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K-D Tree Traversal 
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 Locate the primitives that intersect with a
 ray, FAST! (Avoid brute-force approach) 
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 Similarity search or nearest neighbor
 search 

 Applications: 
 Statistics 
 Content-based retrieval 
 Data-mining and Pattern recognition 
 Geographic information system (GIS) 

 where is the closest post office 
 Graphics 
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 Given a query point X. 
 Scan through each point Y 
  Takes O(N) time for each

 query! 

33 Distance Computations	
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 We can speed up the search for the
 nearest neighbor: 
 Examine nearby points first. 
 Ignore any points that are further then the nearest

 point found so far. 
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 k-d tree is a multidimensional binary
 search tree. 

 Recursively partitions points into axis
 aligned boxes. One axis at a time. 
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Pt X Y 

1 0.00 0.00 
2 1.00 4.31 
3 0.13 2.85 
… … … 

We start with a list of n-dimensional points.	
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Pt X Y 

1 0.0
0 

0.0
0 

3 0.1
3 

2.8
5 

… … … 

We can split the points into 2 groups by choosing a
 dimension X and value V and separating the points
 into X > V and X <= V.	



X>.5	



Pt X Y 
2 1.00 4.31 
… … … 

YES	

NO	
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… … … 

We can then consider each group separately and
 possibly split again (along same/different dimension).	
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Pt X Y 

3 0.1
3 

2.8
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… … … 

We can then consider each group separately and
 possibly split again (along same/different dimension).	



X>.5	



Pt X Y 
2 1.00 4.31 
… … … 

YES	

NO	



Pt X Y 

1 0.0
0 

0.0
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… … … 

Y>.1	


NO	

 YES	
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We can keep splitting the points in each set to create a
 tree structure.  Each node with no children (leaf node)
 contains a list of points.	
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We will keep around one additional piece of
 information at each node.  The (tight) bounds of the
 points at or below this node.	
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 Use heuristics to make splitting decisions: 
 Which dimension do we split along? 

 Widest 
 Which value do we split at?  Median of

 value of that split dimension for the
 points. 

 When do we stop?   When there are fewer
 then m points left OR the box has hit some
 minimum width. 
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We traverse the tree looking for the nearest
 neighbor of the query point.	
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Examine nearby points first: Explore the branch of
 the tree that is closest to the query point first.	
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Examine nearby points first: Explore the branch of
 the tree that is closest to the query point first.	
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When we reach a leaf node: compute the distance
 to each point in the node.	
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When we reach a leaf node: compute the distance
 to each point in the node.	
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Then we can backtrack and try the other branch at
 each node visited.	
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Each time a new closest node is found, we can
 update the distance bounds.	
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Using the distance bounds and the bounds of the
 data below each node, we can prune parts of the
 tree that could NOT include the nearest neighbor.	
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Using the distance bounds and the bounds of the
 data below each node, we can prune parts of the
 tree that could NOT include the nearest neighbor.	
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Using the distance bounds and the bounds of the
 data below each node, we can prune parts of the
 tree that could NOT include the nearest neighbor.	
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 Query: given a ray r(t), find the primitives
 that intersected with the ray  
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 Adaptive 
 Can handle the “Teapot in a Stadium” 

 Octree is not. 

 Compact 
 Relatively little memory overhead 
 8 bytes only (function as BSP-tree, not more compact) 

 Cheap Traversal 
 One FP subtract, one FP multiply 
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 Adaptive 
 Compact 
 Cheap traversal 
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 Given: 
 axis-aligned bounding box (“cell”) 
 list of geometric primitives (triangles?) touching

 cell 

 Core operation: 
 pick an axis-aligned plane to split the cell into two

 parts 
 sift geometry into two batches (some redundancy) 
 recurse 
 termination criteria! 
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 Split Axis 
 Round-robin; largest extent 

 Split Location 
 Middle of extent; median of geometry (balanced

 tree) 

 Termination 
 Target # of primitives, limited tree depth 
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 Split Axis 
 Round-robin; largest extent 

 Split Location 
 Middle of extent; median of geometry (balanced

 tree) 

 Termination 
 Target # of primitives, limited tree depth 

 All of these techniques stink. 
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 Split Axis 
 Round-robin; largest extent 

 Split Location 
 Middle of extent; median of geometry (balanced

 tree) 

 Termination 
 Target # of primitives, limited tree depth 

 All of these techniques stink.  Don’t use
 them. 
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 What split do we really want? 
 Clever Idea:  The one that makes ray tracing

 cheap 
 Write down an expression of cost and minimize it 
 Cost Optimization 

 What is the cost of tracing a ray through
 a cell? 

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R) 
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•  Makes the L & R probabilities equal 

•  Pays no attention to the L & R costs 
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•  Makes the L & R costs equal 

•  Pays no attention to the L & R probabilities 
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•  Automatically and rapidly isolates complexity 

•  Produces large chunks of empty space 
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 Need the probabilities 
 Turns out to be proportional to surface area 

 Need the child cell costs 
 Simple triangle count works great (very rough

 approx.) 

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R) 

                = C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R) 
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 When should we stop splitting? 
 Use the cost estimates in your termination criteria 

 Threshold of cost improvement 
 Stretch over multiple levels 

 Threshold of cell size 
 Absolute probability so small there’s no point 
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 Basic build algorithm 
 Pick an axis, or optimize across all three 
 Build a set of “candidates” (split locations) 

 BBox edges or exact triangle intersections 

 Sort them or bin them 
 Walk through candidates or bins to find minimum

 cost split 
 Characteristics you’re looking for 

 “stringy”, depth 50-100, ~2 triangle leaves, big
 empty cells 
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 adaptive 
 build a cost-optimized kD-tree w/ the surface area

 heuristic 

 compact 
 cheap traversal 
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 A kD-tree internal node needs: 
 Am I a leaf? 
 Split axis 
 Split location 
 Pointers to children 
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 kD-Tree node can be packed into 8 bytes 
 Leaf flag + Split axis 

 2 bits 
 Split location 

 32 bit float 

 Always two children, put them side-by-side 
 One 32-bit pointer 
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 kD-Tree node can be packed into 8 bytes 
 Leaf flag + Split axis 

 2 bits 
 Split location 

 32 bit float 

 Always two children, put them side-by-side 
 One 32-bit pointer 

 So close!  Sweep those 2 bits under the
 rug… 
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 kD-Tree node corresponds to an AABB 
 Doesn’t mean it has to *contain* one 

 24 bytes 
 4X explosion (!) 
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 adaptive 
 build a cost-optimized kD-tree w/ the surface area

 heuristic 

 compact 
 use an 8-byte node 
 lay out your memory in a cache-friendly way 

 cheap traversal 
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split 

t_split 
t_min 

t_max 
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t_max 



Acceleration Structure 

Copyright © 2010 by Yong Cao 

split 

t_split 
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Given:  ray P & iV (1/V), t_min, t_max,
 split_location, split_axis!

t_at_split = ( split_location - ray->
P[split_axis] ) * ray_iV[split_axis]!

if t_at_split > t_min!
!need to test against near child!

If t_at_split < t_max!
!need to test against far child!
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 kD-Tree traversal is the most critical
 kernel 
 It happens about a zillion times 
 It’s tiny 
 Sloppy coding will show up 

 Optimize, Optimize, Optimize 
 Remove recursion and minimize stack operations 
 Other standard tuning & tweaking 
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while ( not a leaf )!
!tsplit = ( split_location - ray->P[split_axis] )
 * ray_iV[split_axis]!

!if tsplit <= tmin!
!!continue with far child // hit either far child or none 
!if tsplit >= tmax!
!!continue with near child     // hit near child only 
 // hit both children 
!push (far child, tsplit, tmax) onto stack!
!continue with (near child, tmin, tsplit)!
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 Slides from Siggraph 2005 course on  
“Ray Tracing Performance” by Gordon Stoll 

 Slides from  
“KD-Tree Acceleration Structures for a GPU
 Raytracer” by Tim Foley and Jeremy Sugerman 


