CS 4204 Computer Graphics

Lighting and Shading Yong Cao Virginia Tech

Objectives

•Learn to shade objects so their images appear three-dimensional

 Introduce the types of light-material interactions

 Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware

Why we need shading

Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like

But we want

Shading

Why does the image of a real sphere look like

Light-material interactions cause each point to have a different color or shade

Need to consider

- Light sources
- Material properties
- Location of viewer
- Surface orientation

Scattering

Light strikes A

- Some scattered
- Some absorbed

Some of scattered light strikes B

- Some scattered
- Some absorbed

Some of this scattered light strikes A

and so on ...

Rendering Equation

The infinite scattering and absorption of light can be described by the rendering equation

- Cannot be solved in general
- Ray tracing is a special case for perfectly reflecting surfaces

Rendering equation is global and includes

- Shadows
- Multiple scattering from object to object

Global Effects

Local vs Global Rendering

Correct shading requires a global calculation involving all objects and light sources

 Incompatible with pipeline model which shades each polygon independently (local rendering)

However, in computer graphics, especially real time graphics, we are happy if things "look right"

 Exist many techniques for approximating global effects

Light-Material Interaction

Light that strikes an object is partially absorbed and partially scattered (reflected)

> The amount reflected determines the color and brightness of the object

A surface appears red under white light because the red component of the light is reflected and the rest is absorbed

> The reflected light is scattered in a manner that depends on the smoothness and orientation of the surface

Light Sources

General light sources are difficult to work with because we must integrate light coming from all points on the source

Simple Light Sources

Point source

- Model with position and color
- Distant source = infinite distance away (parallel)

Spotlight

Restrict light from ideal point source

Ambient light

- Same amount of light everywhere in scene
- Can model contribution of many sources and reflecting surfaces

Surface Types

The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflected the light

A very rough surface scatters light in all directions

smooth surface

rough surface

Basic Local Illumination Model

We're only interested in light that finally arrives at view point

- a function of the light & viewing positions
- and local surface reflectance

Characterize light using RGB triples

can operate on each channel separately

Given a point, compute intensity of reflected light

Local Illumination physics

Law of reflection and Snell's law of refraction

What are we trying to model ?

Diffuse Reflection

This is the simplest kind of reflection

- also called Lambertian reflection
- models dull, matte surfaces materials like chalk

Ideal diffuse reflection

- · scatters incoming light equally in all directions
- identical appearance from all viewing directions
- reflected intensity depends only on direction of light source

Surface

Light is reflected according to Lambert's Law

Lambert's Law for Diffuse Reflection

Purely diffuse object

$$I = I_L k_d \cos \theta$$
$$= I_L k_d (\mathbf{n} \cdot \mathbf{L})$$

- I_L : light source intensity
- k_d : (diffuse) surface reflectance coefficient $k_d \in [0,1]$
- θ : angle between normal & light direction

Proof of Lambert's cosine law

Specular Reflection

Diffuse reflection is nice, but many surfaces are shiny

- their appearance changes as the viewpoint moves
- they have glossy specular highlights (or specularities)
- because they reflect light coherently, in a preferred direction

A mirror is a perfect specular reflector

- incoming ray reflected about normal direction
- nothing reflected in any other direction

Most surfaces are imperfect specular reflectors

• reflect rays in cone about perfect reflection direction

Modeling Specular Reflections

Phong proposed using a term that dropped off as the angle between the viewer and the ideal reflection increased $I_r = I_L k_s \cos^n_1 \phi$

reflected shininess coef intensity absorption coef incoming intensity

Phong Illumination Model

$$I = I_L k_d \cos \theta + I_L k_s \cos^n \phi$$

= $I_L k_d (\mathbf{n} \cdot \mathbf{L}) + I_L k_s (\mathbf{r} \cdot \mathbf{v})^n$

One particular specular reflection model

- quite common in practice
- · it is purely empirical
- there's no physical basis for it

- *I* : resulting intensity
- I_L : light source intensity
- k_s : (specular) surface reflectance coefficient

 $k_s \in [0,1]$

- ϕ : angle between viewing & reflection direction
- *n*: "shininess" factor

Computing R

All vectors unit length!!

$$r = (n \cdot l)n + s$$
$$s = (n \cdot l)n - l$$
$$\Rightarrow r = 2n(n \cdot l) - l$$

The effect of the exponent *n*

Examples of Phong Specular Model

The Ambient Glow

So far, areas not directly illuminated by any light appear black

- this tends to look rather unnatural
- in the real world, there's lots of ambient light

To compensate, we invent new light source

- assume there is a constant ambient "glow"
- this ambient glow is purely fictitious

Just add in another term to our illumination equation

 $I = I_L k_d \cos \theta + I_L k_s \cos^n \phi + I_a k_a$

 I_a : ambient light intensity

 k_a : (ambient) surface reflectance coefficient

Our Three Basic Components of Illumination

Combined for the Final Result

Phong Model

A simple model that can be computed rapidly

Has three components

- Diffuse
- Specular
- Ambient

Uses four vectors

- To source
- To viewer
- Normal
- Perfect reflector

Adding up the Components

For each light source and each color component, the Phong model can be written (without the distance terms) as

$$I = k_d I_d \quad l \cdot n \quad + k_s I_s (v \cdot r)^n + k_a I_a$$

For each color component we add contributions from all sources

Lights and materials

 $ObjectColor_{f} = I_{f} = I_{a_{a}}K_{a_{a}f} + I_{i_{a}}K_{diff_{f}}(N\cdot L) + I_{i_{a}}K_{spec_{f}}(R\cdot V)^{n}$ $ObjectColor_{g} = I_{g} = I_{a_{a}g}K_{a_{a}g} + I_{i_{a}g}K_{diff_{g}}(N\cdot L) + I_{i_{a}g}K_{spec_{g}}(R\cdot V)^{n}$ $ObjectColor_{b} = I_{b} = I_{a_{b}}K_{a_{a}b} + I_{i_{b}}K_{diff_{b}}(N\cdot L) + I_{i_{b}}K_{spec_{b}}(R\cdot V)^{n}$ Material properties: $K_{a}, K_{diff}, K_{spec}, n$

Light properties

I_a, I_{diff}, I_{spec}

Special cases

$$I_{r} = I_{a_{r}}K_{a_{r}} + I_{i_{r}}K_{diff_{r}}(N \cdot L) + I_{i_{r}}K_{spec_{r}}(R \cdot V)^{n}$$

$$I_{g} = I_{a_{g}}K_{a_{g}} + I_{i_{g}}K_{diff_{g}}(N \cdot L) + I_{i_{g}}K_{spec_{g}}(R \cdot V)^{n}$$

$$I_{b} = I_{a_{b}}K_{a_{b}} + I_{i_{b}}K_{diff_{b}}(N \cdot L) + I_{i_{b}}K_{spec_{b}}(R \cdot V)^{n}$$

- What should be done if I >1?
 Clamp the value of I to one.
- What should be done if N*L < 0?
 Clamp the value of I to zero or flip the normal.
- How can we handle multiple light sources?
 Sum the intensity of the individual contributions.