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CT Angiography: 
Dept. of Neuroradiology 

University of Erlangen, Germany  

CT Human Head: 
Institute for Vision and Graphics 
University of Siegen, Germany 
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Hellenic Statue of Isis: 
ARTIS, University of Erlangen- 

Nuremberg, Germany 

Sotades Pygmaios Statue 
ARTIS, University of Erlangen- 

Nuremberg, Germany 
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Micro CT, Compound Material, 
Material Science Department, 

University of Erlangen 
Hinge Bearing, 

Austrian Foundry Research Institute 
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Combustion Simulation, 
SciDACC 

Computational Fluid Dynamic  

Turbulence Simulation 
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• Rigid Grid (Voxel) 
• Reconstruction with 
trilinear interpolation 

• Irregular Structure 
• Decomposed into tetrahedra 
• Reconstruction with linear 
interpolation  
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 3D volume data  are represented by a finite number  of cross sectional
 slices (hence a 3D raster) 
 On each volume element (voxel), stores a data value (if it uses only a
 single bit, then it is a binary data set. Normally, we see a gray value of 8 to
 16 bits on each voxel.) 

N x 2D arraies                  =             3D array 



Volume Rendering 

Copyright © 2010 by Yong Cao 

A voxel is a cubic cell, which 
has a single value cover  
the entire cubic region 

A voxel is a data point 
at a corner of the cubic cell 
The value of a point inside the  
cell is determined by interpolation 
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 Mapping values to appearance 
 A Scalar value mapping to color or opacity 
 May emphasize certain value ranges (iso-surface)

 or give all ranges equal emphasis in final image
 (semi-transparent) 
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 Ray Casting 
 Image-order accumulation 

 Splatting 
 Object-order accumulation 

 Iso-surface extraction 
 Marching cube 
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  First: direct iso-surface rendering 
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Average 

•  Average: produces basically an X-ray picture 
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 Max: Maximum Intensity Projection 
used for Magnetic Resonance Angiogram 
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  Accumulate opacity while compositing colors: make transparent
 layers visible! 

Depth 
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color c = c s αs(1 - α) + c   

opacity α = α s (1 - α) + α 

1.0 

object (color, opacity) 

volumetric compositing 
Interpolation 

kernel 



Volume Rendering 

Copyright © 2010 by Yong Cao 

color   

opacity  

1.0 

object (color, opacity) 

volumetric compositing 



Volume Rendering 

Copyright © 2010 by Yong Cao 

color   

opacity  

1.0 

object (color, opacity) 

volumetric compositing 



Volume Rendering 

Copyright © 2010 by Yong Cao 

color   

opacity  

1.0 

object (color, opacity) 

volumetric compositing 



Volume Rendering 

Copyright © 2010 by Yong Cao 

color   

opacity  

1.0 

object (color, opacity) 

volumetric compositing 



Volume Rendering 

Copyright © 2010 by Yong Cao 

color   

opacity  

object (color, opacity) 

volumetric compositing 



Volume Rendering 

Copyright © 2010 by Yong Cao 

color   

opacity  

object (color, opacity) 

If alpha is close enough to 1.0, the color 
will not change much. Therefore a 
threshold for alpha (the transparency) may 
be set, guarantees an 

when possible. 
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 Use of Octrees 
 Minimizes the number transparent voxels during the

 accumulation, since a group of transparent voxels may be
 represented as a single node in the octree. 

 More efficient memory usage. 
  Interleaving methods 

 Sample every two (n) voxels as long as voxels are fully
 transparent. 

 Sample only ¼ of the points in the image and interpolate -
 Faster for interactive mode, but less quality. 

 Pyramids, k-d trees and other data-structures. 
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 Multi Cast or Super Sampling: 
  Instead of sampling one ray per pixel, sampling 4 rays per

 pixel. 
 Better image... but four times longer to render. 

 Ray subdividing: 
 Used with perspective projection. When the rays draw away

 from each other, the sampling of the volume is not
 complete.  

  The solution is to divide the ray when the rays density falls. 
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  Traverse voxels in front to back order 
  Traverse each voxel in plane, then move to next plane 

  For each voxel, accumulate color and opacity to
 each pixel it covers 

 Voxel projection covers hexagonal footprint 
 Smooth interpolation possible by applying kernel

 with fall-off away from sample point 
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 Splatting 
 Area samples 
 Ordered data access 
 More difficult for

 perspective projection 

 Ray casting 
 Point samples 
 Random data access 
 Easy for parallel or

 perspective projection 
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 Row volume data does not include normal or edges 
 Edge detection and normal calculation should be done. 
 Using 

 Marching Cube algorithm 
 Gradient estimation 

 Classification 
 Most volume data is only the density value. Read

 colors and transparency are set by classifying the
 voxels using some classification algorithms. 
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 Consists of 3 basic steps: 
 Locate the surface corresponding to a user

-specified value. 
 Create triangles. 
 Calculate normals to the surface at each vertex. 



Volume Rendering 

Copyright © 2010 by Yong Cao 

  To locate the surface, it uses a logical cube created
 from eight pixels (Four each from 2 adjacent layers): 
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 Binary vertex assignment: (p (i, j, k) >= TU ? 1: 0) 
 Set cube vertex to value of 1 if the data value at that vertex

 exceeds (or equals) the value of the surface we are
 constructing 

 Otherwise, set cube vertex to 0 
  If a vertex  = 1 then it is “inside” the surface 
  If a vertex  = 0 then it is “outside” 
 Any cube with vertices of both types is

 “intersected” by the surface. 
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  For each cube, we have 8
 vertices with 2 possible states
 each (inside or outside). 

  This gives us 28 possible
 patterns = 256 cases. 

  Enumerate cases to create a
 LUT 

  Use symmetries to reduce
 problem from 256 to 15 cases. 



Volume Rendering 

Copyright © 2010 by Yong Cao 

  Use vertex bit mask  to
 create an index for each
 case based on the state of
 the vertexes.  

  Using the index to tell
 which edge the surface
 intersects, we can then
 can linearly interpolate the
 surface intersection along
 the edge. 
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  To calculate surface normal, we need to determine gradient
 vector, g  (derivative of the density function). 

  To estimate the gradient vector at the surface of interest, we first
 estimate the gradient vectors at the vertices and interpolate the
 gradient at the intersection. 

  The gradient at cube vertex (i , j, k), is estimated using central
 differences along the three coordinate axes by: 

D (i, j, k) is the density at pixel 
(i, j) in slice k. 

Δx, Δy, Δz are lengths of the 
cube edges  
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 Dividing the gradient by its length produces
 the unit normal at the vertex required for
 rendering. 

 Then the algorithm linearly interpolates this
 normal to the point of intersection. 
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 Scan 2 slices and create cube 
 Calculate index for cube based on vertices 
 Use index to lookup list of edges intersected 
 Use densities to interpolate edge intersections 
 Calculate unit normal at each edge vertex using

 central differences. Interpolate normal to each
 triangle vertex 

 Output the triangle vertices and vertex normals 
 March to next position and repeat. 


