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Abstract—The demand for memory is ever increasing. Many
prior works have explored hardware memory compression
to increase effective memory capacity. However, prior works
compress and pack/migrate data at a small - memory block-
level - granularity; this introduces an additional block-level
translation after the page-level virtual address translation. In
general, the smaller the granularity of address translation,
the higher the translation overhead. As such, this additional
block-level translation exacerbates the well-known address
translation problem for large and/or irregular workloads.

A promising solution is to only save memory from cold (i.e.,
less recently accessed) pages without saving memory from hot
(i.e., more recently accessed) pages (e.g., keep the hot pages
uncompressed); this avoids block-level translation overhead
for hot pages. However, it still faces two challenges. First,
after a compressed cold page becomes hot again, migrating
the page to a full 4KB DRAM location still adds another level
(albeit page-level, instead of block-level) of translation on top of
existing virtual address translation. Second, only compressing
cold data require compressing them very aggressively to achieve
high overall memory savings; decompressing very aggressively
compressed data is very slow (e.g., > 800ns assuming the latest
Deflate ASIC in industry).

This paper presents Translation-optimized Memory Com-
pression for Capacity (TMCC) to tackle the two challenges
above. To address the first challenge, we propose compressing
page table blocks in hardware to opportunistically embed
compression translations into them in a software-transparent
manner to effectively prefetch compression translations during
a page walk, instead of serially fetching them after the walk.
To address the second challenge, we perform a large design
space exploration across many hardware configurations and
diverse workloads to derive and implement in HDL an ASIC
Deflate that is specialized for memory; for memory pages, it
is 4X as fast as the state-of-the art ASIC Deflate, with little to
no sacrifice in compression ratio.

Our evaluations show that for large and/or irregular work-
loads, TMCC can either improve performance by 14% without
sacrificing effective capacity or provide 2.2x the effective
capacity without sacrificing performance compared to a state-
of-the-art hardware memory compression for capacity.

Keywords-memory; hardware memory compression; address
translation; memory subsystem; compression ASIC

I. INTRODUCTION

Memory is a costly resource in computing. For example,
under many VM instances in AWS (e.g., t2, t3, t3a, t4g),
doubling a VM’s memory size while keeping the number
of vCPUs the same doubles the total hourly cost of the
VM (e.g., going from a 0.5GB VM with 1 vCPU to a 1GB
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VM with 1 vCPU doubles the total hourly cost of the VM).
Other large-scale data center operators (e.g., Facebook [1],
Microsoft [2], Google [3]) also report that memory makes
up a large and rising fraction of total infrastructure cost.

To increase effective memory capacity without increasing
actual DRAM cost, many prior works [4], [5], [6], [7],
[8], [9], [10] have explored hardware memory compression.
Hardware transparently compresses DRAM content on-the-
fly with the memory controller evicting/writing back mem-
ory blocks to DRAM. To increase effective memory capacity
(i.e., to store more values in memory), the memory controller
also transparently migrates compressed data closer together
to free up space in DRAM for future data. To migrate
data, the memory controller takes on several OS features;
specifically, memory controller maintains a dynamic, page-
table-like, fully-associative, physical address to DRAM ad-
dress translation table that can map any physical address
to any DRAM address; we refer to these new hardware-
managed translation entries as Compression Translation En-
tries (CTEs), as they are similar to OS page table entries
(PTEs). Prior works cache CTEs in the memory controller
via a dedicated CTE cache, similar to the TLBs dedicated
to caching PTEs.

This new dynamic physical-to-DRAM address translation
increases the end-to-end latency of memory accesses, how-
ever. This translation takes place serially after the existing
virtual-to-physical translation produces a physical address;
if that physical address incurs an LLC miss and the LLC
miss suffers from a CTE miss in the CTE cache, memory
controller has to wait for the missing CTE to arrive from
DRAM before knowing where in DRAM to fetch the miss-
ing data block.

This paper explores and addresses the problem of high
address translation overheads that large and/or irregular
workloads suffer under hardware memory compression. We
note that just like how these workloads suffer from high
PTE miss rates, they also suffer from high CTE miss rates.
To make the matter worse, prior works migrate memory
content at memory block granularity; this requires much
more fine-grained address translation than existing virtual-
to-physical translation, which typically operates at 4KB page
granularity. In general, the finer the coverage of translations,
the less cacheable the translations become, and higher the
translation miss rate.

A promising solution to tackle the new address translation

992

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00073



overhead is to let hardware take on an OS-inspired approach:
only save memory from cold (i.e., less recently accessed)
pages without saving memory from hot (i.e., recently ac-
cessed) pages (e.g., keep the hot pages uncompressed), like
OS memory compression. Saving memory only from cold,
but not hot, pages can mitigate the block-level translation
overhead due to saving memory from hot pages in hardware.

Such an OS-inspired hardware memory compression faces
two challenges, however. A) After a compressed cold page
becomes hot again, migrating the page to a full 4KB DRAM
location still adds another level (albeit page-level, instead of
block-level) of translation for future accesses to the newly
hot page. B) Only compressing cold pages requires very
aggressively compressing cold pages to achieve the same
total memory savings as prior works’ approach of saving
memory from all (both cold and hot) pages; decompressing
aggressively compressed pages incurs high latency overhead
(e.g., > 800ns in IBM’s state-of-the-art ASIC Deflate [11]).

This paper presents Translation-optimized Memory Com-
pression for Capacity (TMCC) to enable high performance
hardware memory compression for large and/or irregular
workloads. TMCC builds on the OS-inspired approach
above, but addresses its two key challenges.

To address Challenge A), we make two observations.
First, CTE misses typically occur after PTE misses in
TLB because CTEs, especially the page-level CTEs under
an OS-inspired approach, have similar translation reach as
PTEs. Second, we observe page table blocks (PTBs) are
highly compressible because adjacent virtual pages often
have identical status bits and the most significant bits in
physical page numbers are unused. As such, to hide the
latency of CTE misses, TMCC transparently compresses
each PTB in hardware to free up space in the PTB to embed
the CTEs of the 4KB pages (i.e., either data pages or page
table pages) that the PTB points to; this enables each page
walk to also prefetch the matching CTE required for fetching
from DRAM either the end data or the next PTB.

To address Challenge B), we take IBM’s state-of-the-art
ASIC Deflate design [11], which was designed for both
storage and memory, and specialize it for memory. Specif-
ically, we perform a large design space exploration across
many dimensions of hardware configurations available under
Deflate and across diverse workloads; the end product is an
ASIC Deflate specialized for memory that is 4X as fast as
the state-of-the-art Deflate when it comes to memory pages.

The contributions of this paper are as follows:
1) We are the first to tackle the address translation

problem faced by large and/or irregular workloads
when using hardware memory compression to improve
effective memory capacity.

2) We identify CTE cache misses mostly follow TLB
misses (e.g., for 89% of the time, on average). As such,
we propose embedding CTEs into PTBs to enable
accurate prefetch of CTEs during the normal page

walks after TLB misses.
3) We are the first to specialize ASIC Deflate for mem-

ory. Our ASIC Deflate decompresses 4KB memory
pages 4X as fast as the best general-purpose Deflate.
We publicly release our HDL at https://github.com/
HEAP-Lab-VT/ASIC-DEFLATE-for-memory.

4) We compare against Compresso [6], a state-of-the-
art prior work on hardware memory compression; our
evaluations show that for large and/or irregular work-
loads, TMCC can either improve performance by 14%
without sacrificing effective capacity or provide 2.2x
the effective capacity without sacrificing performance.

II. BACKGROUND

Conventional Address Translation: OS typically maps
virtual addresses to physical addresses at 4 KB page granu-
larity. OS maintains a page table for each program to map
virtual pages to physical pages. CPUs incorporate a per-core
translation lookaside buffer (TLB) to cache recently used
page table entries (PTEs). A TLB has a limited size (e.g.,
2048 entries). A TLB miss triggers the page walk. The page
walk performs a sequence of memory accesses to traverse
the page table. Each step in a page walk fetches a 64B block
of eight PTEs; we call this block a page table block (PTB).

Hardware memory compression: Many prior works [4],
[5], [6], [7], [8], [9], [10], [12], [13] have explored hardware
memory compression; memory controller (MC) transpar-
ently compresses content on-the-fly with evicting/writing
back memory blocks to DRAM and transparently decom-
presses DRAM content on-the-fly for every LLC miss.

Broadly, prior works on hardware memory compression
falls under two broad categories. One body of works com-
press memory values to increase effective memory band-
width [13], [14], [15], [16], [17], [18], [19], [20]. Com-
pressing memory blocks reduces the number of memory bus
cycles required to transfer data to and from memory. Another
body of works use compression to increase effective memory
capacity by migrating compressed blocks closer to free up
a large contiguous space in DRAM for future use.

Intuitively, increasing effective capacity requires more
aggressive data migration than compressing memory to
increase effective bandwidth. The former carries out fully-
associative data migration in DRAM. In comparison, the
latter either keeps memory blocks in place after compression
[13], [17], [20] or migrates compressed memory blocks to
a neighboring location in DRAM [19].

To migrate data transparently in hardware, prior works
on increasing effective capacity borrow two OS memory
management features and implement them in hardware.

First, prior works borrow from OS’ free list; MC main-
tains a linked-list-based Free List [4], [6] to track free space
in DRAM at a coarse (e.g., 256B [4] or 512B [6]) granularity
called chunks. When detecting that sufficient slack currently
exists within the space taken up by a page, prior works
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repack the page’s content closer together to free up chunk(s)
to push to (i.e., track at the top of) the Free List. When a page
becomes less compressible and cannot fit in its currently
allocated chunks, prior works pop a chunk from (i.e., stop
tracking it in) Free List to allocate the chunk to the page.

Second, prior works borrow from OS page tables;
MC maintains a dynamic, page-table-like, fully-associative,
physical address to DRAM address translation table that
can map any physical address to any DRAM address. We
refer to these new hardware-managed translation entries as
Compression Translation Entries (CTEs), as they are similar
to OS page table entries (PTEs). MC stores the CTEs in
DRAM as a linear 1-level table. Each CTE (a.k.a, meta-
data block [6], [4], [8] in prior works) contains individual
fields to track the DRAM address of individual 64B blocks
within a group of blocks. This is because compression ratio
varies across blocks; as such, after saving memory through
repacking, different blocks start at irregular-spaced DRAM
addresses, instead of regular-spaced DRAM addresses like
current systems without hardware compression. Prior works
cache these CTEs in a dedicated CTE cache, similar to TLBs
dedicated to caching PTEs.

III. PROBLEM

Large workloads (i.e., ones with large memory footprint)
are ubiquitous in today’s computing landscape [21]; ex-
amples include graph analytics, machine learning, and in-
memory databases [22]. However, large workloads suffer
from high address translation overhead because their PTEs
are too numerous to fit in TLBs. Similarly, the PTEs of
workloads with irregular access patterns also cache poorly in
TLBs. As such, many works [23], [24], [25], [26], [27], [28]
have explored how to improve address translation for large
and/or irregular workloads in the context of conventional
systems without hardware memory compression.

This paper explores the problem of high address transla-
tion overheads that large and/or irregular workloads suffer
under hardware memory compression for capacity. We note
that just like how they suffer from high PTE miss rates in
TLBs, they also suffer from high CTE miss rates under hard-
ware memory compression. Making the matter worse, prior
works on hardware memory compression translate from
physical to DRAM addresses at memory block granularity,
instead of page granularity. It is well-known that the finer
the translations, the higher the translation miss rate.

Take for example Compresso [6], the state-of-the-art
hardware memory compression for capacity. To perform
physical-to-DRAM address translation for a 4KB range
of physical addresses, Compresso requires a 64B CTE;
each CTE records per-block metadata to translate individual
blocks within the 4KB range. Overall, each CTE in Com-
presso costs 8X as much space as a PTE, which is only 8B.
Compresso caches CTEs in a 64KB CTE cache in MC; as
such, the CTE cache reaches only 64KB/64B = 1K pages.
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Figure 1: CTE and TLB misses for large and/or irregular workloads,
normalized to total L3 misses. Measured in Gem5 by simulating 4 cores
with 2K TLB entries, 1MB L2, sharing an 8MB L3 and 64KB CTE cache.

Because TLBs typically have a similar (e.g., 1.5K) number
of entries, we expect CTE misses to be similarly frequent
as TLB misses.

Figure 1 shows total TLB misses and CTE misses nor-
malized to the number of last-level cache (LLC) misses; we
show TLB misses normalized to LLC misses, instead of
1000 instructions, to more closely compare with CTE
misses. Figure 1 includes all workloads used by recent
prior works [23], [24] on improving address translation
that we know how to run in Gem5 [29]. When evaluating
IBM’s GraphBIG [30], we use a Facebook-like social media
graph dataset (see datagen-8 5-fb [31]) and multi-threading.
On average across all workloads, CTE miss rate is higher
than TLB miss rate (i.e., 34% vs 30%). We were initially
surprised by this finding because the CTE misses in Figure
1 only include CTE misses for fulfilling LLC misses. By
closer inspection, we find CTEs miss more often because
all regular memory requests, including requests for PTBs
themselves from the page walker, require accessing CTEs;
TLB misses, however, only occur for data (and instruction).

To reduce CTE miss rate, one possible solution is to make
the CTE cache bigger. We evaluate CTE hit rate using a
256KB metadata cache. Figure 2 shows an average hit rate
of 70.5% for a 256KB metadata cache; this means it still
misses 1 − 70.5% = 29.5% of the time. As such, making
CTE cache bigger does not effectively reduce CTE miss rate.

Another possible solution is to use LLC as a victim
cache for CTEs evicted from the CTE cache. Figure 2
shows that even when caching in LLC, a high 21% of
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Figure 2: CTE hits normalized to regular LLC misses assuming a 4X CTE
cache and LLC as a victim cache for CTEs.
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total CTE accesses still go to DRAM. Another problem is
that modern server CPUs have a long LLC access time –
∼20ns [32], [33] – due to having a distributed network-on-
chip architecture. As such, even if a CTE cache miss hits
in LLC, the subsequent data or PTB miss that needs the
CTE still slows down by 20ns. For example, assuming a
DRAM latency of ∼35ns, a CTE cache hit can save ∼35ns;
however, a CTE cache miss that hits in LLC only saves 35ns-
20ns=15ns. Making matters worse, a CTE cache miss that
also misses in LLC actually increases total memory access
latency; when MC realizes that the CTE access misses in
LLC 20ns later, it also fetches CTE from DRAM 20ns later
compared to not caching CTEs in LLC. Figure 2 shows that
CTE accesses that hit or miss in LLC are roughly equal; as
such, caching CTE in LLC increases average memory access
time. We find in our simulations that caching CTEs in LLC
is actually slightly slower than not caching CTEs in LLC.
CTEs are not cached in LLC in the rest of the paper.

IV. A PROMISING SOLUTION: TAKING AN OS-INSPIRED
APPROACH TO HARDWARE

A promising solution to tackle the address translation
overhead under hardware memory compression is to let
hardware take on yet another OS feature: only save memory
from cold (i.e., less recently accessed) pages without saving
memory from hot (i.e., recently accessed) pages (e.g., keep
the hot pages uncompressed), like OS memory compression.
When hardware does not save memory from hot pages, hard-
ware can lay out hot pages’ memory blocks regularly either
like uncompressed memory or like compressing memory
for expanding effective bandwidth (see Section II). For hot
pages, which are most critical to performance, doing so helps
to avoid the overhead of fine-grained block-level translation.

Specifically, avoiding block-level translation can signif-
icantly increase the translation reach of each CTE and,
therefore, significantly reduce CTE cache miss rate. Con-
sider for example Compresso; each 64B CTE cacheline
only translates for one 4KB physical page due to storing a
translation for every block in the page. After switching over
to page-level translation like OS, each 64B CTE cacheline
can translate for eight pages, like how a PTB translates
for eight virtual pages. For the workloads in Figure 1,
we find switching from block-level translation to page-
level translation eliminates 40% of CTE misses, on average,
while simply quadrupling the size of the CTE cache only
reduces CTE miss rate by 13% (from 34% down to 29.5%,
see Section III). Page-level translation is so effective due
to increasing effective CTE cache size by 8X and better
exploiting spatial locality (i.e., fetching from DRAM a CTE
block that translates at page level equates to fetching eight
adjacent CTE blocks that translate at block level).

A. Background on OS Compression

OSes also compress memory [34], [35], [36], [37], [38].
OS does so in many data centers (e.g., Google Cloud [3],
IBM Cloud [39], Facebook [1]).

In the eyes of an architect, OS memory compression man-
ages memory as a 2-level exclusive hierarchy: (i) Memory
Level 1 (ML1) stores everything uncompressed, (ii) Memory
Level 2 (ML2) stores everything compressed. Accesses to
ML1 are overhead-free (e.g., incurs no translation overhead).
Accesses to a compressed virtual page in ML2 incurs a page
fault to wake up OS to pop a free physical page from ML1’s
free list and migrate the virtual page to the page.

Because ML1 provides no gain in effective capacity, pro-
viding significant gain in overall effective capacity requires
ML2 to aggressively save memory from the pages ML2
is storing. As such, ML2 uses aggressive page-granularity
compression algorithms, such as Deflate [11]. ML2 also
keeps many free lists, each tracking sub-physical pages of
a different size, to store any compressed virtual page in a
practically ideal matching sub-physical page [40], [41].

ML2 gracefully grows and shrinks relative to ML1 with
increasing and decreasing memory usage. When everything
can fit in memory uncompressed, ML2 shrinks to zero bytes
in physical size so ML1 can have every physical page.
Specifically, when ML2’s free list(s) get large (e.g., due to
reducing memory usage), ML2 donates free physical pages
from its free list(s) to ML1. OS also grows ML1 free list,
when it gets small, by migrating cold virtual pages to ML2.
Migrating a virtual page to ML2 shrinks one of ML2’s free
lists. If a ML2 free list gets empty, ML1 gives cold victim
physical pages to ML2 (i.e., track them in ML2 instead of
ML1), so that ML2 can compress the virtual pages currently
in the victim pages to free space in the victims to grow
ML2’s free list(s).

B. Taking the OS Approach to Hardware

Hardware memory compression can also be enhanced
to manage DRAM as ML1 and ML2 like OS memory
compression, with simple adaptations.

One adaption is to simplify CTEs: instead of finely
tracking individual memory blocks, track a single 4KB page
worth of content collectively at coarse granularity, just like
a PTE. Specifically, each CTE now only records the starting
DRAM address of an entire page, without recording any
individualized tracking for every block in the page.

Another adaptation is to extend prior works’ Free Lists
to ML1 and ML2. Figure 3a shows a Free List in prior
work [6], [4]. Making it work for ML1 involves increas-
ing chunk size to 4KB (see Figure 3b). ML2 requires
multiple Free Lists, each tracking free equally-sized sub-
chunks. The purpose of each sub-chunk is to store an entire
compressed page. Equally-sized sub-chunks can be created
fragmentation-free by evenly dividing a group of M inter-
linked chunks, which we call a super-chunk, into N sub-
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Figure 3: (a) A simplified design of the Hardware Free List in prior work [4]; it stores a pair of pointers in free chunks ‘for free’ to implement a doubly
linked list to track free 256B chunks. (b) ML1 Free List, which tracks free 4KB chunks. (c) An ML2 Free List that tracks 1.5KB free sub-chunks; it tracks
all super-chunks containing at least one free 1.5KB sub-chunk.

chunks, where N > M and N ,M are chosen to minimize
(4KB ·M)modN . Figure 3c shows an example ML2 Free
List for tracking 1.5KB sub-chunks. When all sub-chunks
in a super-chunk becomes free (e.g., the compressed pages
they store have all migrated to ML1 over time), the chunks in
the super-chunk are returned to ML1’s Free List. The super-
chunks towards the bottom of an ML2 Free list naturally
tend to be emptier than super-chunks towards the top. This
is because A) ML2 always allocates sub-chunks from the
top of ML2 Free List(s) to handle migration to ML2 and
B) ML2 tracks at the top of ML2 Free List(s) super-chunks
that transition from having no free sub-chunk to having one
free sub-chunk (e.g., after a page migrates to ML1).

Beside adapting prior works’ CTEs and Free Lists, a
new necessary component is a new doubly linked list to
track the recency of pages stored in ML1; we call them
the Recency List. Besides the list pointers, each Recency
List element tracks a page in ML1 by recording the page’s
PPN (i.e., physical page number). The head and tail of
Recency List track the hottest and coldest pages in ML1,
respectively. ML1 updates the Recency List for a small
(i.e., 1% of) fraction of randomly chosen accesses to ML1;
when updating the Recency List for an access to ML1,
ML1 moves the accessed page’s list element to the hot
end of the list. ML1 evicts victims from the cold end
of Recency List. In the uncommon case that the victim
turns out to be incompressible, ML1 retains the page in
ML1; ML1 simply removes the page from the Recency
List to avoid uselessly compressing it again. As subsequent
writebacks may increase a page’s compression ratio, ML1
adds an incompressible page back to the Recency List at
1% probability after a writeback to an incompressible page.
ML1 can record whether a page is incompressible via an
‘isIncompressible’ bit in each CTE.

While ML1 is uncompressed in OS, in hardware, ML1 can
also be compressed to increase effective memory bandwidth.
One of the many prior memory compression techniques
for improving bandwidth (e.g., TMC [19]) can be readily
applied to ML1.

C. Challenges of the OS-inspired Approach

Such an OS-inspired hardware compression faces two
challenges, however. A) After compressed cold pages are
accessed again, migrating them from ML2 to ML1 still
adds another level (albeit page-level, instead of block-level)
of translation for future accesses to all pages in ML1.
B) Only compressing cold pages require very aggressively
compressing cold pages to achieve high overall memory
saving; decompressing aggressively compressed pages for
every access to ML2 is slow. We describe these challenges
in detail below.

Performance Challenge under ML1: In OS memory
compression, accesses to ML1 incur no overhead. When OS
migrates a virtual page from ML2 to a free physical page
in ML1, OS directly records the new physical page’s PPN
in the virtual page’s PTE. As such, future accesses to the
virtual page in ML1 requires the same amount of translation
as a system that turns off memory compression.

However, when hardware memory compression migrates
a page from ML2 to ML1 after a program accesses the page,
hardware cannot directly update the program’s PTE because
PTEs are OS-managed. Raising an interrupt to ask OS to
update the PTE for hardware would defeat the main purpose
of hardware memory compression – avoid the costly page
faults under OS memory compression. Instead, hardware
tracks the page’s new DRAM location through a new layer
of translation (i.e., through CTEs). As such, hardware has to
use the PPN recorded in the page’s PTE to indirectly access a
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CTE to obtain the data’s DRAM address; this requires a new
level of serial page-level translation (see Figure 4b), unlike
ML1 accesses under OS compression (see Figure 4a). For
the workloads in Figure 1, this added page-level translation
still causes 20% of LLC misses to suffer from CTE misses.

As such, how to address the latency overhead due to the
page-level translation for ML1 in hardware is a challenge.

Memory 
Controller

PTE

Data Page

1

2

DRAM

3

(a) Accesses to data in ML1 under
OS memory compression

CTE
Memory 
Controller

PTE

Data Page

1
2

DRAM

3

4

(b) Accesses to data in ML1 under
Hardware Memory Compression

CTE

5

Figure 4: Sequence of memory accesses to ML1.

Performance Challenge under ML2: The key la-
tency bottleneck for ML2 is decompressing aggressively-
compressed pages when they are accessed in ML2. OS
typically use aggressive page-granularity compression, such
as Deflate, to save memory in ML2. For decades, Deflate
has been used across many application scenarios (e.g., file
systems, network, memory). Due to Deflate’s high and robust
compression ratio, IBM integrates ASIC Deflate into Power9
and z15 CPUs [11]. This state-of-the-art ASIC Deflate
achieves a peak throughput of 15 GB/s for large streams
of data [11]. However, it has a setup time (T0 [11]) of 650-
780ns for each new independent input (e.g., a new inde-
pendent page). This delay can be crippling for small inputs,
such as 4KB memory pages. This long delay also limits the
bandwidth for reading and writing 4KB compressed pages
to only 4 GB/s and 2 GB/s per module, respectively. This
amounts to a mere 16% and 8% bandwidth of a DDR4-3200
memory channel. While long latency and low bandwidth
is okay for ML2 accesses under OS compression, where
overall performance is limited by software overheads, they
are inadequate for hardware memory compression.

As such, how to address the high decompression over-
head for ML2 accesses in hardware, without significantly
sacrificing ML2’s compression ratio, is a challenge.

V. TRANSLATION-OPTIMIZED MEMORY COMPRESSION

We propose Translation-optimized Memory Compression
for Capacity (TMCC) to enable fast hardware memory com-
pression for large and/or irregular workloads. TMCC builds
on the OS-inspired approach in Section IV, but effectively
addresses the latency overheads for both ML1 and ML2.

A. Addressing the Translation Overhead Under ML1

To effectively address the problem of long-latency serial
translation for accesses to ML1 during CTE misses, TMCC
parallelizes the data access with the corresponding CTE
access; instead of the conventional approach of waiting for
the missing CTE to arrive from DRAM and then use it to
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Figure 5: Fraction of total CTE misses that are due to walker and
data/instruction accesses immediately after a TLB miss. Each 8B CTE
translates for a 4KB page.

calculate the DRAM address to serve the L3 miss, TMCC
carries out both DRAM accesses in parallel. This effectively
hides the CTE miss latency from the total DRAM access
latency for serving an L3 miss request.

To parallelize DRAM accesses for CTE and for the actual
L3 miss, we make two enabling observations.

1) Observations: First, we observe CTE misses typically
occur immediately after PTE misses. This is also true for the
OS-inspired approach to hardware memory compression in
Section IV, where each 8B CTE translates for a 4KB page.
Similarly, each level N+1 PTE (e.g., L2 PTE) tracks 4KB
worth of level N PTEs, while each L1 PTE tracks 4KB of
data (or instructions). Due to CTEs and PTEs providing the
same translation reach, accesses that cause PTE misses in
TLB will likely also cause CTE misses in CTE cache. Figure
5 shows that 89% of all CTE misses for LLC miss requests
are due to LLC misses related to a TLB miss (i.e., page
walker misses in LLC and/or the subsequent data/instruction
miss in LLC).

Second, we observe each page table block or PTB (i.e.,
a 64B worth of PTEs) is highly compressible because, intu-
itively, adjacent virtual address ranges often have identical
status bits; moreover, many bits in PPN are also identical.

For example, each 8B PTE in x86 consists of 24 status
bits that record various permissions and a 40-bit PPN [42].
Figure 6 shows the fraction of L1 page table blocks (i.e.,
storing L1 PTEs) and L2 page table blocks (i.e., storing L2
PTEs) that have identical status bits across all PTEs within
the same PTB; it is 99.94% and 99.3%, on average, for L1
and L2 page table blocks. Meanwhile, many of the most
significant bits in the PPN are identical, depending on the
actual amount of DRAM currently installed in the system.
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Figure 6: PTBs where status bits are same across all entries.
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(a) Software‐visible Page Table Entry

(b) Software‐visible Page Table Block with 8 PTEs

(c) Compressed Representation in Hardware (software invisible)

(d) How hardware decodes a PTE in a compressed PTB
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Figure 7: Comparing and contrasting (a) conventional PTE and (b) con-
ventional PTB encoding with (c) our hardware-compressed PTB encoding.
‘CTE for PPN1’ translates ‘PPN1’ to a DRAM address. TMCC compresses
a PTB only if the status bits across 8 PTEs are identical. To compress a
PTB, TMCC records the status bits only once and truncates the leading
identical bits in PPNs according to how much memory is installed.

For example, in a machine with 4TB of OS physical pages,
the most significant 10 bits of the PPN are almost always
identical (e.g., all zeroes or reused as identical extended
permission bits by Intel MKTME [43]).

2) Key Idea: Based on our observations, we propose
transparently compressing each PTB in hardware to free up
space in the PTB to embed the CTEs of the 4KB pages (i.e.,
either data pages or page table pages) that the PTB points
to; this enables each page walk access to also prefetch the
matching CTE required either for the next page walk access
(i.e., to the next PTB) or for the actual data (or instruction)
access after the walk.

Figure 7c shows a compressed PTB. For each PTE in
the PTB, TMCC opportunistically stores in the compressed
PTB a CTE responsible for translating the PPN that the
PTE contains into a DRAM address. As such, as a page
walker fetches a PTB, the CTE for the next access (i.e.,
either the next page walker access or the end data access)
becomes available at the same time as the PPN for the next
access. Directly having in the PTB the CTE needed for the
next access eliminates the need to serially fetch and wait for
CTE to arrive from DRAM before knowing the next DRAM
address to access.

A practical challenge is that after migrating a page (e.g.,
from ML1 to ML2 after the page becomes cold), the
corresponding CTE embedded in the page’s PTB should be
updated. However, hardware has no easy way to use the
PPN of the migrating page to find/access the page’s PTB(s).
TMCC addresses this challenge by lazily updating the CTE
in the PTB later around when the PTB is naturally accessed
by the page walker, instead of updating it at the time of
migrating the page. However, this means that for the first
page walker access to the PTB after migrating one of the
pages that the PTB points to, the corresponding CTE is

CTE
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Figure 8: MC’s timeline for serving LLC misses that also suffer from
CTE cache miss. In the figure, the sum of TMCC common-case and
TMCC uncommon-case do not add up to 100% because there is another
uncommon-case scenario that the PTB does not currently embed any CTE
(as opposed to embedding the right or wrong CTE).

out-of-date. To ensure correctness, TMCC also accesses the
correct CTE in DRAM (or in CTE cache) in parallel to verify
the correctness of the DRAM access. Figure 8 compares and
contrasts how TMCC serves an LLC miss that also misses
in CTE cache with the baseline approach. Figure 9 provides
an architectural overview of TMCC.
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Figure 9: Overview of architectural changes under TMCC.

3) Detailed Actions Following a TLB Miss: After a TLB
miss for instruction X, if the page walker accesses L2,
L2 buffers into a temporary buffer every CTE within the
accessed PTB. We call this temporary buffer the CTE Buffer.
CTE Buffer inserts each CTE as a new key value pair. The
key is the PPN that the PTE records; the value consists of
the embedded CTE for the PPN and the physical address of
the PTB holding the PTE (See Figure 10).

When L2 receives another page walker access or the end
data (or instruction) access for instruction X (L2 need not
know the access is actually for instruction X), L2 extracts
the PPN from the received request to lookup the CTE Buffer
to obtain the CTE for MC to translate the PPN. If the request
misses in L2, L2 forwards the request to LLC, as usual, and
piggybacks the CTE in the request. If LLC also misses, LLC

PTE Buffer

PPN #1
PPN #2
PPN #3

PPN #64

CTE PTB AddrPPN

………….………….

CTE Buffer
PPN #1
PPN #2

PPN #64

CTE PTB AddrPPN

………….………….

Figure 10: CTE Buffer. PPN is the key for lookup.
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Figure 11: How MC gets the embedded CTE to access data in DRAM in
parallel with accessing the actual CTE in DRAM. ‘a’ and ‘b’ actions under
the same step are in parallel.

forwards the request and the piggybacked CTE to MC.
When receiving a request from LLC, MC first looks up

CTE cache (i.e., by extracting the PPN from the request
to access CTE cache). If the request hits in CTE cache,
MC uses the CTE from the cache to translate the request’s
physical address to DRAM address to access DRAM.

If the request misses in CTE cache, two cases can occur.
The uncommon case is that the request has no embedded

CTE; as such, MC takes the same actions as prior hardware
memory compression designs – access CTE in DRAM and
then serially access DRAM to service the LLC miss.

The common case is that the request has an embedded
CTE; MC uses the CTE to speculatively translate the LLC’s
request to DRAM address to access DRAM in parallel with
accessing the actual CTE in DRAM. Figure 11 shows this
common case. When both DRAM accesses complete, MC
checks whether the correct CTE from DRAM matches the
embedded CTE. In the common case that they match, MC
can directly respond to LLC. In the uncommon case that
they mismatch, MC uses the correct CTE to translate the
LLC request and re-access DRAM (see Figure 8c).
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Figure 12: (a) Contrasting page walk under an uncompressed memory
system, baseline, and TMCC. (b) 2D page walk for a virtual machine.

Also in both cases, MC piggybacks the correct CTE in the
response back to LLC and L2. When receiving a response,
L2 extracts the PPN from the response to look up CTE
Buffer. On CTE Buffer hit, if the CTE Buffer entry has
a mismatching CTE or has no CTE, L2 stores the correct
CTE into the entry and uses the PTB physical address that
the element records to fetch and update the PTB with the
incoming CTE.

Embedding CTEs in PTBs not only reduces the latency
to fetch data/instruction from memory at the end of a page
walk, but can also reduce the latency to fetch PTB blocks
from memory. In other words, embedding CTEs in PTBs
can benefit the entire page walk (see (iii) in Figure 12a).

Embedding CTEs in PTBs also benefits 2D page walks for
VMs. Each 2D page walk (see Figure 12b) requires multiple
regular page walks that only use host PTBs, just like a page
walk for a native application. As such, TMCC carries out
the same actions during each page walk within a 2D page
walk as a regular page walk.

4) Details on Tracking Compressed PTBs: To track
which blocks in DRAM are encoded via the compressed
PTB encoding (see Figure 7c), each CTE contains a bit
vector of 32 bits; each bit tracks whether two adjacent
blocks in a page are both currently using the compressed
PTB encoding. When one block in a pair of adjacent blocks
undergoes an encoding change (i.e., from uncompressed to
compressed or vice versa), the MC enacts the same encoding
change for the other block when it writes to memory the
original block with changed encoding. Figure 13 shows the
internal layout of a CTE.

To clarify, compressing memory blocks using our PTB
encoding only affects the encoding of individual memory
blocks in a page in ML1, without affecting their DRAM
location; the 32-bit vector only serves to record the format
of the blocks in each page in ML1, and not to migrate
the blocks. TMCC does not perform any block-level
translation, even for compressed PTBs.
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Figure 13: Internal layout of a CTE under TMCC

After fetching from DRAM a memory block encoded in
compressed PTB format, MC replies the block back to LLC
in compressed format. Under TMCC, the only compressed
content on-chip are PTBs (i.e., cachelines accessed by the
page walker). Every L2 and L3 cacheline has a new data bit
to record whether the cacheline is compressed. Conversely,
when L3 writes back a dirty cacheline to MC, MC checks
the new data bit to set the CTE’s bit vector accordingly.
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Apart from MC, L2 also contains PTB decompressor and
compressor. When an L1 cache or a page walker requests
a block from L2 and the L2 copy is compressed (i.e., the
new data bit - see paragraph above - in the copy is set),
L2 replies with a decompressed copy; because all software-
initiated memory accesses pass through L1 cache, always
replying decompressed copy to L1 ensures CTEs embedded
in PTBs are invisible to software, such as OS. When L2
receives from L1 a dirty eviction, L2 checks whether the
dirty block’s value is compressible under the compressed
PTB format; if so and if the L2 copy is currently compressed,
L2 copies into the incoming dirty block any embedded CTEs
held in the stale L2 copy (note that L2 is inclusive of L1) to
seek to preserve the embedded CTEs when OS modifies a
PTB (e.g., to remap a virtual page elsewhere). Lastly, when
receiving an uncompressed block from L3, if the requester
is the page walker, L2 compresses the block before caching
it; this is how TMCC initially compresses PTBs in a PTB
page when OS creates the PTB page or migrates the PTB
page to a new address.

5) When TMCC Cannot Embed in PTBs: Compression
can only free up limited space in each PTB. As such, TMCC
only embeds into PTBs truncated CTEs, with only enough
bits to identify a 4KB DRAM address range within an MC’s
DRAM. Assuming each MC manages up to 1TB of DRAM,
each truncated CTE is only log2(1TB/4KB) = 28 bits.
Assuming the TMCC enables up to 4X physical pages in
the OS, TMCC can embed 8 CTEs in the PTB under this
configuration (i.e., for all 8 PTEs).

In bigger machines with bigger PPNs, however, each
compressed PTB cannot fit eight CTEs. We calculate that for
systems with 4TB and 16TB of DRAM, each compressed
PTB can only fit seven and six CTEs respectively.

6) Overheads: Decompressing PTBs take ≤ 1 cycle; it
only needs wiring to concatenate plaintext (see Figure 7).
Each CTE Buffer has 64 entries; it requires a total of ∼1KB.

By always migrating memory content at page granularity,
instead of block granularity, TMCC reduces the size of each
page’s CTE from 64B to 8B. Assuming an OS that boots
up with 4X OS physical memory as DRAM size, total size
of all CTEs in DRAM reduces from 6.25% to only 0.78%.

By taking on an OS-inspired approach, TMCC requires a
Recency List in ML1 (see Section IV-B). Unlike Free Lists,
which can store linked list pointers for free in free chunks
and sub-chunks, storing ML1’s Recency List’s pointers
takes up memory. Recency List uses 0.4% of DRAM. An
OS-inspired approach also requires tracking incompressible
pages in ML1 to prevent ML1 from repeatedly trying to
evict the same incompressible pages to ML2.

B. Addressing Long Decompression Latency for ML2

While Deflate is effective and robust, it is slow. The state-
of-the-art ASIC Deflate from IBM [11] takes 1100ns to

decompress a 4KB page. Deflate is slow because it serially
combines two aggressive algorithms - LZ and Huffman.

We note the state-of-the-art ASIC Deflate from IBM is a
general-purpose design targeting both storage and memory.
Intuitively, there can be much room for improvement when
specializing Deflate just for memory. In addition, while a
general-purpose ASIC Deflate designed also for storage has
to strictly abide by the Deflate standard to provide com-
patibility across systems, an ASIC Deflate specialized for
memory does not; memory values are locally produced and
consumed. Unshackling from the constraints of the standard
allows more room for specialization and optimization.

To specialize ASIC Deflate for memory, we first imple-
ment Deflate in HDL to identify performance bottlenecks.
We then perform large design space exploration in HDL to
address the bottlenecks. To explore the large design space,
we make our HDL highly parameterizable by using the
Chisel design language; the tunable parameters include how
many characters to encode and decode per cycle, LZ sliding
window size (i.e., CAM size), the number of characters in
the Huffman tree, the maximum depth of the tree, sample
size for frequency counting, etc. We also use a wide range of
diverse workloads spanning three C/C++ benchmark suites
and three Java benchmark suites to evaluate the impact on
compression ratio due to the hardware design choices.

Our ASIC Deflate specialized for memory decompresses
each 4KB page in ∼1/4th the time as the state-of-the-art
ASIC Deflate from IBM [11], while providing similar com-
pression ratio. We test our ASIC Deflate via RTL simulations
on 50 million 4KB memory pages. We publicly release the
HDL for our memory-specialized ASIC Deflate at https:
//github.com/HEAP-lab-VT/ASIC-DEFLATE-for-memory.

1) Local Optimizations to Huffman: We implement Huff-
man in Chisel from the ground up. In the process, we
identify the tree construction for compression and tree
reconstruction for decompression as the key performance
bottleneck for Huffman; this is especially true when using
the canonical Huffman tree format, which compresses the
tree itself. Making matters worse, the Deflate standard (RFC
1951) specifies building two canonical Huffman trees from
LZ output (i.e., one for literals and one for LZ match
offsets), performing runlength encoding on the two trees,
and compressing the two with a third and final Huffman tree.
We also confirm through the IBM authors that the high setup
time of IBM’s ASIC Deflate is primarily due to building and
restoring the Huffman trees.

To avoid this high latency, our solution is two-fold: use a
reduced Huffman tree and store it uncompressed.

Our reduced Huffman tree reduces the latency and area
required to build and traverse the tree by only compressing
the most common input characters and leaving the remaining
input characters uncompressed. We find that for non-zero
memory pages, the tree can be reduced to just 16 codes
instead of the usual 286 as specified in RFC 1951 at the
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cost of only sacrificing 1% compression ratio, on average.
15 out of the 16 codes are for the 15 hottest characters (i.e.,
byte-sized values) in each 4KB page going into the Huffman
compressor; the one remaining code in the reduced tree is
for an escape character to encode the other 200+ characters
missing in the tree. Our Huffman encodes each character
missing in the tree as the escape code (i.e., the Huffman
code for our escape character) plus the missing character.

We further reduce decompression latency by storing the
Huffman tree uncompressed. Due to having only 16 codes,
our reduced tree is much smaller than the tree under the
standard Deflate; this eliminates the need to aggressively
compress the tree like the standard Deflate. As such, our
compressor outputs the tree in a plain format, instead of
the canonical Huffman tree format or any other compressed
format, so that when a compressed page is accessed later,
the Huffman decompressor can directly use the tree without
having to first slowly decompress the tree.

However, prefixing each character not in the reduced tree
with an escape code can sometimes make Huffman output
bigger than the input (e.g., when most bytes in an input
page are characters missing in the tree). This problem can be
addressed by dynamically skipping our Huffman for pages
that would become bigger after going through our Huffman.
Empirically, we find that dynamically skipping our Huffman
can improve compression ratio by 5%, on geometric mean.
We are implementing this dynamic feature in hardware at
the time of this writing.

2) Local Optimizations to LZ: One issue with special-
izing Deflate ASIC for memory is that the ASIC cannot
be used for anything else (e.g., storage, network), unlike
a general-purpose Deflate ASIC. As such, the specialized
ASIC should use as little area as possible. We find that LZ
takes up most of the area in our ASIC Deflate. When we
implement IBM’s Deflate LZ and reduces LZ’s CAM size

from 32KB to 4KB to match memory page size, LZ still
takes up 0.24 mm2 for the compressor and 0.09 mm2 for
the decompressor under the 7nm technology node.

We identify that the CAM for performing sliding-window
pattern match as the main contributor to this area. As such,
we explore the area and compression ratio of the LZ module
under different CAM sizes ranging from 256B to 4KB.
We find using a 1KB CAM reduces the LZ compressor to
0.060 mm2 and the LZ decompressor to 0.022 mm2, while
reducing the compression ratio of non-zero memory pages
by only 1.6%. However, smaller (e.g., 512B, 256B) CAMs
degrade the compression ratio much more severely.

RFC 1951 specifies a 286-character alphabet for LZ
outputs. Since 286 is not a power of two, such an alphabet
is not space-efficient; as a result, LZ outputs 9-bit characters
for 8-bit character inputs. This poses no problem for stan-
dard Deflate because this inefficient alphabet is only used
internally; LZ outputs are re-encoded using full Huffman
trees and, therefore, do not appear at the final Deflate output
and do not compromise the final compression ratio. Due
to using a reduced Huffman tree, however, our Deflate can
directly output LZ’s outputs (e.g., after prefixing them with
our escape code). As such, our LZ outputs use a space-
efficient 28 = 256-symbol alphabet, like how LZ is used
today when it is standalone (i.e., outside of Deflate).

3) Across-Deflate Optimization: Huffman must count the
frequencies of the characters in an LZ-compressed page
to generate a Huffman tree before using the tree to com-
press the individual characters in the LZ-compressed page.
Precisely counting the frequencies of the characters in an
LZ-compressed page requires analyzing the entire page; as
such, Huffman compression can only begin after LZ has
compressed the entire page, instead of working concurrently
with LZ. Having only LZ or Huffman busy, but not both at
the same time, can significantly hurt throughput.
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To increase throughput, IBM’s design resorts to approx-
imate frequency counting (a.k.a 1.1 Pass in [11]) by only
analyzing a small portion of LZ output (i.e., a 32KB
segment) at the start of a much bigger LZ output (i.e.,
a 256KB output). This allows Huffman to operate mostly
concurrently with LZ, except for just when LZ is outputting
the first 32KB out of the 256KB. Meanwhile, the 32KB
of LZ output is still big enough to accurately represent the
frequency distributions of the overall 256KB of LZ output.

To maximize throughput without reducing compression
ratio, our Deflate operates both LZ and Huffman concur-
rently by using them to process two independent memory
pages (see “Page 1” and “Page 2” in Figure 14). This
requires adding a buffer (see “Accumulate” in Figure 14)
to buffer the entire LZ output; in comparison, IBM’s 1.1
Pass only buffers a small fraction of LZ output (e.g., the first
32KB of the 256KB LZ output). However, as memory pages
are smaller than files, our buffering overhead is also small.
We note that 1.1 Pass is still better along some dimensions
(e.g., area); as such, the HDL we release also supports it
as a tunable parameter. But we disable it by default as it
significantly reduces compression ratio for 4KB pages.

4) Additional Details per Module: This section presents
more details for each module in our ASIC Deflate, in the
order that they appear in Figure 14.

The first three pipeline stages in the compressor per-
form LZ compression. The first stage, 1KB CAM, identifies
matches between the most recent 1KB of history and the
input characters to LZ in the current cycle. This matching
relies on a sliding-window CAM based on IBM’s near-
history CAM [11]. The match result passes on to the Select
Match stage; to simplify hardware design, our Select Match
uses a greedy algorithm to select matches to encode, instead
of the “lazy matching” described in RFC 1951. The third
stage – LZ 8-bit Encode – encodes the matches and literals
using an alphabet with 256 characters.

In our current design, the three stages above can some-
times stall due to pipeline hazards, depending on the length
of the matched sequences. As a result, our Deflate only takes
in 8 characters/bytes per cycle, just like the IBM design.
Taking in more characters per cycle worsens the pipeline
hazards and yields diminishing return in performance.

Huffman compression starts with Frequency Count; this
pipeline stage reads LZ output to calculate the frequency of
each 8-bit character in an LZ-compressed page. The next
pipeline stage - Select 15 Characters - identifies the 15
hottest characters across the entire LZ-compressed page.

Accumulate and Replay work together to enable LZ and
Huffman to work concurrently on separate pages. Accumu-
late buffers the output of Select 15 Characters and LZ 8-bit
Encode and waits for the Huffman modules after Accumulate
to finish processing their current page; then, Accumulate
logically transfers its content to the Replay module to replay
the buffered values to the later Huffman modules.

Build Reduced Tree then builds a Huffman tree with 16
leaves in the usual way – by repeatedly combining the
two nodes with the lowest frequency. To limit the depth
of the tree, when a pair of sibling nodes would exceed a
tunable depth threshold, Build Reduced Tree discards the
less-frequent sibling and promotes the other to keep the
tree depth below the threshold. Build Reduced Tree never
discards the escape code. Generating the tree takes up to
32 cycles. Write Reduced Tree then takes up to 16 cycles
to write the tree to output using an uncompressed format
(see Section V-B1). Huffman Encode then compresses the
LZ-compressed bytes and outputs the Huffman codes at up
to 32-bits per cycle.

Our decompressor begins with Read Reduced Tree, which
takes 16 cycles to read in the Huffman tree and sets up
the registers in Huffman Decompress; this is a significant
improvement over IBM’s design, which takes > 500ns to
reconstruct the tree. Next, Huffman Decompress decodes up
to 8 input codes or 32 input bits per cycle, whichever is
smaller, via a multi-stage pipelined decoder based on IBM’s
design [11] [44]. The last pipeline stage, LZ Decompress,
outputs up to 8B of plaintext per cycle.

5) ASIC Deflate Performance: We synthesize our
memory-specialized ASIC Deflate on a 7nm ASAP tech-
nology node [45] at 0.7V using Synopsys Design Compiler
[46]; our Deflate runs at 2.5 GHz with a total area of
0.13 mm2 (see Table I). We use Verilator [47], an industry-
standard high-speed RTL simulator, to measure the full-page
latency, half-page latency, and throughput; Table II shows
the results. The total throughput of one Deflate module (both
compressor and decompressor) is 32.0 GB/s; this exceeds the
channel bandwidth of DDR4-3200 (i.e., 25.6 GB/s).

Module Area Power
LZ Decompressor 0.022 mm2 100 mW
LZ Compressor 0.060 mm2 160 mW
Huffman Decompressor 0.014 mm2 27 mW
Huffman Compressor 0.034 mm2 160 mW
Complete Unit 0.13 mm2 447 mW

Table I: Synthesis results for our ASIC Deflate.

Module Latency ½-page Latency Throughput
Our Decompressor 277 ns 140 ns 14.8 GB/s
Our Compressor 662 ns N/A 17.2 GB/s
IBM Decompressor 1100 ns 878 ns 3.7 GB/s
IBM Compressor 1050 ns N/A 3.9 GB/s

Table II: Deflate performance for 4KB memory pages.

To compare against IBM’s design, we use the formula
in [11] to analytically calculate the performance of IBM’s
design. For 4KB memory pages, our memory-specialized
ASIC Deflate outperforms IBM’s Deflate in every per-
formance metric by several times. Notably, our half-page
decompression latency – the average time to decompress a
needed block in a page to satisfy an L3 miss – is 6X as fast.

To measure the compression ratio of our design, we
examine programs with > 200MB memory footprint from
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Figure 15: Compression ratio under an aggressive block-level compression, our ASIC Deflate, and software Deflate (gzip).

three C/C++ benchmark suites [30], [48], [49] and three Java
benchmark suites [50], [51], [52]. For each program, we
take 10 memory dumps equally spaced across its lifetime
and deleted all all-zero pages from each dump; note that
all-zero pages in a memory dump are typically untouched
or deduplicable virtual pages. We calculate the compression
ratio of a workload as the maximum size across its 10
uncompressed dumps divided by the maximum compressed
size across its 10 dumps.

Figure 15 shows our measurements. Across all bench-
marks, our ASIC Deflate specialized for memory achieves
a geomean of 3.4x compression, which is only 12% lower
than GZIP. Note IBM’s ASIC Deflate also has a 11% lower
compression ratio than GZIP [11]. Dynamic skipping of
Huffman (see Section V-B1) can increase the compression
ratio to 3.6x, which is within 7% of GZIP.

As another reference for comparison, Figure 15 also
shows the compression ratio of the memory dumps under
block-level compression. We model a 64B-block-level com-
pression that chooses the smallest output between BPC [12],
BDI [53], Cpack [54], and Zero Block; across the same
benchmark suites, the geomean compression is only 1.51x.

VI. SIMULATION METHODOLOGY

We evaluate TMCC’s performance under cycle-accurate
simulators. We use Gem5 [29] and Ramulator [55] to
simulate CPU and DRAM, respectively. Table III lists the
simulated system’s parameters. We evaluate workloads used
by recent prior works [23], [24] on virtual address translation
in conventional systems. We simulate all such workloads that
we could run in Gem5. They span IBM’s GraphBIG [30],
SPEC CPU2017 [56], and PARSEC 3.0 [48]. All workloads
are multi-threaded except mcf and omnetpp which are
single-threaded. For single-threaded workloads, we evaluate
four instances of the same benchmark. Figure 16 shows the
memory intensiveness of the benchmarks.

We fast forward each benchmark deep into the region
of interest using Gem5’s KVM mode in native execution
speed; each benchmark reaches at least 95% of its maximum
memory footprint. Then, we fetch all of the benchmark’s
memory values to place, compress, and pack them into

CPU 4 cores, 2.8GHz, 4-wide OoO, 2048 TLB entries
Caches Size: 64KB L1d$+L1i$, 256KB L2$ inclusive,

8MB L3$ exclusive, 1 KB page walk cache per core
(similar to [23])
L1$: 3 cycles, L2$: +11 cycles, L3$: +50 cycles

Prefetchers Next-line with automatic turn-off: L1$, L2$
Stride: L1$ (degree 2), L2$ (degree 4)

DRAM DDR4-3200, 1-channel, 8-ranks, MC to Cache NoC
latency: 18ns
FR-FCFS scheduling policy with row access cap of 4
XOR-based mapping function like Intel Skylake [57]
tCL: 13.75ns, tRCD: 13.75ns, tRP: 13.75ns

CTE$ TMCC: 64KB, 32KB reach per 64B CTE block
Compresso: 128KB, 4KB reach per 64B CTE block

Table III: Simulated Microarchitecture parameters.
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Figure 16: Memory access characterization for the evaluated bench-
marks under no hardware memory compression.

available memory. Next, we use at least one second of
atomic simulation to warm up ML1, ML2, and embedded
CTEs in compressed PTBs. Subsequently, we warm up the
branch predictor and prefetchers using 10ms of detailed
simulation (without any compression-related performance
overheads). Finally, we use 20ms of detailed simulation
to evaluate performance. We use store instructions/cycle to
evaluate performance.

We simulate one-level TLBs; Gem5 lacks two-level TLB
for x86. To keep TLB hit rate consistent with real systems,
we increase the number of entries in L1 TLB to 2048, which
is similar to the total number of TLB entries AMD’s Zen 3
[58]. This ensures a similar TLB hit rate between simulations
and the real world; this is essential as TMCC optimizes for
memory accesses following TLB misses.

Modeling Details for TMCC’s Page-level Accesses: To
prevent the faster block-level ML1 accesses from suffering
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long queuing delays due to the bandwidth-intensive page-
level accesses to ML2, we simulate the FR-FCFS-Capped
command scheduling policy; prior works use capped policies
to improve fairness. TMCC also carefully issues the 64B
read and/or write requests to carry out page-level accesses
so that these requests only consume at most 10 slots in MC’s
read/write queue at a time. To prevent the many writes due to
page migration from blocking reads to the channel, TMCC
only targetedly puts into write mode the rank accessed by
page write, without putting the entire channel into write
mode; prior works (e.g., Nonblocking Writes [59]) also only
put individual ranks in a channel into write mode.

When reading from ML2, MC responds to LLC as soon as
MC decompresses the requested block. In the background,
MC migrates the decompressed page to ML1. This back-
ground migration is similar to the background repacking in
prior works [6]. We model a 32KB buffer (i.e., eight 4KB
entries) in MC to buffer data for the transfer. Accesses to
ML2 are stalled when all eight entries are full.

When ML1 Free List has < 4000 chunks, ML1 grows
the list by continuously evicting cold pages to ML2. The
resultant ML1-to-ML2 page migrations have lower priority
than LLC accesses to ML2, which trigger ML2-to-ML1 page
migration; ML1 pauses eviction when LLC accesses to ML2
are outstanding or pending. But their priorities are flipped
while ML1 Free List has < 3000 chunks.

VII. SIMULATION RESULTS

Figure 17 shows TMCC’s performance normalized to
Compresso [6], a recent prior work on hardware mem-
ory compression for capacity. In this comparison, TMCC
saves the same amount of DRAM as Compresso for each
workload. On average across all workloads, TMCC im-
proves performance by 14%. The improvement is highest
for shortestPath and canneal; they have high memory
access rate (see Figure 16) and high CTE cache miss rate
(see Figure 2). The improvement is the lowest for kcore
and triangleCount; they have low CTE cache miss rate
(see Figure 2).

TMCC’s performance improvement primarily comes from
hiding memory latency overhead due to address translation.
Figure 18 shows the average L3 miss latency of a system
with: (i) No Compression, (ii) Compresso and (iii) TMCC at
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Figure 17: Performance normalized to Compresso when saving the same
amount of memory as Compresso.
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Figure 18: L3 miss latency under different systems.

iso-compression ratio as Compresso. For a system with
no compression, L3 miss latency is 53ns; this includes all
sources of L3 miss latency (e.g., NoC latency between MC
and LLC tile), not just DRAM latency. Under TMCC, the
average miss latency is very close to no compression –
only 56.4ns. For Compresso, the average L3 miss latency
is considerably higher – 73.9ns; the ∼20ns longer memory
access latency comes from accessing data serially after
accessing CTEs for each CTE cache miss.

TMCC’s latency benefit over Compresso are primarily due
to fetching from DRAM normal memory blocks and their
CTEs in parallel. As described in Section V-A3, TMCC
accesses CTE and normal blocks in DRAM in parallel to
verify the normal blocks speculatively fetched using CTEs
embedded in CTEs. On average, 22% of LLC misses that
hit in ML1 are satisfied by fetching normal blocks and
CTEs from DRAM in parallel (see Figure 19). However,
22% is only a minority of LLC misses. This is because
MC always caches the CTE after it arrives from DRAM.
Because TMCC obtains embedded CTEs from compressed
PTBs, which are only accessed during page walks, TMCC
cannot use embedded CTEs to speed up address translation
for LLC misses that are not preceded by page walks. As
such, caching a CTE after fetching it from DRAM (e.g.,
after accessing the CTE in DRAM in parallel with normal
data for verification after a TLB miss to a page) speeds up
address translation for LLC misses that hit in TLB (e.g.,
later accesses to the same page).

Some of the latency benefit also comes from reducing how
frequently TMCC accesses DRAM to fetch CTEs compared
to Compresso. Like prior works, TMCC only fetches CTEs
from DRAM when they miss in CTE cache; fetching CTEs
from DRAM in parallel with normal blocks for verification
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Benchmark  DRAM Usage: GB 
 

Compression Ratio  Normalized  
Comp. Ratio 

Col A 
(Uncomp.) 

Col B 
(Compresso) 

Col C 
(TMCC) 

Col D 
(Compresso) 

Col E 
(TMCC) 

Col F 

pageRank  106  82.2  35.3  1.29  3.00  2.33 

graphCol  106  82.5  35.3  1.28  3.00  2.33 

connComp  105  83.2  35.0  1.26  3.00  2.38 

degCentr  105  82.9  35.0  1.27  3.00  2.37 

shortestPath  105  82.8  35.0  1.27  3.00  2.37 

bfs  105  82.7  35.0  1.27  3.00  2.36 

dfs  105  81.4  35.0  1.29  3.00  2.33 

kcore  105  83.7  35.0  1.25  3.00  2.39 

triCount  108  83.1  36.0  1.30  3.00  2.31 

mcf  15.0  13.9  6.00  1.08  2.50  2.32 

omnetpp  1.00  0.63  0.40  1.60  2.50  1.58 

canneal  1.10  0.95  0.73  1.15  1.50  1.30 

          Average  2.2 

 
Table IV: Compression ratio normalized to Compresso when TMCC offers
the same performance as Compresso. Col A shows each workload’s original
memory footprint. Col B shows how much DRAM each workload uses
under Compresso. Col C shows how much DRAM each workload uses
under TMCC when TMCC’s performance reduces down to Compresso’s.

when the CTEs are already cached is unnecessary and
avoided by our design in Section V-A3. As such, TMCC’s
DRAM access rate for CTEs (i.e., number of CTE fetches
from DRAM per LLC miss) equals TMCC’s CTE miss rate.
Because TMCC’s CTE miss rate is 1−76% (76% is TMCC’s
average CTE hit rate, see Figure 19), TMCC’s DRAM access
rate for CTE is 24%. Compresso has a much higher – 34%
– DRAM access rate for CTEs as block-level compression
reduces CTE reach compared to page-level compression.

Sensitivity Analysis – Saving more Memory: TMCC
builds on an OS-inspired approach; as such, TMCC also in-
herits the following behavior from OS memory compression:
as a system’s memory usage increases (e.g., due to having
more background/context-switched processes in memory),
more pages are migrated to ML2 and more DRAM will be
saved by ML2’s compression (see Section IV-A). As such,
having high memory usage in a system can naturally trigger
TMCC to save more DRAM than Compresso, especially
since TMCC uses page-level Deflate, instead of block-
level compression as does Compresso; in our evaluation,
Compresso uses the block-level compression in Figure 15.

But, of course, saving more DRAM also comes at the
cost of performance, as more pages will be stored in ML2
compressed. To fairly evaluate TMCC’s memory savings
over Compresso, we evaluate the performance of TMCC at
various higher memory savings to identify operating points
where TMCC can still provide the same (i.e., > 99%
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Figure 20: Improvement over barebone OS-inspired hardware compression
under the two DRAM usage scenarios in Table IV Columns B and C.

of the) performance as Compresso. Table IV shows for
each benchmark TMCC’s compression ratio normalized to
Compresso when operating at the same, instead of higher,
performance as Compresso. It is 2.2x on average.

Figure 20 shows improvement over the bare-bone OS-
inspired hardware compression in Section IV. When both
designs are saving the same small amount of DRAM (i.e.,
each workload’s DRAM usage matches Column B in Table
IV), TMCC improves performance by 12.5%. Figure 20
shows the split of benefit due to TMCC’s ML1 and ML2
optimizations; they improve performance by 8.25% and
4.25%, respectively.

When both designs are aggressively saving the same
amount of DRAM (i.e., each workload’s DRAM usage
matches Column C in Table IV), TMCC improves perfor-
mance by 15.4% over the bare-bone OS-inspired hardware
compression. In this scenario, the performance benefit due to
TMCC’s ML2 optimization surpasses the benefit from ML1
optimization. When aggressively saving DRAM, accesses to
ML2 become more frequent (see Figure 21); higher ML2
access rate increases the impact of ML2 optimizations, while
diminishing the impact of ML1 optimizations.

0%
2%
4%
6%
8%

10%

M
L2
 A
cc
es
s R

at
e DRAM Usage: Table 4 Col B Table 4 Col C

Figure 21: ML2 Accesses normalized to total LLC misses and writebacks
under the two DRAM usages in Table IV Columns B and C.

Sensitivity Analysis – Smaller Workloads: We also
evaluate TMCC with smaller workloads - remaining PAR-
SEC 3.0 benchmarks and RocksDB using 1GB Twitter
dataset. When saving the same amount of DRAM from these
workloads as Compresso, TMCC can provide a maximum
performance benefit of 5% (for RocksDB) and loses a
maximum performance of 0.1% (for freqmine) compared
to Compresso. The average performance is within 1% of
Compresso. TMCC provides no meaningful performance
benefit for these workloads because they are small and have
regular access patterns. However, even for these workloads,
TMCC can still provide benefits; our evaluation shows
TMCC can provide 1.7X compression ratio on average as
Compresso, while still providing the same (i.e., > 99% of
the) performance as Compresso for every workload. The
maximum is 3.1x, for blackscholes.

VIII. DISCUSSION

Huge Pages: TMCC’s ML1 optimization is ineffective
for huge pages. Each PTB for huge pages covers eight huge
pages or 8·2MB = 16MB. This equates to 16MB/4KB =
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4K regular 4KB pages; 4K CTEs is too numerous to fit in
a PTB. However, TMCC’s ML2 optimization still applies.
Compared to prior works on hardware memory compression,
TMCC still improves CTE cache hit rate due to using page-
level, instead of block-level, translation. When repeating our
evaluation under huge pages across the workloads in Figure
17, we find that compared to Compresso, TMCC can either
improve average performance by 6%, while saving the same
amount of memory, or provide 1.8X the effective memory
capacity, while providing the same performance.

Memory Interleaving: Some CPUs not only interleave
adjacent physical address ranges across the many memory
channels in a memory controller, but also interleave adjacent
physical address ranges across multiple memory controllers
(MCs) to help balance bandwidth utilization. The granularity
of this inter-MC memory interleaving can vary across CPUs,
BIOS settings, and installed DIMM count/positions.

As TMCC resides in MC, interleaving memory across
multiple MCs at sub-page (i.e., <4KB) granularity can
interfere with TMCC’s page-level compression. Therefore,
TMCC requires address mapping to only interleave memory
across memory controllers at ≥4KB granularity, instead of
sub-page granularity.

We evaluate the performance impact of two TMCC-
compatible interleaving policies on bandwidth-intensive
benchmarks from a prior work on improving memory band-
width [60]. We choose these benchmarks because high
bandwidth usage magnifies performance differences across
different interleaving policies. We simulate a system with 16
cores and two MCs with two channels per MC. The baseline
interleaving policy performs sub-page interleaving at 512B
granularity across MCs and at 256B granularity across the
channels within each MC.

Figure 22 compares sub-page interleaving only for chan-
nels within each MC (i.e., MCs are interleaved at 4KB and
constituent channels are interleaved at 256B) against the
baseline interleaving. The average performance is within 1%.
The maximum degradation is < 5%. However, using coarser
interleaving improves row buffer locality and hit rate and,
therefore, provides a maximum performance improvement
of 10%. For sensitivity analysis, Figure 22 also compares
always interleaving pages across channels (i.e., no sub-page
interleaving across channels) to the baseline interleaving; the
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Figure 22: Performance of two TMCC-compatible interleaving policies
normalized to the baseline of using sub-page interleaving across MCs.

performance degradation is more pronounced (e.g., 5%, 10%
and 11% for linpack, sp D, and hpcg, respectively).

Our results match that of a prior OS work [61]; this work
turns off hardware-level sub-page interleaving across MCs
and, instead, interleaves pages across MCs by modifying
the memory allocator to map adjacent 4KB virtual pages to
different MCs. Only 1% real-system performance difference
is reported; this includes the overheads of the OS changes.

IX. RELATED WORK

A prior work – LCP [5] – relies on OS support to
embed some CTE information into PTEs; OS manages new
compressed pages of different sizes (e.g., 2KB, 1KB) and
records the compressed page size in PTEs. LCP uses the
embedded compressed size of a page to predict the page’s
data blocks’ DRAM locations to speculatively access data
in DRAM in parallel with accessing the CTE in DRAM.
Beside changing OS, the speculative parallel accesses are
often wrong (e.g., as often as ∼50% of the time for many
workloads, see Figure 16 in [5]) because using compressed
page size alone to accurately predict per-block DRAM
location is difficult. When a page changes between different
preset sizes due to fluctuation in compression ratio, hardware
also raises interrupt to tell OS to update the page size
recorded in the PTE. A later work shows these interrupts
are costly [6].

Unlike LCP, TMCC embeds CTEs into PTBs software-
transparently by compressing PTBs in hardware. By migrat-
ing memory content only at the page granularity, TMCC
keeps CTEs small enough to fit them in PTBs to enable
highly accurate speculative parallel accesses to DRAM.

X. CONCLUSION

This paper is the first to explore the address translation
problem for large and/or irregular workloads under hardware
memory compression for capacity. TMCC builds on an OS-
inspired approach by addressing its latency overheads while
accessing both hot pages and cold pages. For hot pages,
TMCC hides the latency overhead of physical to DRAM
address translation by compressing PTBs to free space in
them to embed CTEs. For cold pages, we specialize ASIC
Deflate for memory to reduce decompression latency by
4X compared to IBM’s state-of-the art ASIC Deflate. Our
evaluations show that for large and/or irregular workloads,
TMCC can either improve performance by 14% without
sacrificing effective capacity or provide 2.2x the effective
memory capacity without sacrificing performance, when
compared to state-of-the art hardware memory compression.
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APPENDIX

A. Abstract

Our artifact demonstrates the following:
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• Motivational data in Figures 1 and 5 through Gem5
simulations.

• Observation in Figure 6 through page table dumps.
• Performance results in Figures 17, 18, 19 and 21

through Gem5 simulations.
• Compression ratio of few benchmarks in Figure 15

through memory dumps.
• Functional verification of our ASIC Deflate with RTL

simulation.
Due to high memory and disk requirements of our ar-

tifacts, we provide the evaluators access to a system with
28-cores, 256 GB RAM and 16 TB of disk space. The
system contains: (i) Our Gem5 model with fast forwarded
Gem5 checkpoints and submission/processing script(s), (ii)
Page Table Dumps and processing script(s), (iii) Memory
dumps and script(s) for compression ratio measurement, (iv)
Script(s) to simulate RTL and verify functional correctness
of our ASIC. We could not make the Gem5 model in our
artifact publicly available due to high storage requirement
for Gem5 checkpoints. However, the source code for our
ASIC Deflate is publicly available at: https://github.com/
HEAP-Lab-VT/ASIC-DEFLATE-for-memory.

B. Artifact check-list (meta-information)
• Algorithm: TMCC opportunistically embeds compression

translation entries in PTBs. This allows it to prefetch com-
pression translation entries during a page work, instead of
serially fetching them after a page walk. Moreover, TMCC’s
Deflate ASIC specialized for memory allows 4X faster com-
pression than the state-of-the-art.

• Program: Gem5 performance model, RTL for ASIC Deflate
• Compilation: gcc-7.5.0, g++-7.5.0, Python2, Java 8+, Veri-

lator 4.220, Gradle 7.4.2
• Binary: Different binaries for different experiments.
• Data set: Fast-forwarded Gem5 checkpoints, page table

dumps, memory dumps.
• Run-time environment: Ubuntu 20.04.4 LTS.
• Hardware: Intel Xeon W-3175X (28 cores), 256 GB RAM,

16 TB disk.
• Execution: Different scripts for different experiments.
• Metrics: Different metrics for different figures.
• Output: Simulation stats dumps for Gem5 simulations;

Terminal output for other experiments.
• Experiments: Gem5 simulations, Page table compressibility

measurement, Compression ratio measurement, RTL func-
tional verification.

• How much disk space required (approximately)?: 2 TB.
• How much time is needed to prepare workflow (approxi-

mately)?: 20 minutes.
• How much time is needed to complete experiments (ap-

proximately)?: 36 hours + 15 minutes + 1 hour + 3 hours.
• Publicly available?: No.

C. Description

1) How to access: We gave the evaluators SSH access
to our own system. Each evaluator was provided their own
user account and login credentials.

2) Hardware dependencies: A multi-core system with at
least 256 GB RAM and 16 TB of disk space.

3) Software dependencies: (i) Gem5, (ii) Python2 virtual
environment with prerequisite packages for Gem5, (iii) Java
8+, Verilator 4.220 and Gradle 7.4.2 for functional verifica-
tion of ASIC Deflate.

4) Data sets:
• Fast-forwarded Gem5 checkpoints: For Gem5 sim-

ulations.
• Page Table dumps: To determine the fraction of

compressibile PTBs (See Figure 6).
• Memory dumps: To measure compression ratios in

Figure 15.
• More memory dumps: To verify functional correct-

ness of our Deflate ASIC. To reduce experiment run
time, we use a set of smaller memory dumps.

5) Models: Performance model in Gem5 for systems
with: (i) No Compression, (ii) Compresso [6], (iii) TMCC.

D. Installation

• Python2 virtual environment with all dependencies:
Present in home directory for every user. Simply exe-
cute: source ˜/envPy27/bin/activate to use
it.

• Gem5: Present for every user at
˜/source_gem5/work. Compile Gem5 using
compilegem5fast command.

• Processing script for page table
dumps: Present for every user at
˜/page_table_status_bits_all_same.

• Processing script to compute compression ratio of
memory dumps: Present for every user at
˜/compression_ratio. The C code is present in
the same folder and already compiled. If not, then it
can be compiled using ./make_script.sh.

• Processing script for ASIC Deflate
verification: Present for every user at
˜/rtl_function_verif/.

E. Experiment workflow

We recommend the evaluators to use a terminal multi-
plexer such as tmux to run experiments. tmux ensures
spawned processes still run after SSH connection drops. For
more details, please visit this link: https://tmuxcheatsheet.
com/. Home directory of every user has four folders for
four different experiments. The folders are: source_gem5,
page_table_status_bits_all_same,
compression_ratio and rtl_function_verif.
All experiments must be run independently due to
resource limitations. The second experiment is an ex-
ception and can be run simultaneously with any of the
experiments.

• Gem5 simulations: Execute ./run_script.sh in
˜/source_gem5/work. After the simulations
finish, execute ./run_process.sh in
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˜/source_gem5 to process the output. The
simulations take 36 hours to finish.

• Process page table dumps:
Run ./run_process.sh in
˜/page_table_status_bits_all_same.
The script should finish in 15 minutes.

• Compute compression ratio of memory dumps: Run
./run_script.sh in ˜/compression_ratio.
The script should take about 1 hour to finish.

• ASIC Deflate verification: Change directory into
˜/rtl_function_verif and execute
./run_script.sh. The simulations take approxi-
mately 3 hours to finish. The script prints the results
on to the terminal. To re-run, first execute: gradle
clean -p hardware-compressor.

F. Evaluation and expected results

• Gem5 simulations: Printed data (especially averages)
should be close to the data in Figures 1, 5, 17, 18,
19 and 21. Some variation for a minority of individual
cases is expected. All simulations should finish suc-
cessfully. We request the evaluators to contact us if they
see NaN or negative numbers as output as this indicates
simulation failure or some other problem.

• Process page table dumps: Printed data should be
very close to the data in Figure 6. It is also possible to
visually inspect page table dumps by opening them in
a text editor.

• Compute compression ratio of memory dumps: The
compression ratio output for benchmarks should be
similar to compression ratio data points in Figure 15.

• ASIC Deflate verification: In the printed results for
every memory dump, failed (pages) should read
0. This means that the output after compression and
decompression is same as the original for every non-
zero 4KB page in memory dumps. Above these results,
Gradle should also report BUILD SUCCESSFUL in
green.

G. Notes

We also provide a README.txt in each experiment
folder for quick reference. For Gem5 and page table dump
experiments, they provide code overview.

H. Methodology

Experiment methodology:
• Gem5 simulations: See Section VI.
• Page table dumps: We pause benchmarks in the

region of interest. Then we use the page table dump tool
in public artifact of [62]. We also provide the evaluators
the resources to take fresh page table dumps.

• Compute compression ratio of memory dumps: We
use Linux’s gcore tool to take memory dump of a
program. Subsequently, we process the memory dump

to compute the compression ratio. Note that we discard
all-zero pages while computing compression ratios.

• ASIC Deflate verification: We use Verilator to run
RTL simulations of the compressor and decompressor.
We verify that each non-zero 4 KB page in the memory
dumps are same as original after compression and
decompression.

Artifact submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
• https://www.acm.org/publications/policies/

artifact-review-badging
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