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A large tree structure change. 
A totally new tree! 
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 Solution 1: Rebuild kd-tree each frame 
 Rebuild kd-tree in a lazy manner, approximate SAH (Surface

 Area Heuristics) [Hunt et al. 06] 
 Can just move objects bounding boxes around and

 transform rays (for hierarchical movement) [Wald et al. 03] 
 Motion decomposition, fuzzy kd-trees [Günther et al. 06] 

 Solution 2: use different hierarchical
 structure 
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 Bounding volume hierarchies (BVHs)  
  [Wald et al. 06b, Boulos et al. 06, Lauterbach et al. 06] 

 Grids  
  [Wald et al. 06a] 
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Ray Tracing Dynamic Scenes Using BVHs 
[Lauterbach et al. 06] 

Dinesh Manocha, Christian Lauterbach 
University of North Carolina at Chapel Hill 
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  Tree of bounding volumes (sphere, AABB, OBB, k
-DOP, spherical shells, etc.) 

 Each bounding volume encloses “nearby”
 primitives 

 Parent node primitives are union of children node
 primitives 
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 Spatial partitioning: 
 space is subdivided into disjoint regions (e.g. grid,

 kd-tree, octree, ...) 
 Object hierarchy: 

 groups or clusters of objects/primitives are
 subdivided (BVH, s-kd-tree) 
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 Implications for ray tracing 
 Spatial partitioning: Objects referenced in multiple

 nodes (overlap in object space) 
 BVH Hierarchies: Nodes can overlap each other

 (overlap in 3D space) 
 Spatial partitioning allows easier front-to

-back ordering 
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 Widely used for intersection computations 
 Ray tracing 
 Visibility culling: view frustum and occlusion culling 
 Collision and proximity computations 
 Other applications 
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 Pretty simple: 
 Start from root 
 If ray intersects AABB, try all children, too: 

 is inner node: recurse on both children 
 is leaf node: intersect with primitive(s) 

 Naïve implementation far slower than kd-tree! 
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 Intersection test more costly 
 Up to 6 ray-plane intersections for AABB (slabs

 test) 
 Just 1 for kd-tree 

 No front-to-back ordering 
 Cannot stop after finding first hit 

 Nodes take more space 
 32 bytes vs. 8 bytes 
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 AABBs can provide tighter fit automatically 
 No empty leafs, tree does not need to be as deep 
 Primitives only referenced once 
⇒ less nodes in hierarchy 

 #nodes known in advance (2n-1) 
 (if 1 primitive/leaf) 
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 AABBs can provide tighter fit automatically 
 No empty leafs, tree does not need to be as deep 
 Primitives only referenced once 
⇒ less nodes in hierarchy 

 #nodes known in advance (2n-1) 
 (if 1 primitive/leaf) 

 Can be updated easily! 
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 What does updating mean? 
 Underlying geometry changes 
 Update will ensure correctness of hierarchy

 without rebuilding it 
 Should be faster than rebuild 
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 Post-order traversal of BVH 
 Update children's AABB, then update own 
 At leaf level, update from primitives 
 Also update additional information such as axis 

 O(n) time 
 Usually a few ms for small scenes 
 May become too long for large models! 
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 Quality of BVH may decrease over
 animation 
 Update does not change tree topology 
 Rebuild may be necessary 
 How to detect? 

 In worst-case scene: 
 Performance dropping an order of magnitude over

 20 animation frames 
 Not as bad for normal scenes, though 
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 Use heuristic to detect degradation 
 Assume performance lower when BVHs

 contain lots of empty space: 
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 How to measure quality? 
 Use ratio of surface area parent to children 

 SA(parent) / ( SA(child1) + SA(child2) ) 
 Save on rebuild for each node (4 bytes/node) 

 On each update: compare to initial value 
 Sum up differences and normalize 
 If above threshold: initiate rebuild 

 ~30-40% work well in practice 
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Video 
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Ray Tracing Animated Scenes using
 Coherent Grid Traversal 

[Wald et al. 06a] 

I Wald, T Ize, A Kensler, A Knoll, S Parker 
SCI Institute, University of Utah 
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 A new traversal techniques for uniform grids 
 … that makes packet/frustum traversal

 compatible with grids 
 … thus achieves performance competitive with

 fastest kd-trees 
 … and which allows for per-frame rebuilds

 (dynamic scenes) 
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 Since 70’ies: Lots of different RT data structures 
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BVH Octree 

Grid Kd-tree 
 Of all these, grid is only that is not hierarchical ! 

 Since 70’ies: Lots of different RT data structures 
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 Grid is not hierarchical… 
  Much simpler to build (similar to 3D

-rasterization, very fast) 
 Build-times in the paper: 2.2M “Soda Hall” in 110 ms 

  Ideally suited for handling dynamic scenes 
 Full rebuild every frame, no restrictions at all ! 
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 All of the recent advancements of RT are for kd
-trees ! 
 Pre-2000: Tie between grids and kd-trees… 
  [Wald ’01]: New concept  “coherent ray tracing” (for kd

-tree) 
 Trace “packets” of coherent rays  10x faster than single rays 

  [Woop ’05]: First RT hardware prototype  RPU (for kd-tree) 
  [Reshetov ’05]: New concept  “multilevel ray tracing” (kd

-tree) 
 Trace packets using bounding frusta  another 10x faster than

 CRT ! 

 But: (good) kd-trees are (too) costly to build… 
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 SIGGRAPH ‘05: Dynamic Scenes huge
 problem 
 Ray tracing has become very fast (MLRT:

 ~100fps) 
 If ray tracing is to ever replace rasterization, it

 must support dynamic scenes (games…) 
 But: All our fast RT algos are for kd-trees… 
 … and kd-trees can’t do dynamic scenes … 
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 SIGGRAPH ‘05: Dynamic Scenes huge problem 
 Since then, lots of research 

  Lazy kd-tree construction (Razor [Stoll, Mark ‘06]) 
  Fast BVH and kd-tree construction (yet unpublished) 
 Motion decomposition [Günther et al. ‘06] 
 Dynamic BVHs [Wald et al. ‘06, Lauterbach et al. ’06] 
 Hybrid BVH/kd-trees [Woop ‘06, Havran ‘06, Wachter ‘06,

 …] 
 Coherent Grid Traversal [Wald et al. ’06] 



Acceleration Structure for Animated Scenes  

Copyright © 2010 by Yong Cao 

  2005: Grid too slow to traverse (vs kd-tree)… 
  Fact: Fast RT needs “packets” & “frusta”

 concepts 
  Traverse multiple packets over same node of DS 

 Rather simple for hierarchical data structures… 
  Test both children in turn for overlap w/ packet 
  If child overlaps: traverse it, else: skip it. 

 (it’s as simple as that) 

 … but not for grids 
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 Packets & grids: “Non-trivial task” 
 In which order to test the nodes ? ABCD or

 ABDC ? 
 What to do when packet diverges? 

 3DDDA etc break in that case… 
 Split diverging packet ? 

 Quickly degenerates to single-ray 
traversal… 

 Fix by re-merging packets ? 
 Non-trivial & costly … 
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 First: Transform all rays into “canonical
 grid space” 
 i.e., [0,0,0]-[Nx,Ny,Nz] 
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 Idea: Consider only frustum, not “set of
 rays” 
 Traverse “slice by slice” instead of “cell to cell”  

 Pick “major traversal axis” (e.g., max component of 1st
 ray) 
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 Loop: incrementally compute next 
slice’s overlap box 
 4 additions… 
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 Idea: Consider only frustum, not “set of
 rays” 
 Traverse “slice by slice” instead of “cell to cell” 
 For each slice, compute frustum/slice overlap 

 Float-to-int gives overlapped cell IDs   
 Intersect all cells in given slice 

 Loop: incrementally compute next 
slice’s overlap box 
 4 additions… 
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 Expensive setup phase 
  Transform rays to canonical grid coordinate system 
 Determine major march direction (simple) 
 Compute min/max bounding planes (slopes and offsets) 
 Compute first and last slice to be traversed (full frustum clip) 

 But: Very simple traversal step 
 Overlap box update: 4 float additions (1 SIMD instruction) 
 Get cell IDs: 4 float-to-int truncations (SIMD…) 
  Loop over overlapped cells (avg: 1.5-2 cells per slice) 
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 Grid usually less efficient than kd-tree 
 Cannot adapt to geometry as well  more

 intersections 
 Tris straddle many cells  re-intersection 

 First sight: Frustum makes it worse… 
 Rays isec tris outside “their” cells 
 Re-isec aggravated by width of frustum 
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 Grid usually less efficient than kd-tree 
 First sight: Frustum makes it worse… 
 But: Two easy fixes 

 Bad culling  SIMD Frustum culling in 
Packet/Tri Isec [Dmitriev et al.] Outside frustum  cull! 
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 Grid usually less efficient than kd-tree 
 First sight: Frustum makes it worse… 
 But: Two easy fixes 

 Bad culling  SIMD Frustum culling in 
Packet/Tri Isec [Dmitriev et al.] 

 Re-intersection: Mailboxing [Haines] 

Mailbox detects 
re-intersection 
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 Surprise: Mailboxing & Frustum culling
 very effective 
 Both standard techniques, both limited success for

 kd-trees 
 Grid & Frustum: Exactly counter weak points of

 CGT … 
 “Hand” 

 Grid w/o FC & MB : 14 M ray-tri isecs 
 Grid with FC & MB:  .9 M ray-tri isecs (14x less) 
 Kd-tree                  : .85M ray-tri isecs (5% less than grid) 

 And: cost indep of #rays  very cheap (amortize) 
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 Comparison to single-ray grid  
 Fast single-ray traverser, macrocell if

 advantageous, … 
 Speedup 6.5x to 20.9x, usually ~10x 

 Comparison to kd-tree  
 To OpenRT: 2x-8x faster (2M Soda Hall: 4.5x) 
 To MLRT: ~3x slower (but much less optimized) 
 Tests performed on “kd-tree friendly” models 
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 Build time: Usually affordable even on single
 CPU… 

  Traversal results (1024^2, dual 3.2 GHz Xeon PC) 
 X/Y: X=raycast only; Y=raytrace+shade+texture+shadows 

“Hand” 
16K triangles 
34.5/15.3 fps 

“Poser” 
78K triangles 
15.8/7.8 fps 

“Fairy” 
174K triangles 

3.4/1.2 fps 

“Marbles” 
8.8K triangles 
57.1/26.2 fps 

“Toys” 
11K triangles 
29.3/10.2 fps 
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 Comparison to state-of-the-art BVH or kd-tree 
 Somewhat harder to code and “get right” than, e.g., BVH 
 Usually somewhat slower (~1.5x-3x) 
 More susceptible to incoherence & teapot-in-stadium cases 

 Pure frustum tech.: Visits all cells in frustum even if not touched
 by any ray!  

 BUT: 
  It works at all ! (Who’d have thought 12m ago ?) 
  ~10x faster than single-ray grid 
 Benefits better from additional coherence (4x AA at 2x cost) 
  “Maybe” better suited for regular data or special HW (Cell,

 GPUs) 
 Most flexible wrt dynamic  no limitation at all 
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 Have developed a new technique that 
 Makes grid compatible with packets &

 frusta 
 Is competitive with BVHs and kd-trees 
 Most general in handling dynamic scenes 
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