WVirginiaTech = scan

Invent the Future

Parallel Prefix Sum - Scan

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

Objective

» To master parallel Prefix Sum (Scan) algorithms

» Frequently used for parallel work assignment and resource
allocation

» A key primitive in many parallel algorithms to convert serial
computation into parallel computation

» Based on reduction tree and reverse reduction tree

» Reading — Mark Harris, Parallel Prefix Sum with CUDA

» http://developer.download.nvidia.com/compute/cuda/1_1/Website/
projects/scan/doc/scan.pdf

2

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Scan

(Inclusive) Prefix-Sum (Scan) Definition

Definition: The all-prefix-sums operation takes a binary
associative operator ®, and an array of n elements

(X0, X1, oo X1l
and returns the array
[xo (xg®xq), ..., (xg@xy9...@2x_)]

Example: If @ is addition, then the all-prefix-sums operation
onthearray [31 7 0 4 1 6 3],
would return [3 4 11 11 15 16 22 25].

3
Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

Inclusive Scan Application Example

> Assume we have a 100-inch sandwich to feed 10

» We know how many inches each person wants
>[35 2 7 28 4 30 8 1]

» How do we cut the sandwich quickly?
» How much will be left?

» Method 1: cut the sections sequentially: 3 inches first, 5
inches second, 2 inches third, etc.

» Method 2: calculate Prefix scan and cut in parallel
> [3, 8,10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

4

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VlrglnlaTECh Scan

Invent the Future

Typical Applications of Scan

» Scan is a simple and useful parallel building block
» Convert recurrences from sequential :
for (J=1;j<n; Jj++)
out[J] = out[j-1] + £(3);
» into parallel:
forall (j) { temp[j] = £(3) };
scan (out, temp)

» Useful for many parallel algorithms:

*Radix sort *Polynomial evaluation
*Quicksort *Solving recurrences
*String comparison *Tree operations
Lexical analysis *Histograms

«Stream compaction *Etc.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Other Applications

Scan

» Assigning space in farmers market
» Allocating memory to parallel threads

» Allocating memory buffer for
communication channels

> ...

6

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Scan

A Inclusive Sequential Prefix-Sum

Given a sequence [x,, X4, X5, ...]
Calculate output Vo V15 Vs -]

Such that Yo = X
Y1 =X ¥ X,
Y2 = Xp T X1+ X5

Using a recursive definition

Yi=VYi-1TX;

7

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

A Work Efficient C Implementation

y[0] = x[0];
for (i=1l; i1 < Max i; i++)
y[i] = y[1-1] + x[1];

Computationally efficient:

N additions needed for N elements - O(N)

8

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

A Naive Inclusive Parallel Scan

» Assign one thread to calculate each y
element

» Have every thread add up all x elements
needed for the y element

Yo = Xp
Y1 = X T X,
Y2 = Xp T X3F X5

Parallel programming is easy as long as you
don’ t care about performance.

9

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VlrglnlaTECh Scan

Invent the Future

A Slightly Better Parallel Inclusive Scan Algorithm

1. Read input
1003|1704]1|6]3

from device
memory to
shared

Each thread reads one value from the input array memory

in device memory into shared memory array TO.
Thread 0 writes 0 into shared memory array.

10

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

WVirginiaTech = scan
Invent the Future
TO| 3 1 7101 4 1 6|3 1. Read input from
device memory to
%
Stride 1 \M@WW shared memory
2. lterate log(n)
M348/ 7145|719 times: Threads
Stride to n: Add pairs
of elements stride
elements apart.
Double stride at
each iteration. (note:
must double buffer
shared mem arrays)
* Active threads: stride to n-1 (n-stride threads)
lterate #1 | | * Thread j adds elements j and j-stride from TO and
Stride = 1 | | writes result into shared memory buffer T1 (ping-pong) 1

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

W VirginiaTech

Invent the Future

Scan

1. (Read input from
device memory to
shared memory

2. lterate log(n)
times: Threads
Stride to n: Add pairs
of elements stride
elements apart.
Double stride at
each iteration. (note:
must double buffer
shared mem arrays)

1003|1704]1|6]3
Stride 1 \M@WKM
| 2N A 2N 2 2
™M 314|874 |5|7|9
Stride 2 l\ L
¥ A I 2. A’
1003 14 |11 1112]1211 14
* Active threads: stride to n-1 (n-stride threads)
lterate #2 | | * Thread j adds elements j and j-stride from T1 and
Stride = 2 | | writes result into shared memory buffer TO (ping-pong) 12

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

W VirginiaTech

Invent the Future

Scan

1031704163
Stride 1 \M@WW
T34 (8|7 |4 |5|719
Stridezl\ L X
¥ v 3 v 4 VAR
1013 14 (11111121211 (14
_ S~— 7 ¥ ¥ ¥
Stride 4
4 % v 4 v\
T113 14 (111115162225
lterate #3
Stride =4

1. (Read input from
device memory to
shared memory

2. lterate log(n)
times: Threads
Stride to n: Add pairs
of elements stride
elements apart.
Double stride at
each iteration. (note:
must double buffer
shared mem arrays)

3. Write output from
shared memory to
device memory

13

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VlrglnlaTECh Scan

Invent the Future

Work Efficiency Considerations

» The first-attempt Scan executes log(n) parallel
iterations
» The steps do (n-1), (n-2), (n-4),..(n - n/2) adds each
» Total adds: n * log(n) - (n-1) = O(n*log(n)) work

» This scan algorithm is not very work efficient
» Sequential scan algorithm does n adds
» A factor of log(n) hurts: 20x for 10”6 elements!

» A parallel algorithm can be slow when execution
resources are saturated due to low work
efficiency

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ Vil’gil’liaTeCh Scan

Invent the Future

Improving Efficiency

» A common parallel algorithm pattern:
Balanced Trees

» Build a balanced binary tree on the input data and sweep it to
and from the root

» Tree is not an actual data structure, but a concept to determine
what each thread does at each step
» For scan:

» Traverse down from leaves to root building partial sums at
internal nodes in the tree

» Root holds sum of all leaves
» Traverse back up the tree building the scan from the partial sums

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VlrgmlaTech Scan

Invent the Future

Let’ s Look at the Reduction Tree Again

\25

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

16

@ VirginiaTech Scan .
Invent the Future Para"el Scan e RedUCtlon Step

Xo X4 X, X3 X4 Xs Xg X7
Time > Xo. X > X5 X3 > X4 X5 D X X7

> Xo. X3 > X4 X7

‘ —

\

In place calculation

> Xg. X7

Final value after reduce

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

il VlrglnlaTECh Scan _
T Dimentne Fure Inclusive Post Scan Step
Xo | 2Xo X4 X | 2Xo. X3 X4 2 X4 X5 Xe | 2 X0 Xy

> Xo. Xs

Move (add) a critical value to a
central location where it is

needed

18

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

il VlrglnlaTECh Scan _
T Dimentne Fure Inclusive Post Scan Step
Xo | 2Xo X4 X | 2Xo. X3 X | 2 X4 X5 Xe | 2 X0 Xy

T

> Xo. Xs

+ (I.D R
> Xo.Xo > Xo. X4 > Xo. Xe

19

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

il VlrglmaTech

nt the Futur

Scan

Putting it Together

+)\

%

Copyright © 2013 by Yong Cao, Referen

k@ k)\é E\Ef
e ||
[T~

RIS

~

) %B <>+)

cing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

Reduction Step Kernel Code

/] scan_array[2*BLOCK_SIZE] is in shared memory

int stride = 1;
while(stride <= BLOCK_SIZE)
{

int index = (threadldx.x+1)*stride*2 - 1;
if(index < 2*BLOCK_SIZE)
scan_array[index] += scan_array[index-stride];
stride = stride*2;
threadldx.x+1=1, 2, 3, 4....
—syncthreads(); stride =1, index =

21

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

' Virgini

Invent the Future
C C
§+ §+> §+ §
|

‘(i}
IN
™N

I K

C

iaTech scan

Sum of left half

RS

|

\% (\
+)

&

&3

Copyright © 2013 by Y@rg Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

Post Scan Step

int stride = BLOCK_SIZE/2;

while(stride > 0)

{
int index = (threadldx.x+1)*stride*2 - 1;
if((index+stride) < 2*BLOCK_SIZE)
{

scan_array[index+stride] += scan_array[index];

}

stride = stride/2;
__syncthreads();

}

23

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Scan

(Exclusive) Prefix-Sum (Scan) Definition

Definition: The all-prefix-sums operation takes a binary
associative operator ®, and an array of n elements

[Xo, X1, o) X1l
and returns the array

[0, xo, (Xxg@x9), ..., (Xxg@xy @ ... @x.)]
Example: If @ is addition, then the all-prefix-sums operation

on the array 317 04 1 6 3]
would return [0 3 4 11 11 15 16 22].

24

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Why Exclusive Scan

Scan

» To find the beginning address of allocated buffers

» Inclusive and Exclusive scans can be easily derived
from each other; it is a matter of convenience

3170416 3]
Exclusive [0 3 4 11 1115 16 22]

Inclusive [3 411 11 1516 22 25]

25

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

san EXclusive Post Scan Step
(Add-move Operation)

Xo | 2Xo. X4 X2 2 Xo. X3 Xg | XXy X5 X6 0

> Xo. X3

26

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

*r Exclusive Post Scan Step

Xo | 2Xo.Xq X2 | 2 Xo. X3 X | 2 X4 Xs X6 0
hal \tp
2 Xo. X3
¥
) 2Xo. X 2 Xo. X3 2. X0, X5
P P
0 Ag _Zxo..x1 D2 Xo. Xy | 2Xo. X3 [2Xo. X4 |2.X0.Xs 3 2.Xo.Xe

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ Vil’gil’liaTeCh Scan

Invent the Future

Exclusive Post Scan Step

if (threadldx.x==0) scan_array[2*blockDim.x-1] = 0O;
int stride = BLOCK_SIZE;

while(stride > 0)

{
int index = (threadldx.x+1)*stride*2 - 1;
if(index < 2* BLOCK_SIZE)
{

float temp = scan_array[index];
scan_array[index] += scan_array[index-stride];
scan_array[index-stride] = temp;

}

stride = stride / 2;

__syncthreads();

}

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ Vll’glnlaTECh Scan

Invent the Future

Exclusive Scan Example — Reduction Step
T,13|/1]7,0(4(1|6]|3

Assume array is already in shared memory

29

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

Reduction Step (cont.)
TI3131 (19141118

Stride 1 \EE ~ S \EE Iteration 1, n/2 threads

vy
T|3/4l7]7]/4]5]6]09

Each & corresponds
to a single thread.

Iterate log(n) times. Each thread adds value stride elements away to its own value

30

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

Reduction Step (cont.)
TI3131 (19141118

Stride1 & \%9 \EE ~
T3] 4

D
¥
4 i\Gg
Stride 2 ' Iteration 2, n/4 threads

T3 |4 5|6 |14

M VirginiaTech

Invent the Future

<«
[
<P~

N
—
—
N

Each & corresponds
to a single thread.

Iterate log(n) times. Each thread adds value stride elements away to its own value

31

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Scan

Reduction Step (cont.)

T

3

]

[@n"

4

l

Q

N
~

Stride 1 \63 \%9 %B \%
T34 |7 4 6

Stride 2 \-)639 i\-»%
T3 14|77 1] ‘ 4 | 5|06 |14

Stride 4 »%

T

7 |11

4

Iteration log(n), 1 thread

Each & corresponds
to a single thread.

lterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

32

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

M VirginiaTech

Invent the Future

Zero the Last Element

T/3(4,7|11M4]5|6/|0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

33

@ VlrglnlaTECh Scan .
Invent the Future POSt Sca N Step from Partlal S u ms

T/3(4,7|11M14]5|6]|0

34

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VirginiaTech Scan .
Invent the Future POSt Scan Step from Partlal Sums

T[3]4]7]11[4]5]6]0
Stridke4 = ___==== =350 Iteration 1

s ¥ 1 thread

T(3|4|7(0]4]5|6 |11

Each & corresponds
to a single thread.

lterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

35

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

@ VirginiaTech Scan .
Invent the Future POSt Sca n Step from Partlal S u ms

T|3]4]7|[11/4[5[6]0
Stride4 = __-==== >

Y 2
T|3 -9 1486
Stride 2 e 63 o= EE Iteration 2
4

2 threads
T3

1‘ N

O I«
\l

Each & corresponds
to a single thread.

lterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

36

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Scan

Post Scan Step from Partial Sums

T|3|4|7|1114 |5 |6 Q
Stride 4 ——— === @
v ¥

T,314|7 Q 4 1w1
Stride 2) %B :\\ﬁf
T|3 9 { 4‘} 4 *1 6 1*6

ri e > P/ »I = pA N /4
swee >
TI013]14|11|{11]15/16|22

Iteration log(n)
n/2 threads

Each & corresponds
to a single thread.

Total steps: 2 * log(n).
Total work: 2

* (n-1) adds = O(n)

Work Efficient!

Done! We now have a completed scan that we can write out to device memory.

37

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Work Analysis

» The parallel Inclusive Scan executes 2*log(n) parallel iterations
» log(n) in reduction and log(n) in post scan
» The iterations do n/2,n/4,.1, 1,, n/l4, n/2 adds
» Total adds: 2* (n-1) - O(n) work

Scan

» The total number of adds is no more than twice that
done in the efficient sequential algorithm

» The benefit of parallelism can easily overcome the 2X work
when there is sufficient hardware

38

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

M VirginiaTech

Invent the Future

Scan

Working on Arbitrary Length Input

» Build on the scan kernel that handles up to
2*blockDim.x elements

» Assign each section of 2*blockDim elements to a
block

» Have each block write the sum of its section into a
Sum array indexed by blockldx.x

» Run parallel scan on the Sum array

» May need to break down Sum into multiple sections if it is too big
for a block

» Add the scanned Sum array values to the elements of
corresponding sections

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

Scan

W VirginiaTech

Invent the Future

Overall Flow of Complete Scan

| 1 | |
1 | | 1
Scan Block 0 : Scan Block 1 I Scan Block 2 I ScanBlock3 |
| } } |
1 1 1 1

Store Block Sum to Auxiliary Array

Scan Block Sums

Add Scanned Block Sum /to All
Values of Scanned Block i + 1

40

Copyright © 2013 by Yong Cao, Referencing UIUC ECE408/498AL Course Notes

