
Volume Rendering

Copyright © 2010 by Yong Cao

Volume Rendering

Copyright © 2010 by Yong Cao

CT Angiography:
Dept. of Neuroradiology

University of Erlangen, Germany

CT Human Head:
Institute for Vision and Graphics
University of Siegen, Germany

Volume Rendering

Copyright © 2010 by Yong Cao

Hellenic Statue of Isis:
ARTIS, University of Erlangen-

Nuremberg, Germany

Sotades Pygmaios Statue
ARTIS, University of Erlangen-

Nuremberg, Germany

Volume Rendering

Copyright © 2010 by Yong Cao

Micro CT, Compound Material,
Material Science Department,

University of Erlangen
Hinge Bearing,

Austrian Foundry Research Institute

Volume Rendering

Copyright © 2010 by Yong Cao

Combustion Simulation,
SciDACC

Computational Fluid Dynamic

Turbulence Simulation

Volume Rendering

Copyright © 2010 by Yong Cao

• Rigid Grid (Voxel)
• Reconstruction with
trilinear interpolation

• Irregular Structure
• Decomposed into tetrahedra
• Reconstruction with linear
interpolation

Volume Rendering

Copyright © 2010 by Yong Cao

 3D volume data are represented by a finite number of cross sectional
 slices (hence a 3D raster)
 On each volume element (voxel), stores a data value (if it uses only a
 single bit, then it is a binary data set. Normally, we see a gray value of 8 to
 16 bits on each voxel.)

N x 2D arraies = 3D array

Volume Rendering

Copyright © 2010 by Yong Cao

A voxel is a cubic cell, which
has a single value cover
the entire cubic region

A voxel is a data point
at a corner of the cubic cell
The value of a point inside the
cell is determined by interpolation

Volume Rendering

Copyright © 2010 by Yong Cao

 Mapping values to appearance
 A Scalar value mapping to color or opacity
 May emphasize certain value ranges (iso-surface)

 or give all ranges equal emphasis in final image
 (semi-transparent)

Volume Rendering

Copyright © 2010 by Yong Cao

 Ray Casting
 Image-order accumulation

 Splatting
 Object-order accumulation

 Iso-surface extraction
 Marching cube

Volume Rendering

Copyright © 2010 by Yong Cao

Volume Rendering

Copyright © 2010 by Yong Cao

Depth

Intensity
Max

Average

Accumulate

First

Va
lu

e

Volume Rendering

Copyright © 2010 by Yong Cao

Depth

Intensity

First

  First: direct iso-surface rendering

Volume Rendering

Copyright © 2010 by Yong Cao

Depth

Intensity

Average

•  Average: produces basically an X-ray picture

Volume Rendering

Copyright © 2010 by Yong Cao

 Max: Maximum Intensity Projection
used for Magnetic Resonance Angiogram

Depth

Intensity
Max

Volume Rendering

Copyright © 2010 by Yong Cao

  Accumulate opacity while compositing colors: make transparent
 layers visible!

Depth

Intensity

Accumulate

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

volumetric compositing

object (color, opacity)

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

Interpolation
kernel

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color c = c s αs(1 - α) + c

opacity α = α s (1 - α) + α

1.0

object (color, opacity)

volumetric compositing
Interpolation

kernel

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

1.0

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

object (color, opacity)

volumetric compositing

Volume Rendering

Copyright © 2010 by Yong Cao

color

opacity

object (color, opacity)

If alpha is close enough to 1.0, the color
will not change much. Therefore a
threshold for alpha (the transparency) may
be set, guarantees an

when possible.

Volume Rendering

Copyright © 2010 by Yong Cao

 Use of Octrees
 Minimizes the number transparent voxels during the

 accumulation, since a group of transparent voxels may be
 represented as a single node in the octree.

 More efficient memory usage.
  Interleaving methods

 Sample every two (n) voxels as long as voxels are fully
 transparent.

 Sample only ¼ of the points in the image and interpolate -
 Faster for interactive mode, but less quality.

 Pyramids, k-d trees and other data-structures.

Volume Rendering

Copyright © 2010 by Yong Cao

 Multi Cast or Super Sampling:
  Instead of sampling one ray per pixel, sampling 4 rays per

 pixel.
 Better image... but four times longer to render.

 Ray subdividing:
 Used with perspective projection. When the rays draw away

 from each other, the sampling of the volume is not
 complete.

  The solution is to divide the ray when the rays density falls.

Volume Rendering

Copyright © 2010 by Yong Cao

Volume Rendering

Copyright © 2010 by Yong Cao

  Traverse voxels in front to back order
  Traverse each voxel in plane, then move to next plane

  For each voxel, accumulate color and opacity to
 each pixel it covers

 Voxel projection covers hexagonal footprint
 Smooth interpolation possible by applying kernel

 with fall-off away from sample point

Volume Rendering

Copyright © 2010 by Yong Cao

 Splatting
 Area samples
 Ordered data access
 More difficult for

 perspective projection

 Ray casting
 Point samples
 Random data access
 Easy for parallel or

 perspective projection

Volume Rendering

Copyright © 2010 by Yong Cao

 Row volume data does not include normal or edges
 Edge detection and normal calculation should be done.
 Using

 Marching Cube algorithm
 Gradient estimation

 Classification
 Most volume data is only the density value. Read

 colors and transparency are set by classifying the
 voxels using some classification algorithms.

Volume Rendering

Copyright © 2010 by Yong Cao

 Consists of 3 basic steps:
 Locate the surface corresponding to a user

-specified value.
 Create triangles.
 Calculate normals to the surface at each vertex.

Volume Rendering

Copyright © 2010 by Yong Cao

  To locate the surface, it uses a logical cube created
 from eight pixels (Four each from 2 adjacent layers):

Volume Rendering

Copyright © 2010 by Yong Cao

 Binary vertex assignment: (p (i, j, k) >= TU ? 1: 0)
 Set cube vertex to value of 1 if the data value at that vertex

 exceeds (or equals) the value of the surface we are
 constructing

 Otherwise, set cube vertex to 0
  If a vertex = 1 then it is “inside” the surface
  If a vertex = 0 then it is “outside”
 Any cube with vertices of both types is

 “intersected” by the surface.

Volume Rendering

Copyright © 2010 by Yong Cao

  For each cube, we have 8
 vertices with 2 possible states
 each (inside or outside).

  This gives us 28 possible
 patterns = 256 cases.

  Enumerate cases to create a
 LUT

  Use symmetries to reduce
 problem from 256 to 15 cases.

Volume Rendering

Copyright © 2010 by Yong Cao

  Use vertex bit mask to
 create an index for each
 case based on the state of
 the vertexes.

  Using the index to tell
 which edge the surface
 intersects, we can then
 can linearly interpolate the
 surface intersection along
 the edge.

Volume Rendering

Copyright © 2010 by Yong Cao

  To calculate surface normal, we need to determine gradient
 vector, g (derivative of the density function).

  To estimate the gradient vector at the surface of interest, we first
 estimate the gradient vectors at the vertices and interpolate the
 gradient at the intersection.

  The gradient at cube vertex (i , j, k), is estimated using central
 differences along the three coordinate axes by:

D (i, j, k) is the density at pixel
(i, j) in slice k.

Δx, Δy, Δz are lengths of the
cube edges

Volume Rendering

Copyright © 2010 by Yong Cao

 Dividing the gradient by its length produces
 the unit normal at the vertex required for
 rendering.

 Then the algorithm linearly interpolates this
 normal to the point of intersection.

Volume Rendering

Copyright © 2010 by Yong Cao

 Scan 2 slices and create cube
 Calculate index for cube based on vertices
 Use index to lookup list of edges intersected
 Use densities to interpolate edge intersections
 Calculate unit normal at each edge vertex using

 central differences. Interpolate normal to each
 triangle vertex

 Output the triangle vertices and vertex normals
 March to next position and repeat.

