CS 4204 Computer Graphics

Curves and Surfaces (Continue)

Yong Cao Virginia Tech

Reference: Ed Angle, Interactive Computer Graphics, University of New Mexico, class notes

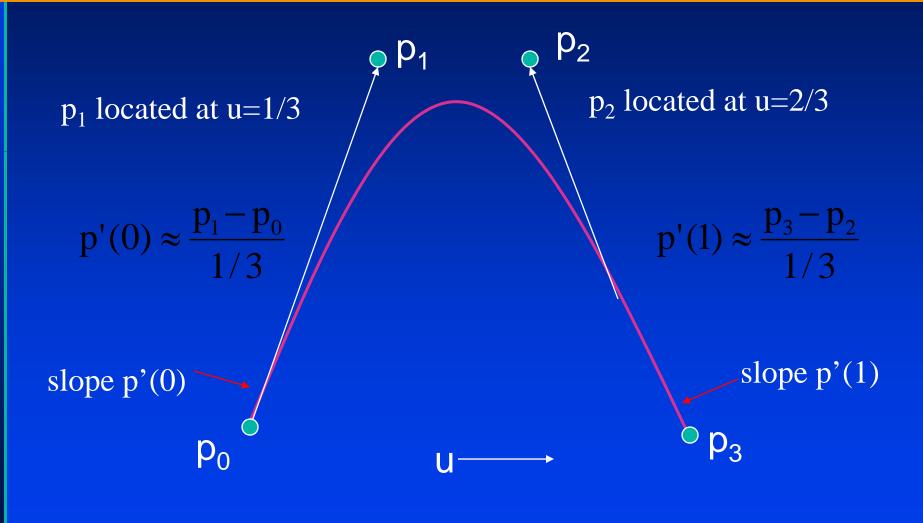
Objectives

- Bezier curves and surfaces
- B-spline and compare it to the standard cubic Bezier
- Introduce OpenGL evaluators
- Learn to render polynomial curves and surfaces

Bezier's Idea

- In graphics and CAD, we do not usually have derivative data
- Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form

Approximating Derivatives



Equations

Interpolating conditions are the same

 $p(0) = p_0 = c_0$ $p(1) = p_3 = c_0 + c_1 + c_2 + c_3$

Approximating derivative conditions

 $p'(0) = 3(p_1 - p_0) = c_0$ $p'(1) = 3(p_3 - p_2) = c_1 + 2c_2 + 3c_3$

Solve four linear equations for $c=M_Bp$

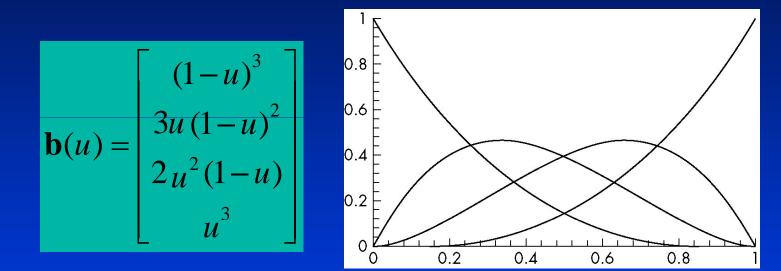
Bezier Matrix

$$\mathbf{M}_{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

 $\mathbf{p}(\mathbf{u}) = \mathbf{u}^{\mathsf{T}}\mathbf{M}_{B}\mathbf{p} = \mathbf{b}(\mathbf{u})^{\mathsf{T}}\mathbf{p}$

blending functions

Blending Functions



Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

Bernstein Polynomials

• The blending functions are a special case of the Bernstein polynomials

$$b_{kd}(u) = \frac{d!}{k!(d-k)!} u^k (1-u)^{d-k}$$

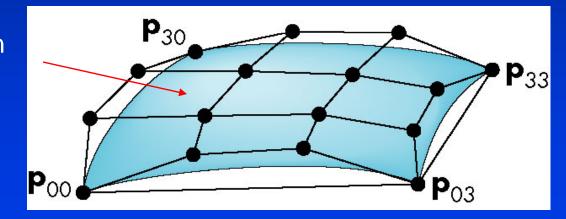
- These polynomials give the blending polynomials for any degree Bezier form
 - All zeros at 0 and 1
 - For any degree they all sum to 1
 - They are all between 0 and 1 inside (0,1)

Bezier Patches

Using same data array $\mathbf{P}=[p_{ij}]$ as with interpolating form

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_{i}(u) b_{j}(v) p_{ij} = u^{T} \mathbf{M}_{B} \mathbf{P} \mathbf{M}_{B}^{T} v$$

Patch lies in convex hull

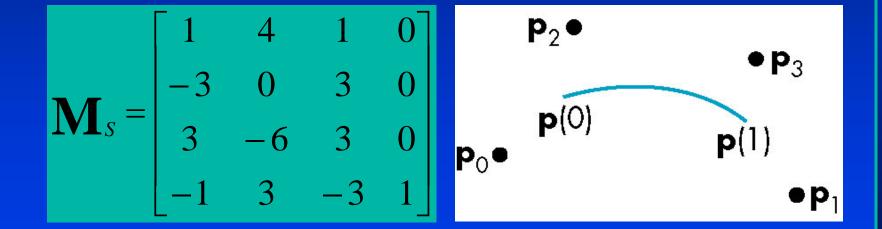


B-Splines

- <u>Basis splines: use the data at $p = [p_{i-2} p_{i-1} p_i p_{i-1}]^T$ to define curve only between p_{i-1} and p_i </u>
- Allows us to apply more continuity conditions to each segment
- For cubics, we can have continuity of function, first and second derivatives at join points
- Cost is 3 times as much work for curves
- Add one new point each time rather than three
- For surfaces, we do 9 times as much work

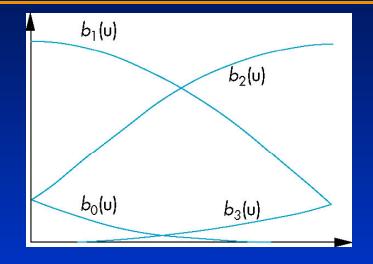
Cubic B-spline

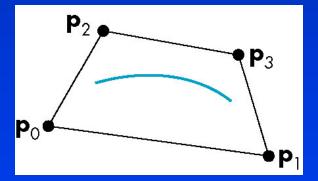
 $p(u) = \mathbf{u}^{\mathsf{T}}\mathbf{M}_{S}\mathbf{p} = \mathbf{b}(u)^{\mathsf{T}}\mathbf{p}$



Blending Functions

$$\mathbf{b}(u) = \frac{1}{6} \begin{bmatrix} (1-u)^3 \\ 4-6u^2+3u^3 \\ 1+3u+3u^2-3u^2 \\ u^3 \end{bmatrix}$$



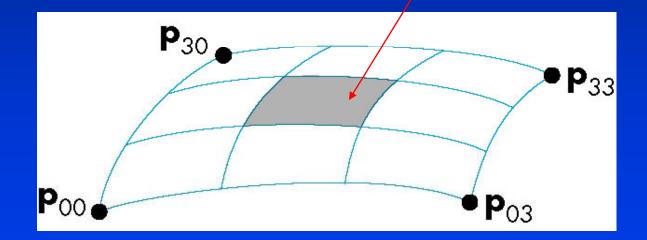


convex hull property

B-Spline Patches

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij} = u^T \mathbf{M}_S \mathbf{P} \mathbf{M}_S^T v$$

defined over only 1/9 of region



Splines and Basis

- If we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segments
- We can rewrite p(u) in terms of the data points as

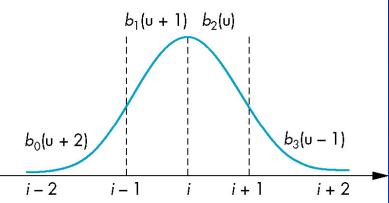
$$p(u) = \sum B_i(u) p_i$$

defining the basis functions $\{B_i(u)\}$

Basis Functions

In terms of the blending polynomials

$$B_{i}(u) = \begin{cases} 0 & u < i - 2 \\ b_{0}(u+2) & i - 2 \le u < i - 1 \\ b_{1}(u+1) & i - 1 \le u < i \\ b_{2}(u) & i \le u < i + 1 \\ b_{3}(u-1) & i + 1 \le u < i + 2 \\ 0 & u \ge i + 2 \end{cases}$$



NURBS

- <u>Nonuniform Rational B-Spline curves and surfaces add</u> a fourth variable w to x,y,z
 - Can interpret as weight to give more importance to some control data
 - Can also interpret as moving to homogeneous coordinate
- Requires a perspective division
- NURBS act correctly for perspective viewing
- Quadrics are a special case of NURBS

What Does OpenGL Support?

- Evaluators: a general mechanism for working with the Bernstein polynomials
 - Can use any degree polynomials
 - Can use in 1-4 dimensions
 - Automatic generation of normals and texture coordinates
 - NURBS supported in GLU
- Quadrics
- GLU and GLUT contain polynomial approximations of quadrics

One-Dimensional Evaluators

- Evaluate a Bernstein polynomial of any degree at a set of specified values
- Can evaluate a variety of variables
- Points along a 2, 3 or 4 dimensional curve
- Colors
- Normals
- Texture Coordinates
- We can set up multiple evaluators that are all evaluated for the same value

Setting Up an Evaluator

what we want to evaluate

max and min of u

1+degree of polynomial

separation between data points

pointer to control data

Each type must be enabled by glEnable(type)

Example

Consider an evaluator for a cubic Bezier curve over (0,1)

point data[]={..........}; * /3d data /*
glMap1f(GL_MAP1_VERTEX_3,0.0,1.0,3,4,data);

cubic

data are 3D vertices

data are arranged as x,y,z,x,y,z..... three floats between data points in array

glEnable(GL_MAP1_VERTEX_3);

Evaluating

- The function glevalCoordlf(u) causes all enabled evaluators to be evaluated for the specified u
 - Can replace glVertex, glNormal, glTexCoord
- The values of u need not be equally spaced

Example

• Consider the previous evaluator that was set up for a cubic Bezier over (0,1)

• Suppose that we want to approximate the curve with a 100 point polyline

glBegin(GL_LINE_STRIP)
for(i=0; i<100; i++)
glEvalCoord1f((float) i/100.0);
glEnd();</pre>

Equally Spaced Points

Rather than use a loop, we can set up an equally spaced mesh (grid) and then evaluate it with one function call

glMapGrid(100, 0.0, 1.0);

sets up 100 equally-spaced points on (0,1)

glEvalMesh1(GL_LINE, 0, 99);

renders lines between adjacent evaluated points from point 0 to point 99

Bezier Surfaces

- Similar procedure to 1D but use 2D evaluators in u and v
- Set up with

glMap2f(type, u_min, umax, u_stride, u_order, v_min, v_max, v_stride, v_order, pointer_to_data)

Evaluate with glEvalCoord2f(u,v)

Example

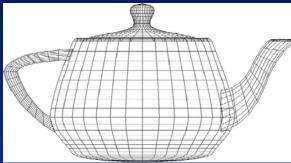
bicubic over $(0,1) \times (0,1)$

Note that in v direction data points are separated by 12 floats since array data is stored by rows

Rendering with Lines

must draw in both directions

```
for(j=0;j<100;j++) {
   glBegin(GL_LINE_STRIP);
    for(i=0;i<100;i++)
      glEvalCoord2f((float) i/100.0, (float) j/100.0);
   glEnd();
glBegin(GL_LINE_STRIP);
   for(i=0;i<100;i++)
      glEvalCoord2f((float) j/100.0, (float) i/100.0);
glEnd();</pre>
```



Rendering with Quadrilaterals

We can form a quad mesh and render with lines

```
for(j=0; j<99; j++) {
  glBegin(GL_QUAD_STRIP);
  for(i=0; i<100; i++) {
    glEvalCoord2f ((float) i/100.0,
        (float) j/100.0);
    glEvalCoord2f ((float)(i+1)/100.0,
        (float)j/100.0);
    }
  glEnd():</pre>
```

Uniform Meshes

 We can form a 2D mesh (grid) in a similar manner to 1D for uniform spacing

glMapGrid2(u_num, u_min, u_max, v_num, v_min, v_max)

 Can evaluate as before with lines or if want filled polygons

glEvalMesh2(GL_FILL, u_start, u_num, v_start, v_num)

Rendering with Lighting

- If we use filled polygons, we have to shade or we will see solid color uniform rendering
- Can specify lights and materials but we need normals
- Let OpenGL find them
 glEnable(GL_AUTO_NORMAL);

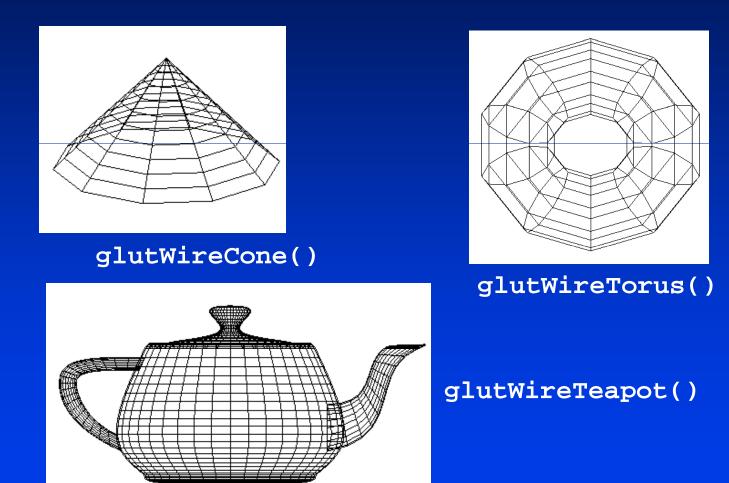
NURBS

- OpenGL supports NURBS surfaces through the GLU library
- Why GLU?
- Can use evaluators in 4D with standard OpenGL library
- However, there are many complexities with NURBS that need a lot of code
- There are five NURBS surface functions plus functions for trimming curves that can remove pieces of a NURBS surface

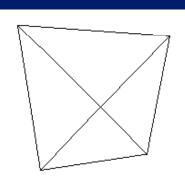
Quadrics

- Quadrics are in both the GLU and GLUT libraries
 - Both use polygonal approximations where the application specifies the resolution
 - Sphere: lines of longitude and lattitude
- GLU: disks, cylinders, spheres
- Can apply transformations to scale, orient, and position
- GLUT: Platonic solids, torus, Utah teapot, cone

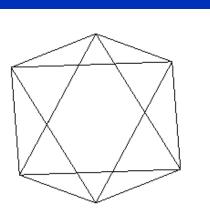
GLUT Objects



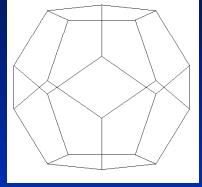
GLUT Platonic Solids



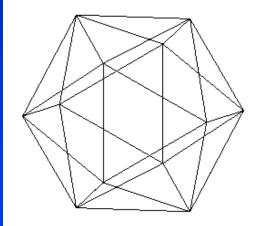
glutWireTetrahedron()



glutWireOctahedron()



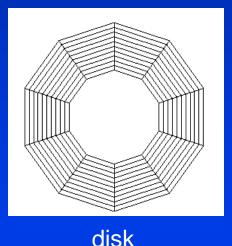
glutWireDodecahedron()

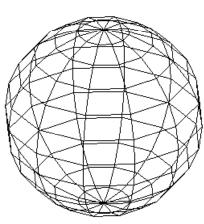


glutWireIcosahedron()

Quadric Objects in GLU

- GLU can automatically generate normals and texture coordinates
- Quadrics are objects that include properties such as how we would like the object to be rendered





sphere

Defining a Cylinder

GLUquadricOBJ *p;

P = gluNewQuadric(); /*set up object */

gluQuadricDrawStyle(GLU_LINE);/*render style*/

gluCylinder(p, BASE_RADIUS, TOP_RADIUS,

BASE_HEIGHT, sections, slices);

