% Vll’glnlaTeCh Volume Rendering

Invent the Future

Volume Rendering

Copyright © 2010 by Yong Cao

Volume Rendering

MVirginiaTech

Invent the Future

Application: Medicine

CT Angiography: CT Human Head:
Dept. of Neuroradiology Institute for Vision and Graphics
University of Erlangen, Germany University of Siegen, Germany

Copyright © 2010 by Yong Cao

I;I%\lirg:i_niar]:‘eCh, Volume Rendering

Invent the Future

Application: Archaeology

Hellenic Statue of Isis: Sotades Pygmaios Statue
ARTIS, University of Erlangen- ARTIS, University of Erlangen-
Nuremberg, Germany Nuremberg, Germany

Copyright © 2010 by Yong Cao

%VirginiaTeCh, Volume Rendering

Invent the Future

Application: Material Science

Micro CT, Compound Material,

Material Science Department,
University of Erlangen . .
Hinge Bearing,

Austrian Foundry Research Institute

Copyright © 2010 by Yong Cao

% VlrglniaTECh Volume Rendering

Invent the Future

Application: Material Science

Combustion Simulation,
SciDACC

Turbulence Simulation

Copyright © 2010 by Yong Cao

Volume Rendering

Invent the Future

Volume Data Types

Irregular Structure

*Rigid Grid (Voxel)
*Reconstruction with

*Decomposed into tetrahedra
*Reconstruction with linear

interpolation

trilinear interpolation

MVirginiaTech

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Volume Rendering

Invent the Future

Data Representation (Rigid Grid)

» 3D volume data are represented by a finite number of cross sectional
slices (hence a 3D raster)

»On each volume element (voxel), stores a data value (if it uses only a
single bit, then it is a binary data set. Normally, we see a gray value of 8 to
16 bits on each voxel.)

YAV A AAAeA
yAavA /////,

(L S LS S]]

—

N x 2D arraies 3D array

Copyright © 2010 by Yong Cao

I;I%\lirg:i_niar]:‘eCh, Volume Rendering

Invent the Future

Voxel

A voxel is a data point

at a corner of the cubic cell

The value of a point inside the
cell is determined by interpolation

Copyright © 2010 by Yong Cao

@ VlrglnlaTECh Volume Rendering

Invent the Future

Visualizing Volume Data

» Mapping values to appearance

» A Scalar value mapping to color or opacity

» May emphasize certain value ranges (iso-surface)
or give all ranges equal emphasis in final image
(semi-transparent)

Copyright © 2010 by Yong Cao

@ VlrglnlaTECh Volume Rendering

Invent the Future

Rendering Methods

» Ray Casting

» Image-order accumulation
» Splatting

» Object-order accumulation

> Iso-surface extraction
» Marching cube

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Ray Casting

Volume Rendering

Data Set

Image Plane

Eye

]

Copyright © 2010 by Yong Cao

%EI VlrglnlaTECh Volume Rendering

Invent the Future Data Set

Ray Traversal Schemes

Image Plane

Eye

Intensity
Max

Average

Value

Accumulate

First

Copyright © 2010 by Yong Cao

% VlrglniaTECh Volume Rendering

Invent the Future

Ray Traversal - First

Intensity

A

First

[

Depth

» First: direct iso-surface rendering

Copyright © 2010 by Yong Cao

Volume Rendering

M VirginiaTech

Invent the Future

Ray Traversal - Average

Intensity

Average /\

Depth

* Average: produces basically an X-ray picture

Copyright © 2010 by Yong Cao

% VlrglnlaTeCh Volume Rendering

Invent the Future

Ray Traversal - MIP

Intensity
+ Max

[

Depth

» Max: Maximum Intensity Projection
used for Magnetic Resonance Angiogram

Copyright © 2010 by Yong Cao

@ VlrglniaTECh Volume Rendering

Invent the Future

Ray Traversal - Accumulate

Intensity

A

Accumulat

[

Depth

» Accumulate opacity while compositing colors: make transparent
layers visible!

Copyright © 2010 by Yong Cao

% Vll’glniaTeCh Volume Rendering

Invent the Future

Raycasting

volumetric compositing

e S S
Q@ o"?* [
()Q50¢\0 ® OpaCity
YR S — G N
" \U) e -]
OB O f" o]

1.0

~y

object (, opacity)

Copyright © 2010 by Yong Cao

Volume Rendering

M VirginiaTech

Invent the Future

Raycasting

Interpolation : ”
volumetric compositing

opacity

1.0

~y

object (, opacity)

Copyright © 2010 by Yong Cao

Volume Rendering

M VirginiaTech

Invent the Future

Raycasting

Interpolation

volumetric compositin
kernel P g

opacity a=a ((1-a) + o

object (, opacity)

Copyright © 2010 by Yong Cao

Volume Rendering

M VirginiaTech

Invent the Future

Raycasting

volumetric compositing

opacity

1.0

~y

object (, opacity)

Copyright © 2010 by Yong Cao

Volume Rendering

M VirginiaTech

Invent the Future

Raycasting

volumetric compositing

opacity

1.0

~y

object (, opacity)

Copyright © 2010 by Yong Cao

Volume Rendering

M VirginiaTech

Invent the Future

Raycasting

volumetric compositing

opacity

1.0

~y

object (, opacity)

Copyright © 2010 by Yong Cao

Volume Rendering

M VirginiaTech

Invent the Future

Raycasting

volumetric compositing

opacity

1.0

~y

object (, opacity)

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Raycasting

Volume Rendering

volumetric compositing

opacity

~y

object (, opacity)

Copyright © 2010 by Yong Cao

% VlrglniaTeCh Volume Rendering

Invent the Future

RaycaStl ng If alpha is close enough to 1.0, the color

will not change much. Therefore a
threshold for alpha (the transparency) may
be set, guarantees an early ray
termination when possible.

opacity

~y

object (, opacity)

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Volume Rendering

Invent the Future

Ray Casting - Performance Improvements

» Use of Octrees

» Minimizes the number transparent voxels during the
accumulation, since a group of transparent voxels may be
represented as a single node in the octree.

» More efficient memory usage.

» Interleaving methods

» Sample every two (n) voxels as long as voxels are fully
transparent.

» Sample only Y4 of the points in the image and interpolate -
Faster for interactive mode, but less quality.

» Pyramids, k-d trees and other data-structures.

Copyright © 2010 by Yong Cao

@ Vll’glnlaTeCh Volume Rendering

Invent the Future

Ray Casting - Improving Image Quality

» Multi Cast or Super Sampling:

» Instead of sampling one ray per pixel, sampling 4 rays per
pixel.

» Better image... but four times longer to render.
» Ray subdividing:
» Used with perspective projection. When the rays draw away

from each other, the sampling of the volume is not
complete.

» The solution is to divide the ray when the rays density falls.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Splatting

Volume Rendering

Data Set
Image Plane o §

Eye

<®

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Splatting

Volume Rendering

Data Set

Image Plane

Eye

» Traverse voxels in front to back order
» Traverse each voxel in plane, then move to next plane

» For each voxel, accumulate color and opacity to
each pixel it covers

» Voxel projection covers hexagonal footprint

» Smooth interpolation possible by applying kernel
with fall-off away from sample point

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Volume Rendering

Ray Casting vs. Splatting

» Ray casting » Splatting
» Point samples » Area samples
» Random data access » Ordered data access
» Easy for parallel or » More difficult for

perspective projection perspective projection

Copyright © 2010 by Yong Cao

Volume Rendering

MVirginiaTech

Invent the Future

Shading and Classification

» Row volume data does not include normal or edges
» Edge detection and normal calculation should be done.

» Using
» Marching Cube algorithm
» Gradient estimation

» Classification

» Most volume data is only the density value. Read
colors and transparency are set by classifying the
voxels using some classification algorithms.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Marching Cubes Algorithm

Volume Rendering

» Consists of 3 basic steps:

» Locate the surface corresponding to a user
-specified value.

» Create triangles.
» Calculate normals to the surface at each vertex.

Copyright © 2010 by Yong Cao

W VirginiaTech

Invent the Future

Step 1:Surface Intersection

Volume Rendering

» To locate the surface, it uses a logical cube created
from eight pixels (Four each from 2 adjacent layers):

Slice k+1

User-Specified Value p(i,j,k) >= D

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Step 1: Surface Intersection

Volume Rendering

» Binary vertex assignment: (p (i, j, k) >=TU ? 1: 0)

» Set cube vertex to value of 1 if the data value at that vertex
exceeds (or equals) the value of the surface we are
constructing

» Otherwise, set cube vertex to O
> If a vertex =1 then itis “inside” the surface

> If a vertex =0 then it is “outside”

» Any cube with vertices of both types is
“intersected” by the surface.

Copyright © 2010 by Yong Cao

M VirginiaTech

Invent the Future

Step 2 : Triangulation

Volume Rendering

3 | | | > For each cube, we have 8
° & g N vertices with 2 possible states

- = = = each (inside or outside).
3 1t . e . :
"j’ @ al.\ > This gives us 28 possible
X v e patterns = 256 cases.
Case 4 Case 5 Case 6 Case 7

. e » Enumerate cases to create a

=<Resli 1= g

</ e > Use symmetries to reduce
problem from 256 to 15 cases.

3 ‘.- 3 -—&’1‘\
¢ SRSV ENE

Case 12 Case 13 Case 14

Copyright © 2010 by Yong Cao

W VirginiaTech

Invent the Future

Volume Rendering

Step 2 : Triangulation

» Use vertex bit mask to
create an index for each
case based on the state of
the vertexes.

» Using the index to tell
which edge the surface
intersects, we can then
can linearly interpolate the
surface intersection along
the edge.

v1

Vertices ® Edges

Copyright © 2010 by Yong Cao

W VirginiaTech

Invent the Future

Step 3 : Surface normals

Volume Rendering

» To calculate surface normal, we need to determine gradient
vector, g (derivative of the density function).

» To estimate the gradient vector at the surface of interest, we first
estimate the gradient vectors at the vertices and interpolate the
gradient at the intersection.

» The gradient at cube vertex (i, j, k), is estimated using central
differences along the three coordinate axes by:

- D(@i+1,),k)-D(i-1,], k)
D (i, j, k) is the density at pixel g T A

(i, j) in slice k.

Ax, Ay, Az are lengths of the), k) = Ay
cube edges G,(,j, k)= 2L K+1)-D) k-1)
Az

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Volume Rendering

Step 3 : Surface normals

» Dividing the gradient by its length produces
the unit normal at the vertex required for
rendering.

» Then the algorithm linearly interpolates this
normal to the point of intersection.

Copyright © 2010 by Yong Cao

MVirginiaTech

Invent the Future

Algorithm Summary

Volume Rendering

» Scan 2 slices and create cube

» Calculate index for cube based on vertices

» Use index to lookup list of edges intersected
» Use densities to interpolate edge intersections

» Calculate unit normal at each edge vertex using
central differences. Interpolate normal to each
triangle vertex

» Output the triangle vertices and vertex normals
» March to next position and repeat.

Copyright © 2010 by Yong Cao

