% Vll’glnlaTeCh Acceleration Structure

Invent the Future

Acceleration Structure for Ray Tracing

K-D Tree Traversal

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Motivation

» Locate the primitives that intersect with a
ray, FAST! (Avoid brute-force approach)

- A\ ALA

A

A A
A LA

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Background

» Similarity search or nearest neighbor
search

» Applications:

» Statistics

» Content-based retrieval

» Data-mining and Pattern recognition
» Geographic information system (GIS)

» where is the closest post office

» Graphics

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Naive Approach

» Given a query point X. e @ .

» Scan through each point Y X%

» Takes O(N) time for each 3 ’
query!

33 Distance Computations

Copyright © 2010 by Yong Cao

Acceleration Structure

M VirginiaTech

Invent the Future

Acceleration: Spatial Index Structure

» We can speed up the search for the
nearest neighbor:
» Examine nearby points first.

» Ignore any points that are further then the nearest
point found so far.

Copyright © 2010 by Yong Cao

%[I Vll’glnlaTeCh Acceleration Structure

Invent the Future

K-D Tree

> k-d tree Is a multidimensional binary
search tree.

» Recursively partitions points into axis
aligned boxes. One axis at a time.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Acceleration Structure

KD-Tree Construction

° Pt X Y
) 1 | 0.00 | 0.00
- 2 | 1.00 | 4.31
3 | 013]| 2.85
e e
o
e

Copyright © 2010 by Yong Cao

We start with a list of n-dimensional points.

Acceleration Structure

MVirginiaTech

Invent the Future

KD-Tree Construction

NO /@\YES

Pt

X

2

1.00

4.31

% o °
° : o°
°

° o o
o0 o o Pt X Y
° ° ° 1 0.0 | 0.0
o R o 0 0
ole® ° 01| 2.8
°,. o: ° 3 3 5

mto X>Vand X <= V.

Copyright © 2010 by Yong Cao

We can split the points into 2 groups by choosing a
dimension X and value V and separating the points

Acceleration Structure

M VirginiaTech

Invent the Future

KD-Tree Construction

NO /@\YES

Pt

X

2

1.00

4.31

% o ©
o : o°
o

® o o
o0 o o Pt X Y
° o o 1 0.0 | 0.0
o R o 0 0
ols® . 01| 2.8
°, o: o 3 3 5

Copyright © 2010 by Yong Cao

We can then consider each group separately and
possibly split again (along same/different dimension).

Acceleration Structure

M VirginiaTech

Invent the Future

KD-Tree Construction

Copyright © 2010 by Yong Cao

.® o NO \YES
. . t . Pt | X | Y
o0 o ° 2 |1.00 | 4.31

[] ® ® NO
o o
®

Jo o Pt | X | Y [|Pt| X |Y

®e ° : ° 0.1 | 2.8 0.0 | 0.0

13| s5|[1Y 0] o

We can then consider each group separately and

possibly split again (along same/different dimension).

M VirginiaTech

Invent the Future

Acceleration Structure

KD-Tree Construction

o0 o O O
T I é/\b o’/ \o
. . :.:_. . iR d/d/\b\b d/d/\b\b of d:b\b

We can keep splitting the points in each set to create a
tree structure. Each node with no children (leaf node)
contains a list of points.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

KD-Tree Construction

Acceleration Structure

NS N
R AN AN

" T o E0 40 &b
S o I RN R MRS

We will keep around one additional piece of
information at each node. The (tight) bounds of the
points at or below this node.

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

KD-Tree Construction

Acceleration Structure

» Use heuristics to make splitting decisions:

» Which dimension do we split along?
Widest

» Which value do we split at? Median of
value of that split dimension for the
points.

» When do we stop? When there are fewer
then m points left OR the box has hit some
minimum width.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Acceleration Structure

Nearest Neighbor with KD Trees

S VN
<] é/\b /\

N oo dp’\b\b cs’d/\b\b of éjb\b

We traverse the tree looking for the nearest
neighbor of the query point.

Copyright © 2010 by Yong Cao

Acceleration Structure

M VirginiaTech

Invent the Future

Nearest Neighbor with KD Trees

'R é/\b o’/\o

L . oo é/\és’d/\b\b cs’éjb\b

Examine nearby points first: Explore the branch of
the tree that 1s closest to the query point first.

Copyright © 2010 by Yong Cao

Acceleration Structure

M VirginiaTech

Invent the Future

Nearest Neighbor with KD Trees

T /\
S I @/\@ /\O

N oo (5/@’\@\6 (5/@’\@\6 of éjb\b

Examine nearby points first: Explore the branch of
the tree that 1s closest to the query point first.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Acceleration Structure

Nearest Neighbor with KD Trees

N N
e B RN I SN N

° Q
Lo L] ORARA EN

When we reach a leat node: compute the distance
to each point in the node.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Acceleration Structure

Nearest Neighbor with KD Trees

N e AN
fe s D

° Q
Lo L] ORARAYEA

When we reach a leat node: compute the distance
to each point in the node.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Nearest Neighbor with KD Trees

@5 N
f T O N

Acceleration Structure

N of \bcs’d/\b\bcs’d/\b\b d’E

Then we can backtrack and try the other branch at
each node visited.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Acceleration Structure

Nearest Neighbor with KD Trees

S SN N

L . oo dp’\b\b cs’d/\b\b of @\b\b

Each time a new closest node 1s found, we can
update the distance bounds.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Acceleration Structure

Nearest Neighbor with KD Trees

< . *] ° é/\b /\

Using the distance bounds and the bounds of t

Copyright © 2010 by Yong Cao

data below each node, we can prune parts of t

L . oo (5/@’\@\6 (5/@’\@\6 of @’\b|‘§|

1C
1C

tree that could NOT include the nearest neigh!

DOT.

M VirginiaTech

Invent the Future

Acceleration Structure

Nearest Neighbor with KD Trees

f L‘ 1 5‘3?;% 5%?\0

Using the distance bounds and the bounds of t

Copyright © 2010 by Yong Cao

data below each node, we can prune parts of t

BB O | &

1C
1C

tree that could NOT include the nearest neigh!

DOT.

M VirginiaTech

Invent the Future

Nearest Neighbor with KD Trees

Acceleration Structure

e

Using the distance bounds and the bounds of t
data below each node, we can prune parts of t

S b

1C
1C

tree that could NOT include the nearest neigh

Copyright © 2010 by Yong Cao

DOT.

%EI VlrglnlaTECh Acceleration Structure

Invent the Future

KD-Tree in Ray Tracing

» Query: given a ray r(t), find the primitives
that intersected with the ray

Copyright © 2010 by Yong Cao

Acceleration Structure

MVirginiaTech

Invent the Future

KD-Tree in Ray Tracing

tmax

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

KD-Tree in Ray Tracing

tmax

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

KD-Tree Traversal

Acceleration Structure

I
©.
A
© @

N 4

Copyright © 2010 by Yong Cao

Acceleration Structure

MVirginiaTech

Invent the Future

KD-Tree Traversal

Copyright © 2010 by Yong Cao

Acceleration Structure

MVirginiaTech

Invent the Future

KD-Tree Traversal

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Acceleration Structure

KD-Tree Traversal

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Advantages of kD-Trees

» Adaptive

» Can handle the “Teapot in a Stadium”
» QOctree is not.

» Compact
» Relatively little memory overhead
» 8 bytes only (function as BSP-tree, not more compact)

» Cheap Traversal
» One FP subtract, one FP multiply

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Fast Ray Tracing w/ kD-Trees

Acceleration Structure

» Adaptive
» Compact
» Cheap traversal

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Building kD-trees

» Given:

» axis-aligned bounding box (“cell”)
> list of geometric primitives (triangles?) touching
cell
» Core operation:

» pick an axis-aligned plane to split the cell into two
parts

» sift geometry into two batches (some redundancy)
» recurse
» termination criteria!

Copyright © 2010 by Yong Cao

@ VlrglnlaTECh Acceleration Structure

Invent the Future

“Intuitive” kD-Tree Building

> Split Axis
» Round-robin; largest extent

» Split Location

» Middle of extent; median of geometry (balanced
tree)

» Termination
» Target # of primitives, limited tree depth

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

“Hack” kD-Tree Building

> Split Axis
» Round-robin; largest extent

» Split Location

» Middle of extent; median of geometry (balanced
tree)

» Termination
» Target # of primitives, limited tree depth

> All of these techniques stink.

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

“Hack” kD-Tree Building

> Split Axis
» Round-robin; largest extent

» Split Location

» Middle of extent; median of geometry (balanced
tree)

» Termination
» Target # of primitives, limited tree depth

» All of these techniques stink. Don’t use
them.

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Building good kD-trees

» What split do we really want?

» Clever Idea: The one that makes ray tracing
cheap

» Write down an expression of cost and minimize it
» Cost Optimization

» What is the cost of tracing a ray through
a cell?

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Copyright © 2010 by Yong Cao

Acceleration Structure

M VirginiaTech

Invent the Future

Splitting with Cost in Mind

A

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Split in the middle

Acceleration Structure

A

Makes the L & R probabilities equal

Pays no attention to the L & R costs

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Split at the Median

Acceleration Structure

i
A R

5

Pays no attention to the L & R probabilities

Makes the L & R costs equal

Copyright © 2010 by Yong Cao

Acceleration Structure

MVirginiaTech

Invent the Future

Cost-Optimized Split

A

Automatically and rapidly isolates complexity

Produces large chunks of empty space

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Building good kD-trees

> Need the probabilities

» Turns out to be proportional to surface area

> Need the child cell costs

» Simple triangle count works great (very rough
approx.)

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)
= C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Termination Criteria

Acceleration Structure

» When should we stop splitting?

» Use the cost estimates in your termination criteria

» Threshold of cost improvement
» Stretch over multiple levels

» Threshold of cell size
» Absolute probability so small there’s no point

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

Building good kD-trees

» Basic build algorithm

» Pick an axis, or optimize across all three

» Build a set of “candidates” (split locations)
» BBox edges or exact triangle intersections

» Sort them or bin them

» Walk through candidates or bins to find minimum
cost split

» Characteristics you’re looking for

» “stringy”, depth 50-100, ~2 triangle leaves, big
empty cells

Copyright © 2010 by Yong Cao

@ VlrglniaTeCh Acceleration Structure

Invent the Future

Fast Ray Tracing w/ kD-Trees

» adaptive

» build a cost-optimized kD-tree w/ the surface area
heuristic

» compact
» cheap traversal

Copyright © 2010 by Yong Cao

% VlrglniaTECh Acceleration Structure

Invent the Future

What’s in a node?

» A kKD-tree internal node needs:
» Am | a leaf?
» Split axis
» Split location
» Pointers to children

Copyright © 2010 by Yong Cao

Acceleration Structure

M VirginiaTech

Invent the Future

Compact (8-byte) nodes

» kD-Tree node can be packed into 8 bytes

» Leaf flag + Split axis
» 2 bits

» Split location
» 32 bit float

» Always two children, put them side-by-side
» One 32-bit pointer

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Acceleration Structure

Compact (8-byte) nodes

» kD-Tree node can be packed into 8 bytes

» Leaf flag + Split axis
» 2 bits

» Split location
» 32 bit float

» Always two children, put them side-by-side
» One 32-bit pointer

» So close! Sweep those 2 bits under the
rug...

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

No Bounding Box!

» kD-Tree node corresponds to an AABB

» Doesn’t mean it has to *contain™ one
» 24 bytes
» 4X explosion (!)

Copyright © 2010 by Yong Cao

% VlrglniaTECh Acceleration Structure

Invent the Future

Fast Ray Tracing w/ kD-Trees

» adaptive

» build a cost-optimized kD-tree w/ the surface area
heuristic

» compact
» use an 8-byte node
» lay out your memory in a cache-friendly way

» cheap traversal

Copyright © 2010 by Yong Cao

% VlrglniaTeCh Acceleration Structure

Invent the Future

kD-Tree Traversal Step

t min

split

Copyright © 2010 by Yong Cao

% VlrglniaTeCh Acceleration Structure

Invent the Future

kD-Tree Traversal Step

split

Copyright © 2010 by Yong Cao

% VlrglniaTeCh Acceleration Structure

Invent the Future

kD-Tree Traversal Step

A/%t_v split
t max

t min

split

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

kD-Tree Traversal Step

Given: ray P & iv (1/Vv), t min, t max,
split location, split axis

t _at split = (split_ location - ray->
P[split axis]) * ray iV[split axis]

if t _at _split > t min

need to test against near child
If t at split < t_max

need to test against far child

Copyright © 2010 by Yong Cao

Acceleration Structure

MVirginiaTech

Invent the Future

Optimize Your Inner Loop

» kD-Tree traversal is the most critical
kernel
» It happens about a zillion times
> It's tiny
» Sloppy coding will show up

» Optimize, Optimize, Optimize
» Remove recursion and minimize stack operations
» Other standard tuning & tweaking

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Acceleration Structure

Invent the Future

kD-Tree Traversal

while (not a leaf)

tip1ie = (split_location - ray->P[split_axis])
* ray iV[split_axis]
if tsplit <= tmin
continue with far child // hit either far child or none
if tsplit >= tmax
continue with near child // hit near child only

/1 hit both children
push (far child, t_,;., t,,,) onto stack

continue with (near child, t,;,, tg ;)

Copyright © 2010 by Yong Cao

%[I Vll’glnlaTeCh Acceleration Structure

Invent the Future

Reference

» Slides from Siggraph 2005 course on
“Ray Tracing Performance” by Gordon Stoll

» Slides from
“KD-Tree Acceleration Structures for a GPU
Raytracer” by Tim Foley and Jeremy Sugerman

Copyright © 2010 by Yong Cao

