 (or 1) core, 3.2 GHz,
4-wide OoO, 192 entry ROB

D-TLB, I-TLB 1536 entries each
Degree of constant stride prefetcher L1: 1 L2: 2
L1 ICache/DCache 32/64 KB 4/8-way, 2ns
L2 Cache 1 MB 8-way, 4ns
L3 Cache 8 MB 16-way, 17ns
Counter Cache in MC 128KB 32-way
Decoding of Morphable Counters 3ns
AES-128 latency 15ns
Carry-less Multiplication Latency 1ns
Memoization Table in MC 128 entries for L0 counters

128 entries for L1 counters
Memory 128 GB DDR4
Memory Data Rate 3.2 GT/s
tCL, tRCD, tRP 13.75ns
tRFC 350ns
Row buffer policy 500ns timeout
Read/Write queue 256 entries
Channels, Ranks 1, 8
Mapping Function XOR-based like Skylake [33]
Bank-level scheduling policy FR-FCFS-Capped

Table I: System Configuration. Listed cache latencies are
additive (e.g., end-to-end L2 hit latency is 2+4=6ns.)

0%

10%

20%

30%

40%

50%

60%

pageRan
k

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngle

Count

shorte
stP

ath

canneal

omnetpp
mcf

mean

Ba
nd

w
id

th
 u

til
iza

tio
n

data counters level 0 overflow level 1 and higher level overflow

Figure 12: Memory bandwidth utilization due to normal
memory accesses, counter accesses, and overflows under
Morphable Counters. Bandwidth utilization is normalized to
the memory channel’s peak physical bandwidth.

as single thread.
Lifetime Characterization: To evaluate the effective-

ness and overhead of RMCC, we run Pintool experi-
ments across each benchmark’s lifetime to get memoiza-
tion table hit rate and bandwidth overhead of RMCC.
We model multi-threaded GraphBig and single-threaded
SPEC/PARSEC benchmarks in Pintool. We model in Pintool
1MB L2 cache, 2MB LLC and 32KB counter cache per core,
same as the configuration in Gem5.

Rather than initializing all counter values to zero, we
carefully initialize counter values in the beginning of each
benchmark. If all counters are zero in the beginning, RMCC
will work perfectly: RMCC just memoizes AES result for
counter value zero so that all counters hit in the table
initially. As such, to show how RMCC actually performs
under real scenarios, we initialize all counters randomly.
To achieve the randomization of all counters, we run a

687

write-intensive benchmark to individually increase counters
to different big random values; explicitly, the benchmark
continuously reads from and writes to randomly chosen
data block across the entire memory. MC writes back each
memory data block for 100000 times on average. Our Pin-
tool simulations updates all states - caches, counter values,
memoization table - through the entire experiment, including
initialization phases.

VI. RESULTS

Figure 13 shows the performance of RMCC, Morphable
Counters [6], and SC-64 [34], normalized to a non-secure
memory system that does not provide confidentiality and
integrity. RMCC improves performance by 6%, on average,
over Morphable Counters. Canneal receives the most per-
formance benefit - 12.8%. Canneal benefits the most from
RMCC due to having the highest miss rate in the MC’s
counter cache (see Figure 3). Since RMCC addresses the
latency overheads due to counter misses, the benchmark with
the most frequent counter misses naturally benefits the most
from RMCC.

60%

70%

80%

90%

100%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

No
rm

. p
er

f SC-64 Morphable RMCC

Figure 13: Performance of RMCC, Morphable, and SC-64
normalized to a non-secure memory system.

Figure 14 shows the LLC miss latencies for Mor-
phable Counters, RMCC, SC-64 and non-secure system.
RMCC saves, on average, 5.0ns on LLC data miss latency.
For benchmarks showing highest performance improvement
(e.g., canneal, connectedComp, BFS), they also have the
highest savings on LLC miss latency.

40

50

60

70

80

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

LL
C

m
iss

 la
t (

ns
) SC-64 Morphable RMCC Non-secure

Figure 14: Average LLC miss latency under SC-64, Mor-
phable, and RMCC.

0

400000

800000

1200000

1600000

2000000

pa
geR

an
k

gra
ph
Co
lor
ing

con
ne
cte
dC
om
p

de
gre
eC
en
tr DF

S
BF
S

tria
ng
leC
ou
nt

sho
rte
stP
ath

can
ne
al

om
ne
tpp mc

f
me
an

bl

oc
ks

 co
ve

re
d

Figure 15: Average coverage of each counter value in the
memoization table, across benchmarks’ whole lifetimes.

The reduction in LLC miss latency is due to high
memoization hit rate. 92.4% of LLC misses that suffer
from L0 counter miss benefit from memoization (i.e., the
corresponding L0 counter value’s calculation is memoized).
Similarly, 87% of L0 counter misses that suffer from L1
counter miss benefit from memoization (i.e., the calculation
of the corresponding L1 counter value for the missing L0
counter is memoized). The high memoization hit rate is due
to the high coverage of memoization table entries. Figure
15 shows the average number of memory blocks covered by
each L0 counter value in the memoization table at the end
of each workload. Each counter value in the memoization
table covers 1.1 million blocks, on average.

All together, RMCC accelerates decryption and verifi-
cation for 92% of counter misses; the accelerated counter
misses encompass L0 counter misses that hit in the mem-
oization table and have their L1 counters hit either in the
counter cache or the memoization table.

RMCC incurs a bandwidth overhead, however, due to
increasing counter values by more than one. Figure 16 shows
the bandwidth overhead compared to Morphable Counters.
RMCC is configured with a total of 2% traffic overhead
budget. On average, RMCC consumes 4% higher memory
bandwidth per instruction than Morphable Counters; this is
close to the 2% traffic budget.

Sensitivity to AES Latency: As sensitivity analysis on
AES latency, we also evaluate 22ns AES latency reported
for the stronger AES-256 [4]. Since RMCC’s benefits stem
from hiding AES latency, RMCC is expected to provide
higher performance benefit over Morphable Counters under
the higher AES latency. As shown in Figure 17, the average
performance improvement increases from 6%to 11% while
AES latency increases from 15ns to 22ns.

Sensitivity to Counter Cache Size: We also evaluate
counter cache sizes of 256KB and 512KB. Figure 18
shows the performance of RMCC under bigger counter
caches. RMCC improves average performance over Mor-
phable Counters by 5.4% and 5.0% under 256KB counter

688

0%
2%
4%
6%
8%

10%
12%
14%

pageRank

graphColorin
g

connecte
dComp

degreeCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

Tr
af

fic
 o

ve
rh

ea
d

Memoizing for L0 Memoizing for L1

Figure 16: Memory bandwidth overhead of RMCC under 1%
traffic overhead budget for memoizing AES for L0 counters
and 1% traffic overhead budget for memoizing AES for L1.

100%
105%
110%
115%
120%
125%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

No
rm

al
ize

d
Pe

rf

15ns AES 22ns AES

Figure 17: Performance of RMCC normalized to Morphable
Counters under different AES latencies.

cache and 512KB counter cache, respectively.

100%
102%
104%
106%
108%
110%
112%
114%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

can
neal

omnetpp
mcf

mean

No
rm

al
ize

d
Pe

rf 128KB counter cache 256KB counter cache
512KB counter cache

Figure 18: Performance of RMCC under 128KB, 256KB,
512KB counter cache, normalized to Morphable.

Sensitivity to Memoization Parameters: We simulate
RMCC in Pintool to measure its behavior across the whole
lifetime of applications.

Figure 19 show memoization hit rate under different band-
width overhead budgets for memoizing AES calculations for
L0 counters, across whole lifetime of each benchmark. In
this final sensitivity analysis, we present memoization hit
rate as the fraction of accessed counter values, regardless
of counter cache hit or miss, that find their AES results are
memoized in MC. Under 1% overhead budget, memoization
hit rate is 92%; this is close to the 96% hit rate under 8%

budget. As such, our primary evaluation uses 1% budget.
All benchmarks benefit from > 90% memoization hit rate.

0%
20%
40%
60%
80%

100%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

M
em

oi
za

tio
n

hi
t r

at
e

1% budget 2% budget 8% budget

Figure 19: Memoization hit rate across application lifetime,
under 1%, 2%, and 8% bandwidth overhead budgets,

RMCC suffers from memory traffic overhead due to in-
curring extra counter overflows (see Section IV-C2). RMCC
caps this bandwidth overhead well for most benchmarks.
Figure 20 shows the traffic overhead of RMCC over Mor-
phable Counters under different bandwidth overhead bud-
gets, normalized to total memory traffic of Morphable Coun-
ters. On average, RMCC incurs only 1.9% traffic overhead
over Morphable under 1% overhead budget. RMCC’s traffic
overhead increases with higher budget. Under 8% budget,
RMCC’s overhead increases to 4%.

0%
2%
4%
6%
8%

10%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

Tr
af

fic
 o

ve
rh

ea
d 1% budget 2% budget 8% budget

Figure 20: Memory traffic overhead of RMCC under 1%,
2%, and 8% bandwidth overhead budgets, across whole
lifetime of each benchmark. This overhead is calculated
by comparing total memory accesses under RMCC to total
memory accesses under Morphable Counters.

To explore the effect of different memoization table orga-
nizations on RMCC, we also evaluate RMCC using different
sizes of Memoized Counter Value Group (see Section IV-C),
while keeping the total number of entries in the table the
same (i.e., 128 entries). Figure 21 shows the hit rate of Mem-
oization table of RMCC with different sizes for Memoized
Counter Value Group. When the size of Memoized Counter
Value Group is 8, RMCC achieves highest table hit rate
94%, on average. Figure 22 shows the traffic overhead for
RMCC under different sizes of Memoized Counter Value
Group. When the size of Memoized Counter Value Group

689

is 16, RMCC incurs the smallest traffic overhead - 2.1%, on
average.

75%

80%

85%

90%

95%

100%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

M
em

oi
za

tti
on

 h
iit

 ra
tte group size 4 group size 8 group size 16

Figure 21: Memoization hit rate under different sizes of
Memoized Counter Value Group under 1% overhead budget,
across whole lifetime of each benchmark.

0%
1%
2%
3%
4%
5%
6%
7%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

Ba
nd

w
id

tth
 o

ve
rh

ea
d group size 4 group size 8 group size 16

Figure 22: Memory traffic overhead of RMCC under dif-
ferent sizes of Memoized Counter Value Group under 1%
overhead budget, across whole lifetime of each benchmark.

VII. RELATED WORK

Speculative Verification: Some prior works [35][36] hide
the latency of integrity verification by speculatively execut-
ing on data from DRAM before fully verifying them. The
speculative execution is squashed if tampering is detected.

Speculative execution only hides the latency of verifica-
tion, but not the latency of decryption; CPU cannot execute
on ciphertext. As such, speculative execution only improves
performance in memory access scenarios where verification
is slower than decryption.

Also, speculation execution introduces security vulnera-
bilities of its own. To address them, the latest speculation
execution, Poisionivy [35], makes deep pipeline changes
(e.g. across registers, reorder buffer, MMU).

RMCC does not perform speculative verification (i.e.
speculatively executing on younger load-dependent instruc-
tions while verifying the loaded data). Instead, RMCC
speeds up verifying loaded data through memoization of
AES results so that CPU can non-speculatively execute load-
dependent instructions earlier.

OTP Pre-computation: To hide the latency overhead of
decryption for memory accesses whose counters miss in the

cache, OTP Prediction [37] proposes pre-computing (i.e.,
predictively computing) AES results using predicted counter
values, similar to pre-fetching (i.e., predictively fetching)
using predicted memory addresses. OTP Prediction predicts
the counter values for other data blocks within a page
after the 64B counter block for one of the page’s data
blocks arrives from DRAM. However, the state-of-the-art
Morphable [6] that we use for performance comparison
eliminates the need of this prediction. Under Morphable,
a single 64B counter block holds all the counters for an
entire page. As such, when the one counter block for a page
arrives from DRAM, all counter values for the entire page
are known; hence, no prediction is needed. OTP Prediction
only predicts within a page because, intuitively, it is difficult
to predict faraway unrelated counters across pages.

Pre-calculation for Persistent Memory: Many prior
works [2][38][39][40] hide the latency of memory encryp-
tion (as opposed to decryption) in the context of persistent
memory systems. In persistent memory programs, writes
to persistent memory are on the critical path of program
execution. To hide the latency of encryption for writes to per-
sistent memory, Janus [2] provides a new software interface
for programmers to explicitly initiate hardware encryption
for persistent memory writes sooner. Our paper, however,
focuses on hiding the latency of memory decryption and
verification for reads from DRAM. RMCC is also fully
software-transparent.

Lightweight Cryptography: Emerging lightweight ci-
phers, such as PRINCE [41] and QARMA [4], are faster
than AES. However, trust is important to trusted computing;
newer ciphers are not as trusted as AES, which has withstood
longer and more scrutiny. Newer ciphers can be used where
AES cannot. For example, ARM uses QARMA-64 for point-
ers, which are 64-bits; AES is undefined for 64-bit inputs.
However, AES remains the standard for most systems.

VIII. CONCLUSION

Large and/or irregular workloads suffer from high counter
miss rates. This paper addresses the latency overhead of
cryptography calculations following counter misses. We
propose RMCC to memoize cryptography calculations for
hot counter values. When a missing counter arrives from
memory, RMCC uses the counter value to look up a mem-
oization table to quickly obtain the calculation memoized
for the counter value to speed up cryptography calculations.
To maximize memoization hit rate, we also propose a
memoization-aware counter update. When writing a block
to memory, RMCC increases the counter to a value whose
AES result is recorded in the memoization table.

RMCC improves performance by 6%, on average, over
the state-of-the-art (i.e., Morphable Counters). On average
across the whole lifetimes of workloads, RMCC accelerates
decryption and verification for 92% of counter misses.

690

ACKNOWLEDGMENT

We thank National Science Foundation NSF for support-
ing this work under grant 1850025. We thank Advanced
Research Computing (ARC) at Virginia Tech for providing
computational resources.

REFERENCES

[1] S. Gueron, “A memory encryption engine suitable for gen-
eral purpose processors,” Cryptology ePrint Archive, Paper
2016/204, 2016, https://eprint.iacr.org/2016/204.

[2] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and
S. Khan, “Janus: Optimizing memory and storage support
for non-volatile memory systems,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2019, pp. 143–156.

[3] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in
encrypted non-volatile main memory systems,” in 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 310–323.

[4] R. Avanzi, “The qarma block cipher family. almost mds
matrices over rings with zero divisors, nearly symmetric even-
mansour constructions with non-involutory central rounds,
and search heuristics for low-latency s-boxes,” IACR Trans-
actions on Symmetric Cryptology, pp. 4–44, 2017.

[5] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Soli-
hin, “Improving cost, performance, and security of memory
encryption and authentication,” in 33rd International Sympo-
sium on Computer Architecture (ISCA’06), 2006, pp. 179–
190.

[6] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao,
and M. Qureshi, “Morphable counters: Enabling compact
integrity trees for low-overhead secure memories,” in 2018
51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 2018, pp. 416–427.

[7] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot,
“Prefetched address translation,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2019, pp. 1023–1036.

[8] G. B. Kandiraju and A. Sivasubramaniam, “Going the dis-
tance for tlb prefetching: An application-driven study,” in Pro-
ceedings 29th Annual International Symposium on Computer
Architecture. IEEE, 2002, pp. 195–206.

[9] D. Lustig, A. Bhattacharjee, and M. Martonosi, “Tlb im-
provements for chip multiprocessors: Inter-core cooperative
prefetchers and shared last-level tlbs,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 10, no. 1,
pp. 1–38, 2013.

[10] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
skip, don’t walk (the page table),” ACM SIGARCH Computer
Architecture News, vol. 38, no. 3, pp. 48–59, 2010.

[11] J. Navarro, S. Iyer, and A. Cox, “Practical, transparent oper-
ating system support for superpages,” in 5th Symposium on
Operating Systems Design and Implementation (OSDI 02),
2002.

[12] A. Bhattacharjee, “Translation-triggered prefetching,” in Pro-
ceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, 2017, pp. 63–76.

[13] J. Ahn, S. Jin, and J. Huh, “Revisiting hardware-assisted
page walks for virtualized systems,” in 2012 39th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2012, pp. 476–487.

[14] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-
Schaffer, Every Walk’s a Hit: Making Page Walks Single-
Access Cache Hits. New York, NY, USA: Association
for Computing Machinery, 2022, p. 128–141. [Online].
Available: https://doi.org/10.1145/3503222.3507718

[15] “Nexus technology,” Last accessed on April 13,
2022. [Online]. Available: https://www.nexustechnology.com/
technologies/the-nexus-difference/

[16] I. Anati, F. McKeen, S. Gueron, H. Haitao, S. Johnson,
R. Leslie-Hurd, H. Patil, C. Rozas, and H. Shafi, “Intel soft-
ware guard extensions (intel sgx),” in Tutorial at International
Symposium on Computer Architecture (ISCA), 2015.

[17] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh,
“Increasing tlb reach by exploiting clustering in page transla-
tions,” in 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2014,
pp. 558–567.

[18] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb
coalescing: Improving tlb translation coverage under diverse
fragmented memory allocations,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture,
2017, pp. 444–456.

[19] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking
tlb designs in virtualized environments: A very large part-of-
memory tlb,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 2, pp. 469–480, 2017.

[20] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer,
and J. Huh, “Perforated page: Supporting fragmented memory
allocation for large pages,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 913–925.

[21] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan,
“Memory hierarchy for web search,” in 2018 IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA). IEEE, 2018, pp. 643–656.

[22] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: a study of emerging scale-
out workloads on modern hardware,” Acm sigplan notices,
vol. 47, no. 4, pp. 37–48, 2012.

[23] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a
warehouse-scale computer,” in Proceedings of the 42nd An-
nual International Symposium on Computer Architecture,
2015, pp. 158–169.

691

[24] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a
practical binary optimizer for data centers and beyond,” in
2019 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO). IEEE, 2019, pp. 2–14.

[25] O. Levi, “Pin - a dynamic binary instrumentation tool,” 2012,
https://www.intel.com/content/www/us/en/developer/articles/
tool/pin-a-dynamic-binary-instrumentation-tool.html.

[26] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graph-
big: understanding graph computing in the context of indus-
trial solutions,” in SC’15: Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2015, pp. 1–12.

[27] LDBC Graphalytics, “Datasets,” Last accessed on April 13,
2022. [Online]. Available: https://graphalytics.org/datasets

[28] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A
statistical test suite for random and pseudorandom number
generators for cryptographic applications,” Booz-allen and
hamilton inc mclean va, Tech. Rep., 2001.

[29] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilk-
erson, and S.-L. Lu, “Energy-efficient cache design using
variable-strength error-correcting codes,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 3, pp. 461–472,
2011.

[30] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[31] J. Stojkovic, D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas,
“Parallel virtualized memory translation with nested elastic
cuckoo page tables,” in Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 84–97.

[32] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and ex-
tensible dram simulator,” IEEE Computer architecture letters,
vol. 15, no. 1, pp. 45–49, 2015.

[33] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“Drama: Exploiting dram addressing for cross-cpu attacks,”
in Proceedings of the 25th USENIX Conference on Security
Symposium, ser. SEC’16. USA: USENIX Association, 2016,
p. 565–581.

[34] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for
inhibiting software piracy and tampering,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2003. MICRO-36. IEEE, 2003, pp. 351–360.

[35] T. S. Lehman, A. D. Hilton, and B. C. Lee, “Poisonivy:
Safe speculation for secure memory,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–13.

[36] W. Shi and H.-H. S. Lee, “Authentication control point and
its implications for secure processor design,” in 2006 39th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’06). IEEE, 2006, pp. 103–112.

[37] W. Shi, H.-h. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva,
“High efficiency counter mode security architecture via pre-
diction and precomputation,” in 32nd International Sympo-
sium on Computer Architecture (ISCA’05). IEEE, 2005, pp.
14–24.

[38] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist level
parallelism: Streamlining integrity tree updates for secure
persistent memory,” in 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 14–27.

[39] Z. Zhang, J. Yue, X. Liao, and H. Jin, “Efficient hardware-
assisted crash consistency in encrypted persistent memory,”
in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 750–755.

[40] M. Alwadi, A. Mohaisen, and A. Awad, “Promt: optimizing
integrity tree updates for write-intensive pages in secure
nvms,” in Proceedings of the ACM International Conference
on Supercomputing, 2021, pp. 479–490.

[41] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Kneze-
vic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rech-
berger et al., “Prince–a low-latency block cipher for pervasive
computing applications,” in International Conference on the
Theory and Application of Cryptology and Information Secu-
rity. Springer, 2012, pp. 208–225.

692

