
Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Introduction to Ray Tracing
 What is Ray Tracing?
 Comparison with Rasterization
 Why Now? / Timeline
 Reasons and Examples for Using Ray

 Tracing
 Open Issues

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Rasterization:
Projection geometry forward

Ray Tracing:
Project image samples backwards

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Rasterization-Pipeline
 Highly successful technology
 From graphics supercomputers to

an add-on in a PC chip-set
 Advantages

 Simple and proven algorithm
 Getting faster quickly
 Trend towards full programmability

Application

Vertex Shader

Rasterization

Fragment Shader

Fragment Tests

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

  Primitive operation of all interactive
 graphics !!
 Scan converts a single triangle at a time

  Sequentially processes every triangle
 individually
 Cannot access more than one triangle at a time
  But most effects need access to the entire scene:

 Shadows, reflection, global illumination

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Ray-Generation

Ray-Traversal

Intersection

Shading

Framebuffer

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

-  Global effects
-  Parallel (as nature)
-  Fully automatic
-  Demand driven
-  Per pixel operations
-  Highly efficient

 Fundamental Technology for Next Generation Graphics

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Rasterization
 For each triangle:

 Find the pixels it covers
 For each pixel: compare to closest triangle so far

 Ray tracing
 For each pixel:

 Find the triangles that might be closest
 For each triangle: compute distance to pixel

Requires Z-buffer: track!
distance per pixel

Requires spatial index: a spatially!
sorted arrangement of triangles

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Definition: Rasterization
 Given a set of rays and a primitive, efficiently compute

 the subset of rays hitting the primitive
  Uses 2D grid as an index structure for efficiency

 Definition: Ray Tracing
 Given a ray and set of primitives, efficiently compute the

 subset of primitives hit by the ray
  Uses a (hierarchical) 3D spatial index for efficiency

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

  3D object space index (e.g. kd-tree)
 Limits scene dynamics (may require index rebuilt)
 Increases scalability with scene size  O(log n)
 Efficiently supports small & arbitrary sets of rays

 Few rays reflecting off of surface  ray tracing problem

  2D image space grid
 Rays limited to regular sampling & planar perspective

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Convergence: 2D grid plus object space index
 Brings rasterization closer to ray tracing

 Performs front to back traversal with groups of rays
 At leafs parallel intersection computation using rasterization

 Introduces same limitations (e.g. scene dynamics)
 But coarser index may be OK (traversal vs. intersection cost)

 Computation split into HW and application SW
 More complex, latency, communication bandwidth, …

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Per Pixel Efficiency
 Surface shaders principally have same complexity
 Rasterization:

 Incremental computation between pixels (triangle setup)
 Overhead due to overdraw (Z-buffer)

 Ray tracing:
 No incremental computation (less important with complexity)
 Caching works well even for finely tessellated surfaces
 May shoot arbitrary rays to query about global environment

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Benefits of On-Demand Computation
 Only required computations  efficiency

 E.g.: must not compute entire reflection map

 No re-sampling of pre-computed data  accuracy
 Exact computation  reliability
 Fully performed in renderer (not app.)  simplicity
 Data loaded only if needed  resources

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Hardware Support
 Rasterization has mature & quickly evolving HW

 High-performance, highly parallel, stream computing engine

 Ray tracing mostly implemented in SW
 Requires flexible control flow, recursion & stacks, flexible i/o, …
 Requires virtual memory and demand loading due scene size
 Requires loops in the HW pipeline (e.g. generating new rays)
 Depend heavily on caching and suitable working sets

   Not well supported by current HW

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Requirements
 High floating point performance

 Traversal & intersection computations
 Flexible control flow, multiple threads

 Recursion, efficient traversal of kd-tree, …
 Exploitation of coherence

 Caching, packets, efficient traversal, …
 High bandwidth

 Between traversal, intersection, and shading; to
 caches

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 What are the reasons for industry to choose
Realtime Ray Tracing?
 Highly realistic images by default
 Physical correctness and dependability
 Support for massive scenes
 Integration of many different primitive types
 Realtime global illumination

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Highly Realistic Images by Default
 Typical effects are automatically accounted for

 E.g.: shadows, reflection, refraction, …
 No special code necessary, but tricks can still be used

 All effects are correctly ordered globally
 Do need for application to do sorting (e.g. for

 transparency)
 Orthogonality of geometry, shading, lighting, …

 Can be created independently and used without side
 effects

 Reusability: e.g. shader libraries

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Volkswagen Beetle with correct shadows and (multi-)reflections on curved surfaces

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Physical Correctness and Dependability
 Numerous approximations caused by

 rasterization
 Might be good enough for games (but maybe

 not?)
 Industry needs dependable visual results

 Benefits
 Users develop trust in the visual results
 Important decisions can be based on virtual

 models

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Fully ray traced car head lamp, faithful visualization requires up to 50 rays per pixel

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Rendered directly from trimmed NURBS surfaces, with smooth environment lighting

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

BTF Data Courtesy R. Klein, Uni Bonn

Rendered with accurately measured BTF data
that accounts for micro lighting effects

Textured Phong for
comparison

Real-time Ray Tracing

Copyright © 2010 by Yong Cao VR scene illuminated from realtime video feed, AR with realtime environment lighting

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Massive Scenes
 Scales logarithmically with scene size
 Supports billions of triangles

 Benefits
 Can render entire CAD models without

 simplification
 Greatly simplifies and speeds up many tasks

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Boeing 777 Model:
350 million triangles
30 GB on disk

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

71 Trillion Triangles

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Flexible Primitive Types
 Triangles
 Volumes data sets

 Iso-surfaces & direct visualization
 Regular, rectilinear, curvilinear, unstructured,

 …
 Splines and subdivision surfaces
 Points

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Triangles, Bezier splines, and subdivision surfaces fully integrated

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Volume visualization using multiple iso-surfaces in combination with surface rendering

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Realtime ray tracing of point clouds (1 Mpoints each)

24 MPoints,

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Declarative Graphics Interface
 Application specifies scene once, plus updates
 Rendering fully performed by renderer (e.g. in

 HW)
 Similar to scene graphs, PostScript, or latest

 GUIs
 Benefits

 Greatly simplifies application programming
 Allows for complete HW acceleration

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Global Illumination
 Simulating global lighting through tracing rays
 Indirect diffuse and caustic illumination
 Fully recomputed at up to 20 fps

 Benefits
 Add the subtle but highly important clue for

 realism
 Allows flexible light planning and control

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

Conference room (380 000 tris, 104 lights) with full global illumination in realtime

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Dynamic scenes
 Changes to geometry  updates to spatial

 index
 Key: Need information from application !!!

 No information  must inspect everything 
O(n)

 Approaches
 Separate scenes by temporal characteristic
 Build index lazily, build fuzzy index
 Adapt built parameters (fast vs. thorough)

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Efficient Anti-Aliasing & Glossy Reflection
 Requires many samples for proper integration

 Image plane  Can we do better than super
-sampling?

 Shading and texture aliasing  ray differentials
 (integration?)

 Large/detailed scenes  geometry aliasing, temporal
 noise

 Super-sampling too costly and LOD undesirable

Real-time Ray Tracing

Copyright © 2010 by Yong Cao

 Hardware Support
 Goal: realtime ray tracing on every desktop

 >60 fps, 2-3 Mpix, huge models, complex lighting, …
 Possible Solutions

 Faster, multi-core CPUs: might take too long
 Cell: Highly interesting, but no caches
 GPUs: very promising with Fermi
 Custom HW: RPU (flexible GPU + custom

 traversal)

