% Vll’glnlaTeCh CUDA Programming Model

Invent the Future

CUDA Programming Model

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% VlrglnlaTeCh CUDA Programming Model " .
Invent the Future -~

CUDA “Compute Unified Device Architecture”

» General purpose parallel programming model
» Support “Zillions” of threads

» Much easier to use
» C language, NO shaders, NO Graphics APls
» Shallow learning curve: tutorials, sample projects, forum

» Key features
» Simple management of threads
» Simple execution model
» Simple synchronization
» Simple communication

Goal:
Focus on parallel algorithms (kernels), rather than parallel management

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% Vll’glnlaTeCh CUDA Programming Model

Invent the Future

CUDA “Compute Unified Device Architecture”

What we get?

» Not enough controls
» Only handle data-parallel application well
» Easy to program
» High performance

> Not easy for some other applications (Large
data dependency between threads)

» Easier than before, but not a fully general
parallel programming model

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTeCh CUDA Programming Model

Invent the Future

CUDA Programming Model

» Executing kernel functions within threads
» Threads organization

»Blocks and Grids
» Hardware mapping of threads

» Computation-to-core mapping
» Thread -> Core
» Thread blocks -> Multi-processors

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

W VirginiaTech

Invent the Future

CUDA Threads and Functional Kernels

CUDA Programming Model

» Many threads are executing a single kernel function

»Same Code (SPMD)
» Different Data (using Thread ID)

threadID 0O|1]2|3|4|5]|6|7

float x = input[threadID];

float y = func(x);

Kernel: output[threadID] = y;

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% Vll’glnlaTeCh CUDA Programming Model

Invent the Future

Thread Blocks

» Threads are grouped into multiple blocks

Thread Block 0 Thread Block 1 Thread Block N - 1

6|7 0| 11 2] 3| 4] 5|6]|7

0l 11 2| 3| 4]15]6]|7 0] 11 2] 3| 4] 5

threadID

float x = input float x = input
[threadID]; [threadID] ;

float x = input

[threadID] ;
float y = func(x);
output[threadID] = y;

float y = func(x); float y = func(x);
output[threadID] = y; output[threadID] = y;

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrginiaTECh CUDA Programming Model

Invent the Future

Grid

» A number of blocks are grouped into Grid.

Grid

Block (0, 0) = Block (1,0) Block (2, 0)

Block (0, 1)~ Block (1, 1) “Block (2, 1)

Block (1, 1)

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTeCh CUDA Programming Model

Invent the Future

Thread organization Overview

» An array of threads -> block
» An array of blocks -> grid

» All threads in one grid execute the same
kernel

» Grids are executed sequentially.

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VirginiaTECh CUDA Programming Model

Invent the Future

Thread organization Overview

Host Device
Grid 1
- -
Kﬁ"‘e' p Block Block - Block (1, 1
(0.0) (1.0) .~
Block Block
0,1 1,1
0.1 (1.1
N
N
Kernel S ~
2 P Grid 2 N
N
N
N

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% Vll’glnlaTeCh CUDA Programming Model

Invent the Future

Thread Identification

» Block IDs and Thread Host Device
IDS Grid 1

» Threads use |Ds to decide which | ‘ e_1mi | |2 _E _.'(33?3;(?1'?3;(
data to operationon. ~7 7" Biogk|| Block)
> Block ID: 1D or 2D array PR
> Thread ID: 1D, 2D, or 3D array \\ ’,fgri“/’ ':“
> Advantage: Easy for NS rand i iy
data parallel N gy ey
processing with rigid N
grid data organization <f" i
et

'
’

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% VlrglniaTeCh CUDA Programming Model

Invent the Future

Memory Model: Thread and Block

Per-block
Shared

Per-thread
Local Memory

Memory

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrginiaTeCh CUDA Programming Model

Invent the Future

Memory Model: Between Blocks

22333333333

(l(c(c(d(c

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ VlrglniaTECh CUDA Programming Model

Invent the Future

Memory Model: Between Grids (Kernels)

Kernel O

SRR RRRRRRY

Per-device
Global

Memory

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Sequential
Kernels

% VlrglnlaTECh CUDA Programming Model

Invent the Future

Memory Model: Between Devices

Device 0
memory

cudaMemcpy ()

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrginiaTeCh CUDA Programming Model

Invent the Future

Threads Cooperation

» Threads within a block
» Shared memory

. . Grid
> Atomic operation ’
» Share memory Block (0, 0) Block (1, 0)
» Global memory
» Barrier

] e

Thread (0, 0) Thread (1, 0) = Thread (0, 0) Thread (1, 0)

» Threads between blocks
» Atomic operation

» Global memory i
» Threads between grids) _

» No way!

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglniaTECh CUDA Programming Model

Invent the Future

Thread Communication with Host (CPU)

» No communication when
GPU kernel is running

» Use global memory before
or after GPU kernel cali

» Host initializes transfer

t EEEEE TN
regues
>,(1\sync Vs Sync transfer " F' *' F'

> Only host Can a”ocate Thread (0, 0) Thread (1, 0) = Thread (0, 0) Thread (1, 0)
device memory

» No runtime memory
allocation on device

Grid

Block (0, 0) Block (1, 0)

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

I;I%‘lirg:i_niar]:‘ECh, CUDA Programming Model

Invent the Future

Hardware Mapping of Threads

Kernel Lunched by Host

Device processor array

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% Vll’glnlaTeCh CUDA Programming Model

Invent the Future

Thread Mapping and Scheduling

> A grid of threads takes over the whole device.

» A block of threads is mapped on one multi
-processor.

» A multi-processor can take more than one blocks.
(Occupancy)

» A block can not be preempted until finish.

» Threads within a blocks are scheduled to run on
the (8) cores of multi-processor.

» Threads are grouped into warps (warp size is 32)
as scheduling units.

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%Vir}ginia:[‘edl CUDA Programming Model

Invent the Future

Transparent Scalability

»Hardware is free to schedule thread blocks on any processor
»>Kernels scale to any number of parallel multiprocessors

Kernel grid

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTeCh CUDA Programming Model

Invent the Future

Lightweight Threads

» Easy to map to cores (Rigid Grid)
» Easy to schedule (One cycle)
» Therefore:
» + High performance (data parallel application)

» - Hard to synchronize for applications with
Intensive data dependencies

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% Vll’glnlaTeCh CUDA Programming Model

Invent the Future

CUDA Basics

» CUDA device memory allocation and
transfer.

» CUDA specific language features.
» Our “Hello World!” CUDA example.

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

CUDA Programming Model

MVirginiaTech

Invent the Future

CUDA Device Memory Allocation

» cudaMalloc()

» Allocates object in the
device Global Memory

» Global Memory is R/W

» Requires two parameters

» Address of a pointer to the
allocated object

» Size of of allocated object

Grid

Block (0, 0} Block (1, 0)

| SteredMemoy Swredbemory
v | v | v |

» cudaFree()
. . Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)
» Frees object from device
Global Memory s

G

» Pointer to freed object

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTeCh CUDA Programming Model

Invent the Future

CUDA Host-Device Data Transfer

cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy (M, Md, size, cudaMemcpyDeviceToHost);

» Code example:
» Transfer a 64 * 64 single precision float array
» M is in host memory and Md is in device memory

» cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@ Vll’glnlaTeCh CUDA Programming Model

Invent the Future

CUDA Function Declarations

Executed | Only callable

on the: from the:
__device float DeviceFunc() device device
__global void KernelFunc() | device host
__host float HostFunc() | host host

» __global defines a kernel function
» Must return void
» For functions executed on the device:
» No recursion
» No static variable declarations inside the function
» No variable number of arguments

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% VlrglnlaTECh CUDA Programming Model

Invent the Future

Calling a Kernel Function — Thread Creation

» A kernel function must be called with an execution configuration:

__global void KernelFunc(...);

dim3 DimGrid (100, 50) ; // 5000 thread blocks

dim3 DimBlock (4, 8, 8); // 256 threads per block
size t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

» Any call to a kernel function is asynchronous from CUDA 1.0 on,
explicit synch needed for blocking

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%VinginiaTeCh CUDA Programming Model

Invent the Future

“Hello World!” — Vector Addition

int main ()
{
// Run N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d A, d B, d C);

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%VinginiaTeCh, CUDA Programming Model

Invent the Future

“Hello World!” — Vector Addition

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global void vecAdd(float* A, float* B, float* C)
{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VlrglniaTECh CUDA Programming Model

Invent the Future

Vector Addition — Host Code for Memory

// allocate host (CPU) memory

float* h A = (float*) malloc (N * sizeof (float));
float* h:B = (float*) malloc (N * sizeof (float)) ;
. initalize h A and h B ..

// allocate device (GPU) memory

float* d A, d B, d C;

cudaMalloc((void**) &d A, N * sizeof (float));
cudaMalloc ((void**) &d_B, N * sizeof (float))
cudaMalloc((void**) &d C, N * sizeof (float));

// copy host memory to device
cudaMemcpy (d_A, h_A, N * sizeof(float) ,cudaMemcpyHostToDevice)) ;
cudaMemcpy (d_B, h_B, N * sizeof(float) ,cudaMemcpyHostToDevice)) ;

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% Vll’glnlaTeCh CUDA Programming Model

Invent the Future

Reading

» Please read the first two chapters of
NIVIDA CUDA Programming Guide
(Version 3.1).

» A pop quiz might be given at the
beginning of next two classes.

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

