
Acceleration Structure

Copyright © 2010 by Yong Cao

K-D Tree Traversal

Acceleration Structure

Copyright © 2010 by Yong Cao

 Locate the primitives that intersect with a
 ray, FAST! (Avoid brute-force approach)

Acceleration Structure

Copyright © 2010 by Yong Cao

 Similarity search or nearest neighbor
 search

 Applications:
 Statistics
 Content-based retrieval
 Data-mining and Pattern recognition
 Geographic information system (GIS)

 where is the closest post office
 Graphics

Acceleration Structure

Copyright © 2010 by Yong Cao

 Given a query point X.
 Scan through each point Y
  Takes O(N) time for each

 query!

33 Distance Computations	

Acceleration Structure

Copyright © 2010 by Yong Cao

 We can speed up the search for the
 nearest neighbor:
 Examine nearby points first.
 Ignore any points that are further then the nearest

 point found so far.

Acceleration Structure

Copyright © 2010 by Yong Cao

 k-d tree is a multidimensional binary
 search tree.

 Recursively partitions points into axis
 aligned boxes. One axis at a time.

Acceleration Structure

Copyright © 2010 by Yong Cao

Pt X Y

1 0.00 0.00
2 1.00 4.31
3 0.13 2.85
… … …

We start with a list of n-dimensional points.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Pt X Y

1 0.0
0

0.0
0

3 0.1
3

2.8
5

… … …

We can split the points into 2 groups by choosing a
 dimension X and value V and separating the points
 into X > V and X <= V.	

X>.5	

Pt X Y
2 1.00 4.31
… … …

YES	

NO	

Acceleration Structure

Copyright © 2010 by Yong Cao

Pt X Y

1 0.0
0

0.0
0

3 0.1
3

2.8
5

… … …

We can then consider each group separately and
 possibly split again (along same/different dimension).	

X>.5	

Pt X Y
2 1.00 4.31
… … …

YES	

NO	

Acceleration Structure

Copyright © 2010 by Yong Cao

Pt X Y

3 0.1
3

2.8
5

… … …

We can then consider each group separately and
 possibly split again (along same/different dimension).	

X>.5	

Pt X Y
2 1.00 4.31
… … …

YES	

NO	

Pt X Y

1 0.0
0

0.0
0

… … …

Y>.1	

NO	

 YES	

Acceleration Structure

Copyright © 2010 by Yong Cao

We can keep splitting the points in each set to create a
 tree structure. Each node with no children (leaf node)
 contains a list of points.	

Acceleration Structure

Copyright © 2010 by Yong Cao

We will keep around one additional piece of
 information at each node. The (tight) bounds of the
 points at or below this node.	

Acceleration Structure

Copyright © 2010 by Yong Cao

 Use heuristics to make splitting decisions:
 Which dimension do we split along?

 Widest
 Which value do we split at? Median of

 value of that split dimension for the
 points.

 When do we stop? When there are fewer
 then m points left OR the box has hit some
 minimum width.

Acceleration Structure

Copyright © 2010 by Yong Cao

We traverse the tree looking for the nearest
 neighbor of the query point.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Examine nearby points first: Explore the branch of
 the tree that is closest to the query point first.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Examine nearby points first: Explore the branch of
 the tree that is closest to the query point first.	

Acceleration Structure

Copyright © 2010 by Yong Cao

When we reach a leaf node: compute the distance
 to each point in the node.	

Acceleration Structure

Copyright © 2010 by Yong Cao

When we reach a leaf node: compute the distance
 to each point in the node.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Then we can backtrack and try the other branch at
 each node visited.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Each time a new closest node is found, we can
 update the distance bounds.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Using the distance bounds and the bounds of the
 data below each node, we can prune parts of the
 tree that could NOT include the nearest neighbor.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Using the distance bounds and the bounds of the
 data below each node, we can prune parts of the
 tree that could NOT include the nearest neighbor.	

Acceleration Structure

Copyright © 2010 by Yong Cao

Using the distance bounds and the bounds of the
 data below each node, we can prune parts of the
 tree that could NOT include the nearest neighbor.	

Acceleration Structure

Copyright © 2010 by Yong Cao

 Query: given a ray r(t), find the primitives
 that intersected with the ray

Acceleration Structure

Copyright © 2010 by Yong Cao

A

D C

B

X

Y

Z

X

Y Z

A B C D

tmin

tmax

Acceleration Structure

Copyright © 2010 by Yong Cao

A

D C

B

X

Y

Z

X

Y Z

A B C D

tmin

tmax

Acceleration Structure

Copyright © 2010 by Yong Cao

D C

A

B

X

Y

Z

X

Y Z

A B C D

Acceleration Structure

Copyright © 2010 by Yong Cao

D C

A

B

X

Y

Z

X

Y Z

A B C D

Acceleration Structure

Copyright © 2010 by Yong Cao

D C

A

B

X

Y

Z

X

Y Z

A B C D

Acceleration Structure

Copyright © 2010 by Yong Cao

D C

A

B

X

Y

Z

X

Y Z

A B C D

Acceleration Structure

Copyright © 2010 by Yong Cao

 Adaptive
 Can handle the “Teapot in a Stadium”

 Octree is not.

 Compact
 Relatively little memory overhead
 8 bytes only (function as BSP-tree, not more compact)

 Cheap Traversal
 One FP subtract, one FP multiply

Acceleration Structure

Copyright © 2010 by Yong Cao

 Adaptive
 Compact
 Cheap traversal

Acceleration Structure

Copyright © 2010 by Yong Cao

 Given:
 axis-aligned bounding box (“cell”)
 list of geometric primitives (triangles?) touching

 cell

 Core operation:
 pick an axis-aligned plane to split the cell into two

 parts
 sift geometry into two batches (some redundancy)
 recurse
 termination criteria!

Acceleration Structure

Copyright © 2010 by Yong Cao

 Split Axis
 Round-robin; largest extent

 Split Location
 Middle of extent; median of geometry (balanced

 tree)

 Termination
 Target # of primitives, limited tree depth

Acceleration Structure

Copyright © 2010 by Yong Cao

 Split Axis
 Round-robin; largest extent

 Split Location
 Middle of extent; median of geometry (balanced

 tree)

 Termination
 Target # of primitives, limited tree depth

 All of these techniques stink.

Acceleration Structure

Copyright © 2010 by Yong Cao

 Split Axis
 Round-robin; largest extent

 Split Location
 Middle of extent; median of geometry (balanced

 tree)

 Termination
 Target # of primitives, limited tree depth

 All of these techniques stink. Don’t use
 them.

Acceleration Structure

Copyright © 2010 by Yong Cao

 What split do we really want?
 Clever Idea: The one that makes ray tracing

 cheap
 Write down an expression of cost and minimize it
 Cost Optimization

 What is the cost of tracing a ray through
 a cell?

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Acceleration Structure

Copyright © 2010 by Yong Cao

Acceleration Structure

Copyright © 2010 by Yong Cao

•  Makes the L & R probabilities equal

•  Pays no attention to the L & R costs

Acceleration Structure

Copyright © 2010 by Yong Cao

•  Makes the L & R costs equal

•  Pays no attention to the L & R probabilities

Acceleration Structure

Copyright © 2010 by Yong Cao

•  Automatically and rapidly isolates complexity

•  Produces large chunks of empty space

Acceleration Structure

Copyright © 2010 by Yong Cao

 Need the probabilities
 Turns out to be proportional to surface area

 Need the child cell costs
 Simple triangle count works great (very rough

 approx.)

Cost(cell) = C_trav + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

 = C_trav + SA(L) * TriCount(L) + SA(R) * TriCount(R)

Acceleration Structure

Copyright © 2010 by Yong Cao

 When should we stop splitting?
 Use the cost estimates in your termination criteria

 Threshold of cost improvement
 Stretch over multiple levels

 Threshold of cell size
 Absolute probability so small there’s no point

Acceleration Structure

Copyright © 2010 by Yong Cao

 Basic build algorithm
 Pick an axis, or optimize across all three
 Build a set of “candidates” (split locations)

 BBox edges or exact triangle intersections

 Sort them or bin them
 Walk through candidates or bins to find minimum

 cost split
 Characteristics you’re looking for

 “stringy”, depth 50-100, ~2 triangle leaves, big
 empty cells

Acceleration Structure

Copyright © 2010 by Yong Cao

 adaptive
 build a cost-optimized kD-tree w/ the surface area

 heuristic

 compact
 cheap traversal

Acceleration Structure

Copyright © 2010 by Yong Cao

 A kD-tree internal node needs:
 Am I a leaf?
 Split axis
 Split location
 Pointers to children

Acceleration Structure

Copyright © 2010 by Yong Cao

 kD-Tree node can be packed into 8 bytes
 Leaf flag + Split axis

 2 bits
 Split location

 32 bit float

 Always two children, put them side-by-side
 One 32-bit pointer

Acceleration Structure

Copyright © 2010 by Yong Cao

 kD-Tree node can be packed into 8 bytes
 Leaf flag + Split axis

 2 bits
 Split location

 32 bit float

 Always two children, put them side-by-side
 One 32-bit pointer

 So close! Sweep those 2 bits under the
 rug…

Acceleration Structure

Copyright © 2010 by Yong Cao

 kD-Tree node corresponds to an AABB
 Doesn’t mean it has to *contain* one

 24 bytes
 4X explosion (!)

Acceleration Structure

Copyright © 2010 by Yong Cao

 adaptive
 build a cost-optimized kD-tree w/ the surface area

 heuristic

 compact
 use an 8-byte node
 lay out your memory in a cache-friendly way

 cheap traversal

Acceleration Structure

Copyright © 2010 by Yong Cao

split

t_split
t_min

t_max

Acceleration Structure

Copyright © 2010 by Yong Cao

split

t_split t_min

t_max

Acceleration Structure

Copyright © 2010 by Yong Cao

split

t_split

t_min

t_max

Acceleration Structure

Copyright © 2010 by Yong Cao

Given: ray P & iV (1/V), t_min, t_max,
 split_location, split_axis!

t_at_split = (split_location - ray->
P[split_axis]) * ray_iV[split_axis]!

if t_at_split > t_min!
!need to test against near child!

If t_at_split < t_max!
!need to test against far child!

Acceleration Structure

Copyright © 2010 by Yong Cao

 kD-Tree traversal is the most critical
 kernel
 It happens about a zillion times
 It’s tiny
 Sloppy coding will show up

 Optimize, Optimize, Optimize
 Remove recursion and minimize stack operations
 Other standard tuning & tweaking

Acceleration Structure

Copyright © 2010 by Yong Cao

while (not a leaf)!
!tsplit = (split_location - ray->P[split_axis])
 * ray_iV[split_axis]!

!if tsplit <= tmin!
!!continue with far child // hit either far child or none
!if tsplit >= tmax!
!!continue with near child // hit near child only
 // hit both children
!push (far child, tsplit, tmax) onto stack!
!continue with (near child, tmin, tsplit)!

Acceleration Structure

Copyright © 2010 by Yong Cao

 Slides from Siggraph 2005 course on
“Ray Tracing Performance” by Gordon Stoll

 Slides from
“KD-Tree Acceleration Structures for a GPU
 Raytracer” by Tim Foley and Jeremy Sugerman

