
Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

─ Lessons learned from a simple application 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

2 

 Matrix Multiplication 
 Used as an example throughout the course 

 Goal for today: 
 Show the concept of “Computation-to-Core Mapping” 

  Block  schedule, Occupancy, and thread schedule  

 Assumption 
 Deal with square matrix for simplicity 
  Leave memory issues later 

  With global memory and local registers 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

3 

M 

N 

P 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix multiplication on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 

P = M * N of size WIDTH x WIDTH 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

4 

M 

N 

P 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix multiplication on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 

P = M * N of size WIDTH x WIDTH 

Pay attention 
here! 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

5 

  Thread mapping: 
  Define the finest computational unit, and

 map it onto each thread 
  Main criterion : None Dependency 
  In our first scheme: 

Unit: Calculation of one element of P 

  Block mapping: 
  Simple: One block 

M 

N 

P 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

(tx, ty) 

ty 

tx 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 

M (column#, row#) 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 
{ 
   int size = Width * Width * sizeof(float);  
    float* Md, Nd, Pd; 
   … 
1. // Allocate and Load M, N to device memory  
    cudaMalloc(&Md, size); 
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

     cudaMalloc(&Nd, size); 
     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

     // Allocate P on the device 
    cudaMalloc(&Pd, size); 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

2.   // Kernel invocation code – to be shown later 
     … 

3.    // Read P from the device 
      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

       // Free device matrices 
      cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 
     } 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

9 

// Matrix multiplication kernel – per thread code 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏ 
{ 

    // Pvalue is used to store the element of the matrix 
    // that is computed by the thread 
    float Pvalue = 0; 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

10 

Nd 

Md Pd 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

   for (int k = 0; k < Width; ++k)‏ { 
       float Melement = Md[threadIdx.y*Width+k]; 
       float Nelement = Nd[k*Width+threadIdx.x]; 
       Pvalue += Melement * Nelement; 
   } 

  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 
} 

ty 

tx 

ty 

tx 

k 

k 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

    // Setup the execution configuration 
       dim3 dimGrid(1, 1); 
       dim3 dimBlock(Width, Width); 

    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

  One Block of threads compute
 matrix Pd 
  Other Multi-processors are not

 used. 

 Grid 1 
Block 1 

48 

Thread 
)2, 2(‏ 

   WIDTH 

Md Pd 

Nd 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

  Each thread 
  Loads a row of matrix Md 
  Loads a column of matrix Nd 
  Perform one multiply and addition

 for each pair of Md and Nd
 elements 

  Compute to off-chip memory
 access ratio close to 1:1 (not very
 high)‏ 

 Grid 1 
Block 1 

48 

Thread 
)2, 2(‏ 

   WIDTH 

Md Pd 

Nd 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

  Size of matrix limited by the
 number of threads allowed in a
 thread block 
  Maximum threads per block: 512 
  Can only do 22 x 22 matrix 
  You can put a loop around the

 kernel call for cases when Width
 > 22. But multiple kernel launch
 will cost you. 

 Grid 1 
Block 1 

48 

Thread 
)2, 2(‏ 

   WIDTH 

Md Pd 

Nd 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

15 

Md 

Nd 

Pd 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

ty 

tx 

by 

bx 

TILE_WIDTH 

  Thread mapping:  the same with the first one 
  Block mapping: 

  Create 2D thread blocks, each of which compute
 a (TILE_WIDTH)2 sub-matrix (tile) of the result
 matrix 
 Each has (TILE_WIDTH)2 threads 

  Generate a 2D Grid of (WIDTH/TILE_WIDTH)2

 blocks 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

 More blocks (WIDTH/TILE_WIDTH)2  

 Support larger matrix 
 The maximum size of each dimension of

 a grid of thread blocks is 65535. 
 Max Width = 65535 x TILE_WIDTH 

 Use more multi-processors 

16 

Md 

Nd 

Pd 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

ty 

tx 

by 

bx 

TILE_WIDTH 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

17 

Md 

Nd 

Pd 

Pdsub 

TILE_WIDTH 

WIDTH WIDTH 

bx 

tx 
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1 

2

1

0

T
IL

E
_W

ID
T

H
E

 

W
ID

T
H

 
W

ID
T

H
 

 Break-up Pd into tiles 
 Each block calculates one tile 

 Each thread calculates one element 
 Block size equal tile size 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Block(0,0) Block(1,0) 

Block(1,1) Block(0,1) 

TILE_WIDTH = 2 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 

Pd[Row*Width+Col] = Pvalue; 
} 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

    // Setup the execution configuration 
       dim3 dimGrid (Width/TILE_WIDTH, Width/TILE_WIDTH); 
        dim3 dimBlock (TILE_WIDTH, TILE_WIDTH); 

    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

 For Matrix Multiplication using multiple
 blocks, should I use 8X8, 16X16 or 32X32
 blocks? 

 Why? 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

23 

  Up to 8 blocks to each SM as resource
 allows 

  SM in G80 can take up to 768 threads 
  Could be 256 (threads/block) * 3

 blocks  
  Or 128 (threads/block) * 6 blocks, etc. 

  SM in GT200 can take up to 1024
 threads 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

  Each Block is executed as 32-
thread Warps 

  If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM? 
  Each Block is divided into 

256/32 = 8 Warps 
  There are 8 * 3 = 24 Warps  

… 
t0 t1 t2 … t31 

… 

… 
t0 t1 t2 … t31 

… Block 1 Warps Block 2 Warps 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 

Streaming Multiprocessor 

Shared Memory 

… 
t0 t1 t2 … t31 

… Block 1 Warps 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

 How much a Multiprocessor is occupied: 
Occupancy = Actually warps / Totally allowed 
 GT200 SM allows 32 warps 
 G80 SM allow 24 warps 

 For example: 
 One block per SM, 32 threads per block 

 (32/32) / 32 = 3.125% (Very bad) 

 4 blocks per SM, 256 threads per block 
 (256/32) * 4 / 32 = 100% (Very good) 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

 There are three factors: 
 Maximum number of warps 
 Maximum registers usage 
 Maximum share memory usage 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

  For Matrix Multiplication using multiple blocks,
 should I use 8X8, 16X16 or 32X32 blocks? 

  For G80 GPU: 
  For 8X8, we have 64 threads per Block. Since each SM can

 take up to 768 threads, there are 12 Blocks. However, each
 SM can only take up to 8 Blocks, only 512 threads will go
 into each SM! (Occupancy  = 66.6%) 

  For 16X16, we have 256 threads per Block. Since each SM
 can take up to 768 threads, it can take up to 3 Blocks and
 achieve full capacity unless other resource considerations
 overrule. (Occupancy  = 100%) 

  For 32X32, we have 1024 threads per Block. Not even one
 can fit into an SM! (Can not support) 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

  For Matrix Multiplication using multiple blocks,
 should I use 8X8, 16X16 or 32X32 blocks? 

  For GT200 GPU: 
  For 8X8, we have 64 threads per Block. Since each SM can

 take up to 1024 threads, there are 16 Blocks. However,
 each SM can only take up to 8 Blocks, only 512 threads will
 go into each SM! (Occupancy  =50%) 

  For 16X16, we have 256 threads per Block. Each SM takes
 4 Blocks and achieve full capacity unless other resource
 considerations overrule. (Occupancy  = 100%) 

  For 32X32, we have 1024 threads per Block. Each SM takes
 1 Block and achieve full capacity unless other resource
 considerations overrule. (Occupancy  = 100%) 



Computation to Core Mapping 

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes 

 Step 1: 
 Define your computational unit, map each unit to a

 thread 
 Avoid dependency 
 Increase compute to memory access ratio 

 Step 2: 
 Group your threads into blocks 

 Eliminate hardware limit 
 Take advantage of shared memory 


