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Acceleration Structure for Ray Tracing

K-D Tree Traversal
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Motivation

» Locate the primitives that intersect with a
ray, FAST! (Avoid brute-force approach)
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Background

» Similarity search or nearest neighbor
search

» Applications:

» Statistics

» Content-based retrieval

» Data-mining and Pattern recognition
» Geographic information system (GIS)

» where is the closest post office

» Graphics
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Naive Approach

» Given a query point X. e @ .

» Scan through each point Y X%

» Takes O(N) time for each 3 ’
query!

33 Distance Computations
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Acceleration: Spatial Index Structure

» We can speed up the search for the
nearest neighbor:
» Examine nearby points first.

» Ignore any points that are further then the nearest
point found so far.
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K-D Tree

> k-d tree Is a multidimensional binary
search tree.

» Recursively partitions points into axis
aligned boxes. One axis at a time.
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Acceleration Structure

KD-Tree Construction
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We start with a list of n-dimensional points.
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KD-Tree Construction
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We can split the points into 2 groups by choosing a
dimension X and value V and separating the points
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KD-Tree Construction
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We can then consider each group separately and
possibly split again (along same/different dimension).
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KD-Tree Construction

Copyright © 2010 by Yong Cao

.® o NO \YES
. . t . Pt | X | Y
o0 o ° 2 |1.00 | 4.31

[ ] ® ® NO
o o
®

Jo o Pt | X | Y [|Pt| X |Y

®e ° : ° 0.1 | 2.8 0.0 | 0.0

13| s5|[1Y 0] o

We can then consider each group separately and

possibly split again (along same/different dimension).
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KD-Tree Construction
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We can keep splitting the points in each set to create a
tree structure. Each node with no children (leaf node)
contains a list of points.
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KD-Tree Construction

Acceleration Structure
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We will keep around one additional piece of
information at each node. The (tight) bounds of the
points at or below this node.
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KD-Tree Construction

Acceleration Structure

» Use heuristics to make splitting decisions:

» Which dimension do we split along?
Widest

» Which value do we split at? Median of
value of that split dimension for the
points.

» When do we stop? When there are fewer
then m points left OR the box has hit some
minimum width.
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Nearest Neighbor with KD Trees
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We traverse the tree looking for the nearest
neighbor of the query point.
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Nearest Neighbor with KD Trees
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Examine nearby points first: Explore the branch of
the tree that 1s closest to the query point first.
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Nearest Neighbor with KD Trees
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Examine nearby points first: Explore the branch of
the tree that 1s closest to the query point first.
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Nearest Neighbor with KD Trees
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When we reach a leat node: compute the distance
to each point in the node.
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Acceleration Structure

Nearest Neighbor with KD Trees
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When we reach a leat node: compute the distance
to each point in the node.
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Nearest Neighbor with KD Trees
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Acceleration Structure
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Then we can backtrack and try the other branch at
each node visited.
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Nearest Neighbor with KD Trees
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Each time a new closest node 1s found, we can
update the distance bounds.
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Acceleration Structure

Nearest Neighbor with KD Trees
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Using the distance bounds and the bounds of t
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data below each node, we can prune parts of t
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tree that could NOT include the nearest neigh!

DOT.
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Acceleration Structure

Nearest Neighbor with KD Trees

f L‘ 1 5‘3?;% 5%?\0

Using the distance bounds and the bounds of t
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data below each node, we can prune parts of t
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tree that could NOT include the nearest neigh!

DOT.
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Nearest Neighbor with KD Trees

Acceleration Structure

e

Using the distance bounds and the bounds of t
data below each node, we can prune parts of t
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tree that could NOT include the nearest neigh
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KD-Tree in Ray Tracing

» Query: given a ray r(t), find the primitives
that intersected with the ray
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KD-Tree in Ray Tracing

tmax
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KD-Tree in Ray Tracing

tmax
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KD-Tree Traversal

Acceleration Structure
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KD-Tree Traversal
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KD-Tree Traversal
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Acceleration Structure

KD-Tree Traversal
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Advantages of kD-Trees

» Adaptive

» Can handle the “Teapot in a Stadium”
» QOctree is not.

» Compact
» Relatively little memory overhead
» 8 bytes only (function as BSP-tree, not more compact)

» Cheap Traversal
» One FP subtract, one FP multiply
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Fast Ray Tracing w/ kD-Trees

Acceleration Structure

» Adaptive
» Compact
» Cheap traversal
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Building kD-trees

» Given:

» axis-aligned bounding box (“cell”)
> list of geometric primitives (triangles?) touching
cell
» Core operation:

» pick an axis-aligned plane to split the cell into two
parts

» sift geometry into two batches (some redundancy)
» recurse
» termination criteria!
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“Intuitive” kD-Tree Building

> Split Axis
» Round-robin; largest extent

» Split Location

» Middle of extent; median of geometry (balanced
tree)

» Termination
» Target # of primitives, limited tree depth
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“Hack” kD-Tree Building

> Split Axis
» Round-robin; largest extent

» Split Location

» Middle of extent; median of geometry (balanced
tree)

» Termination
» Target # of primitives, limited tree depth

> All of these techniques stink.
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“Hack” kD-Tree Building

> Split Axis
» Round-robin; largest extent

» Split Location

» Middle of extent; median of geometry (balanced
tree)

» Termination
» Target # of primitives, limited tree depth

» All of these techniques stink. Don’t use
them.
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Building good kD-trees

» What split do we really want?

» Clever Idea: The one that makes ray tracing
cheap

» Write down an expression of cost and minimize it
» Cost Optimization

» What is the cost of tracing a ray through
a cell?

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)
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Splitting with Cost in Mind

A
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Split in the middle

Acceleration Structure

A

Makes the L & R probabilities equal

Pays no attention to the L & R costs
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Split at the Median

Acceleration Structure

i
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5

Pays no attention to the L & R probabilities

Makes the L & R costs equal
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Cost-Optimized Split

A

Automatically and rapidly isolates complexity

Produces large chunks of empty space
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Building good kD-trees

> Need the probabilities

» Turns out to be proportional to surface area

> Need the child cell costs

» Simple triangle count works great (very rough
approx.)

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)
= C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)
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Termination Criteria

Acceleration Structure

» When should we stop splitting?

» Use the cost estimates in your termination criteria

» Threshold of cost improvement
» Stretch over multiple levels

» Threshold of cell size
» Absolute probability so small there’s no point

Copyright © 2010 by Yong Cao



@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Building good kD-trees

» Basic build algorithm

» Pick an axis, or optimize across all three

» Build a set of “candidates” (split locations)
» BBox edges or exact triangle intersections

» Sort them or bin them

» Walk through candidates or bins to find minimum
cost split

» Characteristics you’re looking for

» “stringy”, depth 50-100, ~2 triangle leaves, big
empty cells
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Fast Ray Tracing w/ kD-Trees

» adaptive

» build a cost-optimized kD-tree w/ the surface area
heuristic

» compact
» cheap traversal
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What’s in a node?

» A kKD-tree internal node needs:
» Am | a leaf?
» Split axis
» Split location
» Pointers to children
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Compact (8-byte) nodes

» kD-Tree node can be packed into 8 bytes

» Leaf flag + Split axis
» 2 bits

» Split location
» 32 bit float

» Always two children, put them side-by-side
» One 32-bit pointer
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Acceleration Structure

Compact (8-byte) nodes

» kD-Tree node can be packed into 8 bytes

» Leaf flag + Split axis
» 2 bits

» Split location
» 32 bit float

» Always two children, put them side-by-side
» One 32-bit pointer

» So close! Sweep those 2 bits under the
rug...
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No Bounding Box!

» kD-Tree node corresponds to an AABB

» Doesn’t mean it has to *contain™ one
» 24 bytes
» 4X explosion (!)
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Fast Ray Tracing w/ kD-Trees

» adaptive

» build a cost-optimized kD-tree w/ the surface area
heuristic

» compact
» use an 8-byte node
» lay out your memory in a cache-friendly way

» cheap traversal
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kD-Tree Traversal Step

t min

split
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kD-Tree Traversal Step

split
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kD-Tree Traversal Step

A/%t_v split
t max

t min

split
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kD-Tree Traversal Step

Given: ray P & iv (1/Vv), t min, t max,
split location, split axis

t _at split = ( split_ location - ray->
P[split axis] ) * ray iV[split axis]

if t _at _split > t min

need to test against near child
If t at split < t_max

need to test against far child
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Optimize Your Inner Loop

» kD-Tree traversal is the most critical
kernel
» It happens about a zillion times
> It's tiny
» Sloppy coding will show up

» Optimize, Optimize, Optimize
» Remove recursion and minimize stack operations
» Other standard tuning & tweaking
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kD-Tree Traversal

while ( not a leaf )

tip1ie = ( split_location - ray->P[split_axis] )
* ray iV[split_axis]
if tsplit <= tmin
continue with far child // hit either far child or none
if tsplit >= tmax
continue with near child // hit near child only

/1 hit both children
push (far child, t_,;., t,,,) onto stack

continue with (near child, t,;,, tg ;)
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Reference

» Slides from Siggraph 2005 course on
“Ray Tracing Performance” by Gordon Stoll

» Slides from
“KD-Tree Acceleration Structures for a GPU
Raytracer” by Tim Foley and Jeremy Sugerman
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