
Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

A

D

C
B

X

Y1

X

Y1 Y2

A B C D

tmin

tmax

Y2

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

A

D

C
B

X

Y1

X

Y1 Y2

A B C D

tmin

tmax

Y2

Y2

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

A

D

C
B

X

Y1

X

Y1 Y2

A B C D

tmin

tmax

Y2

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Y

? ?

? ? ? ?

tmin

tmax

Y

A large tree structure change.
A totally new tree!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Solution 1: Rebuild kd-tree each frame
 Rebuild kd-tree in a lazy manner, approximate SAH (Surface

 Area Heuristics) [Hunt et al. 06]
 Can just move objects bounding boxes around and

 transform rays (for hierarchical movement) [Wald et al. 03]
 Motion decomposition, fuzzy kd-trees [Günther et al. 06]

 Solution 2: use different hierarchical
 structure

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Bounding volume hierarchies (BVHs)
  [Wald et al. 06b, Boulos et al. 06, Lauterbach et al. 06]

 Grids
  [Wald et al. 06a]

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Ray Tracing Dynamic Scenes Using BVHs
[Lauterbach et al. 06]

Dinesh Manocha, Christian Lauterbach
University of North Carolina at Chapel Hill

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

  Tree of bounding volumes (sphere, AABB, OBB, k
-DOP, spherical shells, etc.)

 Each bounding volume encloses “nearby”
 primitives

 Parent node primitives are union of children node
 primitives

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Spatial partitioning:
 space is subdivided into disjoint regions (e.g. grid,

 kd-tree, octree, ...)
 Object hierarchy:

 groups or clusters of objects/primitives are
 subdivided (BVH, s-kd-tree)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Implications for ray tracing
 Spatial partitioning: Objects referenced in multiple

 nodes (overlap in object space)
 BVH Hierarchies: Nodes can overlap each other

 (overlap in 3D space)
 Spatial partitioning allows easier front-to

-back ordering

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Widely used for intersection computations
 Ray tracing
 Visibility culling: view frustum and occlusion culling
 Collision and proximity computations
 Other applications

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Pretty simple:
 Start from root
 If ray intersects AABB, try all children, too:

 is inner node: recurse on both children
 is leaf node: intersect with primitive(s)

 Naïve implementation far slower than kd-tree!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Intersection test more costly
 Up to 6 ray-plane intersections for AABB (slabs

 test)
 Just 1 for kd-tree

 No front-to-back ordering
 Cannot stop after finding first hit

 Nodes take more space
 32 bytes vs. 8 bytes

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 AABBs can provide tighter fit automatically
 No empty leafs, tree does not need to be as deep
 Primitives only referenced once
⇒ less nodes in hierarchy

 #nodes known in advance (2n-1)
 (if 1 primitive/leaf)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 AABBs can provide tighter fit automatically
 No empty leafs, tree does not need to be as deep
 Primitives only referenced once
⇒ less nodes in hierarchy

 #nodes known in advance (2n-1)
 (if 1 primitive/leaf)

 Can be updated easily!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 What does updating mean?
 Underlying geometry changes
 Update will ensure correctness of hierarchy

 without rebuilding it
 Should be faster than rebuild

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Post-order traversal of BVH
 Update children's AABB, then update own
 At leaf level, update from primitives
 Also update additional information such as axis

 O(n) time
 Usually a few ms for small scenes
 May become too long for large models!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Quality of BVH may decrease over
 animation
 Update does not change tree topology
 Rebuild may be necessary
 How to detect?

 In worst-case scene:
 Performance dropping an order of magnitude over

 20 animation frames
 Not as bad for normal scenes, though

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Use heuristic to detect degradation
 Assume performance lower when BVHs

 contain lots of empty space:

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 How to measure quality?
 Use ratio of surface area parent to children

 SA(parent) / (SA(child1) + SA(child2))
 Save on rebuild for each node (4 bytes/node)

 On each update: compare to initial value
 Sum up differences and normalize
 If above threshold: initiate rebuild

 ~30-40% work well in practice

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Video

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Ray Tracing Animated Scenes using
 Coherent Grid Traversal

[Wald et al. 06a]

I Wald, T Ize, A Kensler, A Knoll, S Parker
SCI Institute, University of Utah

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 A new traversal techniques for uniform grids
 … that makes packet/frustum traversal

 compatible with grids
 … thus achieves performance competitive with

 fastest kd-trees
 … and which allows for per-frame rebuilds

 (dynamic scenes)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

BVH Octree

Grid Kd-tree
 Of all these, grid is only that is not hierarchical !

 Since 70’ies: Lots of different RT data structures

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid is not hierarchical…
  Much simpler to build (similar to 3D

-rasterization, very fast)
 Build-times in the paper: 2.2M “Soda Hall” in 110 ms

  Ideally suited for handling dynamic scenes
 Full rebuild every frame, no restrictions at all !

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 All of the recent advancements of RT are for kd
-trees !
 Pre-2000: Tie between grids and kd-trees…
  [Wald ’01]: New concept  “coherent ray tracing” (for kd

-tree)
 Trace “packets” of coherent rays  10x faster than single rays

  [Woop ’05]: First RT hardware prototype  RPU (for kd-tree)
  [Reshetov ’05]: New concept  “multilevel ray tracing” (kd

-tree)
 Trace packets using bounding frusta  another 10x faster than

 CRT !

 But: (good) kd-trees are (too) costly to build…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 SIGGRAPH ‘05: Dynamic Scenes huge
 problem
 Ray tracing has become very fast (MLRT:

 ~100fps)
 If ray tracing is to ever replace rasterization, it

 must support dynamic scenes (games…)
 But: All our fast RT algos are for kd-trees…
 … and kd-trees can’t do dynamic scenes …

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 SIGGRAPH ‘05: Dynamic Scenes huge problem
 Since then, lots of research

  Lazy kd-tree construction (Razor [Stoll, Mark ‘06])
  Fast BVH and kd-tree construction (yet unpublished)
 Motion decomposition [Günther et al. ‘06]
 Dynamic BVHs [Wald et al. ‘06, Lauterbach et al. ’06]
 Hybrid BVH/kd-trees [Woop ‘06, Havran ‘06, Wachter ‘06,

 …]
 Coherent Grid Traversal [Wald et al. ’06]

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

  2005: Grid too slow to traverse (vs kd-tree)…
  Fact: Fast RT needs “packets” & “frusta”

 concepts
  Traverse multiple packets over same node of DS

 Rather simple for hierarchical data structures…
  Test both children in turn for overlap w/ packet
  If child overlaps: traverse it, else: skip it.

 (it’s as simple as that)

 … but not for grids

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Packets & grids: “Non-trivial task”
 In which order to test the nodes ? ABCD or

 ABDC ?
 What to do when packet diverges?

 3DDDA etc break in that case…
 Split diverging packet ?

 Quickly degenerates to single-ray
traversal…

 Fix by re-merging packets ?
 Non-trivial & costly …

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 First: Transform all rays into “canonical
 grid space”
 i.e., [0,0,0]-[Nx,Ny,Nz]

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

 Pick “major traversal axis” (e.g., max component of 1st
 ray)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs
 Intersect all cells in given slice

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs
 Intersect all cells in given slice

 Loop: incrementally compute next
slice’s overlap box
 4 additions…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Idea: Consider only frustum, not “set of
 rays”
 Traverse “slice by slice” instead of “cell to cell”
 For each slice, compute frustum/slice overlap

 Float-to-int gives overlapped cell IDs
 Intersect all cells in given slice

 Loop: incrementally compute next
slice’s overlap box
 4 additions…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Expensive setup phase
  Transform rays to canonical grid coordinate system
 Determine major march direction (simple)
 Compute min/max bounding planes (slopes and offsets)
 Compute first and last slice to be traversed (full frustum clip)

 But: Very simple traversal step
 Overlap box update: 4 float additions (1 SIMD instruction)
 Get cell IDs: 4 float-to-int truncations (SIMD…)
  Loop over overlapped cells (avg: 1.5-2 cells per slice)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well  more

 intersections

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well  more

 intersections
 Tris straddle many cells  re-intersection

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well  more

 intersections
 Tris straddle many cells  re-intersection

 First sight: Frustum makes it worse…

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well  more

 intersections
 Tris straddle many cells  re-intersection

 First sight: Frustum makes it worse…
 Rays isec tris outside “their” cells

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 Cannot adapt to geometry as well  more

 intersections
 Tris straddle many cells  re-intersection

 First sight: Frustum makes it worse…
 Rays isec tris outside “their” cells
 Re-isec aggravated by width of frustum

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 First sight: Frustum makes it worse…
 But: Two easy fixes

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 First sight: Frustum makes it worse…
 But: Two easy fixes

 Bad culling  SIMD Frustum culling in
Packet/Tri Isec [Dmitriev et al.] Outside frustum  cull!

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Grid usually less efficient than kd-tree
 First sight: Frustum makes it worse…
 But: Two easy fixes

 Bad culling  SIMD Frustum culling in
Packet/Tri Isec [Dmitriev et al.]

 Re-intersection: Mailboxing [Haines]

Mailbox detects
re-intersection

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Surprise: Mailboxing & Frustum culling
 very effective
 Both standard techniques, both limited success for

 kd-trees
 Grid & Frustum: Exactly counter weak points of

 CGT …
 “Hand”

 Grid w/o FC & MB : 14 M ray-tri isecs
 Grid with FC & MB: .9 M ray-tri isecs (14x less)
 Kd-tree : .85M ray-tri isecs (5% less than grid)

 And: cost indep of #rays  very cheap (amortize)

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Comparison to single-ray grid
 Fast single-ray traverser, macrocell if

 advantageous, …
 Speedup 6.5x to 20.9x, usually ~10x

 Comparison to kd-tree
 To OpenRT: 2x-8x faster (2M Soda Hall: 4.5x)
 To MLRT: ~3x slower (but much less optimized)
 Tests performed on “kd-tree friendly” models

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Build time: Usually affordable even on single
 CPU…

  Traversal results (1024^2, dual 3.2 GHz Xeon PC)
 X/Y: X=raycast only; Y=raytrace+shade+texture+shadows

“Hand”
16K triangles
34.5/15.3 fps

“Poser”
78K triangles
15.8/7.8 fps

“Fairy”
174K triangles

3.4/1.2 fps

“Marbles”
8.8K triangles
57.1/26.2 fps

“Toys”
11K triangles
29.3/10.2 fps

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Comparison to state-of-the-art BVH or kd-tree
 Somewhat harder to code and “get right” than, e.g., BVH
 Usually somewhat slower (~1.5x-3x)
 More susceptible to incoherence & teapot-in-stadium cases

 Pure frustum tech.: Visits all cells in frustum even if not touched
 by any ray!

 BUT:
  It works at all ! (Who’d have thought 12m ago ?)
  ~10x faster than single-ray grid
 Benefits better from additional coherence (4x AA at 2x cost)
  “Maybe” better suited for regular data or special HW (Cell,

 GPUs)
 Most flexible wrt dynamic  no limitation at all

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

 Have developed a new technique that
 Makes grid compatible with packets &

 frusta
 Is competitive with BVHs and kd-trees
 Most general in handling dynamic scenes

Acceleration Structure for Animated Scenes

Copyright © 2010 by Yong Cao

  [Boulos et al. 06]: Solomon Boulos, Dave Edwards, J Dylan Lacewell, Joe Kniss, Jan Kautz, Peter Shirley, and Ingo Wald. Interactive
 Distribution Ray Tracing. Technical Report, SCI Institute, University of Utah, No UUSCI-2006-022, 2006.

  [Günther et al. 06]:Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter Seidel, and Philipp Slusallek. Ray tracing animated scenes
 using motion decomposition. Computer Graphics Forum, 25(3), September 2006 (to appear)

  [Havran et al. 06]: Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. On Fast Construction of Spatial Hierarchies for Ray Tracing.
 Submitted to RT’06, 2006.

  [Lauterbach et al. 06]: Christian Lauterbach, Sung-Eui Yoon, David Tuft, Dinesh Manocha. RT-DEFORM: Interactive Ray Tracing of
 Dynamic Scenes using BVHs. Technical Report TR06-10, University of North Carolina at Chapel Hill, 2006.

  [Mahovsky and Wyvill 04]: Jeffrey Mahovsky, Brian Wyvill. Fast Ray-axis Aligned Bounding Box Overlap Tests with Plücker
 Coordinates. Journal of Graphics Tools, 9(1):35-46, 2004

  [Reshetov et al. 05]: Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing algorithm. ACM Trans. Graph., 24(3)
:1176–1185, 2005.

  [Rubin and Whitted 80]: Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast rendering of complex scenes.
 Computer Graphics, 14(3):110–116, July 1980.

  [Smits98]: Brian Smits. Efficiency issues for ray tracing. Journal of Graphics Tools: JGT, 3(2):1–14, 1998. [Wächter and Keller 06]:
 Carsten Wächter and Andreas Keller. Instant Ray Tracing: The Bounding Interval Hierarchy. Rendering Techniques 2006: Eurographics
 Symposium on Rendering, 2006.

  [Wald et al. 03]: Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed Interactive Ray Tracing of Dynamic Scenes. In
 Proceedings of the IEEE Symposium on Parallel and Large-Data Visualization and Graphics (PVG), 2003.

  [Wald et al. 06a]:Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven Parker. Ray Tracing Animated Scenes using Coherent
 Grid Traversal. In ACM Transaction on Graphics (Proc. SIGGRAPH 2006).

  [Wald et al. 06b]: Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing Deformable Scenes using Dynamic Bounding Volume
 Hierarchies. Technical Report, SCI Institute, University of Utah, No UUSCI-2005-014 (conditionally accepted at ACM Transactions on
 Graphics), 2006.

  [Woop et al. 06]: Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes.
 In Proceedings of Graphics Hardware (to appear), 2006.

  [Hunt et al. 06]: Warren Hunt, William R. Mark and Gordon Stoll, Fast kd-tree Construction with an Adaptive Error-Bounded Heuristic 2006
 IEEE Symposium on Interactive Ray Tracing.

