W VirginiaTech GPU Memory I

Invent the Future

GPU Memory Il

— Memory Hardware and Bank Conflict

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VirginiaTech GPU Memory Il

Invent the Future

CUDA Device Memory Space: Review

> Each thread can: (bevice) Grid

» R/W per-thread registers Block (0, 0) Block (1, 0)

» R/W per-thread local memory

» R/W per-block shared memory

» R/W per-grid global memory ’ ’ ’ ’

» Read only per-grid constant Thread (0,0) Thread (1,0) | Thread (0,0) Thread (1, 0)
memory

» Read only per-grid texture i i i i
memory

Host

e The host can R/W
global, constant, and
texture memories

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Parallel Memory Sharing

Thread

GPU Memory Il

» Local Memory: per-thread
» Private per thread
» Auto variables, register spill
Block » Shared Memory: per-Block

» Shared by threads of the same
block

» Inter-thread communication

» Global Memory: per-application
» Shared by all threads
» Inter-Grid communication

D))
[L«

<(((((
b))

N A
\/
\/
N A\Y
\/

V

VA
™\

\/

VA

Sequential
Grids
in Time

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

MVirginiaTech

Invent the Future

GPU

Memory i

Hardware Overview

Streaming Processor Array

TPC

TPC

TPC TPC

TPC TPC

TPC

TPC

-

N

TEX

[Thread Processor Clusterl\/l
-\

SM

SM

Streaming Multiprocessor

Instruction L1

Data L1

Instruction Fetch/Dispatch

Shared Memory

SFU

Special

SFuk Function

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Unit (SFU)

%VirginiaTech GPU Memory Ii

Invent the Future

Register File

» Register File (RF)
» 32 KB
» Provides 4 operands/clock

» Texture pipe can also read/write
RF
» 2 SMs share 1 TEX

» Load/Store pipe can also read
/write RF

1$
L1

Multithreaded
Instruction Buffer

v

’; R C$ Shared
F L1 Mem

v v v

Operand Select

v v
MAD SFU
v
v

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

MVirginiaTech

Invent the Future

GPU Memory Il

Programmer View of Register File

4 blocks 3 blocks

» There are 8192 registers in
each SM in G80

» Registers are dynamically
partitioned across all Blocks
assigned to the SM

» Once assigned to a Block, the
register is NOT accessible by
threads in other Blocks

» Each thread in the same Block
only access registers
assigned to itself

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%VirginiaTech GPU Memory Ii

Invent the Future

Matrix Multiplication Example

» If each Block has 16X16 threads and each thread
uses 10 registers, how many thread can run on
each SM?

» Each Block requires 10*256 = 2560 registers

» 8192 = 3 * 2560 + change

» S0, three blocks can run on an SM as far as registers are
concerned

» How about if each thread increases the use of
registers by 1?

» Each Block now requires 11*256 = 2816 registers
» 8192 < 2816 *3

» Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

% Vll’glnlaTeCh GPU Memory i

Invent the Future

More on Dynamic Partitioning

» Dynamic partitioning gives more flexibility
to compilers/programmers

» One can run a smaller number of threads that
require many registers each or a large number of
threads that require few registers each

» This allows for finer grain threading than traditional CPU
threading models.

» The compiler can tradeoff between instruction
-level parallelism and thread level parallelism

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

%ﬂ Vll’glnlaTeCh GPU Memory i

Invent the Future

ILP vs. TLP Example

» Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global loads
have 200 cycles

» 3 Blocks can run on each SM

» If a Compiler can use one more register to change the
dependence pattern so that 8 independent instructions
exist for each global memory load
» Only two can run on each SM

» However, one only needs 200/(8"4) = 7 Warps to tolerate the
memory latency

» Two Blocks have 16 Warps. The performance can be actually
higher!

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

W VirginiaTech GPU Memory Il
Invent the Future
Constant

» Immediate address constants s

» Indexed address constants v

» Constants stored in DRAM, and cached uitibreadec
on chip v
> L1 per SM >R SGZL?"

» A constant value can be broadcast to all v v v
threads in a Warp Operand Select

» Extremely efficient way of accessing a value v v
that is common for all threads in a Block! MAD SFU

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

MVirginiaTech

Invent the Future

Shared Memory

GPU Memory Il

» Each Multi-processor has 16 KB of S
Shared Memory T
> 16 banks of 32bit words yT—
> Will discuss about accessing pattern later el
» Visible to all threads in a thread S Vﬁs
block T
» read and write access Operand Select
v v
MAD SFU

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

Matrix Multiplication Example

» Explore Tile-based implementation with
Shared Memory.

> Question:

» How is shared memory organized?

» What are the issues when accessing shared
memory?

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VirginiaTech GPU Memory Ii

Invent the Future

Tile Based Multiplication

tx

» One block computes one square 012 bsize-1
sub-matrix P, of size ELOCK_SIZE .

» One thread computes one element of l
I:,sub

» Assume that the dimensions of M '

and N are multiples of BLOCK_SIZE
and square shape

bsize-1

P » d
< >

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

GPU Memory Il

M VirginiaTech

Invent the Future

Tiled Matrix Multiplication Kernel --

_QBQYJO%WMXMuIKerneI(roat* Md, float* Nd, float* Pd, int Width)

1. _ shared float Mds[TILE WIDTH] [TILE WIDTH];
2. _ shared float Nds[TILE WIDTH] [TILE WIDTH];

3. int bx = blockIdx.x; int by blockIdx.y;

4. int tx threadIdx.x; int ty threadIdx.y;
5. int Row = by * TILE WIDTH + ty;
6 int Col = bx * TILE WIDTH + tx;
7. float Pvalue = 0;
8 for (int m = 0; m < Width/TILE WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[ty] [tx] = Md[Row*Width + (m*TILE WIDTH + tx)];
10. Nds[ty] [tx] = Nd[Col + (m*TILE_WIDTH + ty) *Width];
11. __syncthreads() ;
12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k] [tx];
14. Synchthreads () ;
15. }
16. Pd[Row*Width+Col] = Pvalue;
}

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

Matrix Multiplication Shared Memory Usage

> Each Block requires 2* BLOCK_SIZE 2* 4 bytes of
shared memory storage

» For BLOCK SIZE = 16, each BLOCK requires 2KB, up to 8
Blocks can fit into the Shared Memory of an SM

» Since each SM can only take 768 threads, each SM can only
take 3 Blocks of 256 threads each

» Occupancy is not limited by Shared memory

15

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

GPU Memory Il

MVirginiaTech

Invent the Future

Shared Memory Organization

» Parallel Memory Architecture:

» Memory is divided into banks

» Essential to achieve high bandwidth

» Each bank can service one address per cyq

» A memory can service as many simultaneous

accesses as it has banks

» Multiple simultaneous accesses to a bank
result in a bank conflict

» Conflicting accesses are serialized

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

16

MVirginiaTech

Invent the Future

GPU Memory Il

Share Memory Access Issue

» No Bank Conflicts » No Bank Conflicts
» Linear addressing » Random 1:1 Permutation
stride ==

Thread O > ead O

Thread 1 > ead

Thread 2 > ead >

Thread 3 > ead

Thread 4 > nad 4

Thread 5 > ead

Thread 6 > ead 6 >

Thread 7 > ead
[[[
o o []
o o [)

Thread 15 > eao

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

MVirginiaTech

Invent the Future

GPU Memory Il

Share Memory Access Issue

Thread O
Thread 1

Thread 4

Thread 8 /

Thread 9
Thread 10
Thread 11

Thread 2 ~
Thread 3 ~'

» 2-way Bank Conflicts

» Linear addressing
stride ==

stride ==

» 8-way Bank Conflicts
» Linear addressing

Thread O

Thread 1

Thread 2

Thread 3
Thread 4

Thread 5

Thread 6

Thread 7

Thread 15

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

How addresses map to banks in CUDA

» Each bank has a bandwidth of 32 bits per clock
cycle

» Successive 32-bit words are assigned to
successive banks

» G80 has 16 banks

» So bank = address % 16
» Same as the size of a half-warp

» No bank conflicts between different half-warps, only within a
single half-warp

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

19

GPU Memory Il

MVirginiaTech

Invent the Future

Share Memory Performance

» Shared memory is as fast as registers if there are no
bank conflicts

» The fast case:

» If all threads of a half-warp access different banks, there is no
bank conflict

» If all threads of a half-warp access the identical address, there
is no bank conflict (broadcast)
» The slow case:

» Bank Conflict: multiple threads in the same half-warp access
the same bank

» Must serialize the accesses
» Cost = max # of simultaneous accesses to a single bank

20

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech

Invent the Future

Linear Addressing (1D)

GPU Memory Il

> Given:

__shared float shared[256];
float foo = shared[baseIndex + s * threadIdx.x];

» This is only bank-conflict-free if s
shares no common factors with the
number of banks
» 16 on G80, so s must be odd

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VirginiaTech GPU Memory Il

Invent the Future

Data types and bank conflicts

» This has no conflicts if type of shared is 32-bits:

Thread O 7
foo = shared[baseIndex + threadIdx.x] ;ng "’/
Thread 3 /
Thread 4
- . Threa
> But not if the data type is smaller Thread €
Thread 7

» 4-way bank conflicts:
shared char shared[];

foo = shared[baselIndex + threadIdx.x];

Thread 0 —
Thread 1

» 2-way bank conflicts:
__shared short shared[];
foo = shared[baselIndex + threadIdx.x];

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

GPU Memory Il

M VirginiaTech

Invent the Future

Structs and Bank Conflicts

» Struct assignments compile into as many memory accesses as there
are struct members:

struct vector { float x, vy, z; }; i:&i?
rea

struct myType { Thread 2

) Thread 4

int c; Thread 5

}; Thread 6

! Thread 7
__shared struct vector vectors[64]; .
shared struct myType myTypes[64]; :

— —

» This has no bank conflicts for vector; struct size is 3 words
» 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baselIndex + threadIldx.x];

» This has 2-way bank conflicts for my Type; (2 accesses per thread)
struct myType m = myTypes|[baselndex + threadldx.x];

23

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VirginiaTech GPU Memory Il

Invent the Future

Common Array Bank Conflict Patterns 1D

» Each thread loads 2 elements into
shared memory:

» 2-way-interleaved loads result in cad 0

2-way bank conflicts:

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1]; o

» This makes sense for traditional CPU
threads, locality in cache line usage and cad 10

reduced sharing traffic.

» Not in shared memory usage where there
is no cache line effects but banking effects

24

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VirginiaTech GPU Memory Ii

Invent the Future

A Better Array Access Pattern

» Each thread loads one element in
every consecutive group of

blockDim elements. fhread

Thread 1

Thread 2

shared[tid] = global[tid];

Thread 3

shared[tid + blockDim.x] =

Thread 4

global[tid + blockDim.x];

Thread 5

Thread 6

Thread 7

-

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

25

M VirginiaTech

Invent the Future

Common Bank Conflict Patterns (2D)

» Operating on 2D array of floats in shared Bank Indices without Padding

GPU Memory Il

memory T

> e.g.image processing eee| |

> Example: 16x16 block v [
> Each thread processes a row e

» So threads in a block access the elements in eee|]

each column simultaneously (example:row 1ing ¢ 3 88338 ™ ¢

purple) [T T T T[]

» 16-way bank conflicts: rows all start at bank 0
Bank Indices with Padding

» Solution 1) pad the rows
» Add one float to the end of each row

» Solution 2) transpose before processing
» Suffer bank conflicts during transpose

[YYH OO N O O & [N —
XYM O O1 R WN O

Iin.l.l.l.l‘l.lm

26

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

@VirginiaTech GPU Memory Il

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {

A
13. Pvalue += Mds[ty] [k] * Nds[k] [tx];
14. Synchthreads () ;
15. }

> S

< »
< Ll |

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k][tx];
14. Synchthreads () ;

15. 1}

Mds [ty*TILE WIDTH + k] Nds [k*TILE WIDTH + tx]

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k][tx];
14. Synchthreads () ;

15. 1}

Mds [ty*TILE WIDTH + k]

eeel|15
eeel|15
eee(15 »For TILE_WIDTH =16

eeel15 » The whole half-warp is accessing the
eeel15 same shared memory location.

o 12 » Conflict. But, GPU support broadcasting.

eee(15

olo|o|o|o|o|o|o
VI ENJENE BN ENE ENTENTEN

Ol|eee |[O|O|O|OC|O|O|O|O
Nleoee [NINININININININ
W|leee [WIW|W[W[W|W[W|W
BNloeoee [AIDMIDNIAIDINID™|ID
Ol|jeee (OO |O1|On

- | o0e
O)|eee
~|ooe

5

eee|]

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

29

M VirginiaTech GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k][tx];
14. Synchthreads () ;

15. 1}

Mds [ty*TILE WIDTH + k]

0[1](2]3]|4]|5|6]7

89 [10[11[12]13[14[15

ol1l213l4]5|6]|7 »For T”_E_WIDTH=8

819 [10[11[12]13[14[15 » The first half-warp and the second half-
0[112]314]5]16]7 warp are accessing two different shared
819 O 2131415 memory location.

0[1]2]3]|4|5|6]7 ,

s o l10l1111213[14l15 » 8-way bank conflict.

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

30

%VirginiaTech GPU Memory Il

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

14. Synchthreads () ;
15. }

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k][tx];

Mds [ty*TILE WIDTH + k]

011

415(6]7
89 [10[11
2|13|14]15

—_—

»For TILE _ WIDTH =4
» 4-way bank conflict.

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

31

M VirginiaTech GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k][tx];
14. Synchthreads () ;

15. 1}

Nds [k*TILE WIDTH + tx]

15

15

»For TILE_WIDTH = 16

15

15

» Each thread in a half-warp is accessing

15

different shared memory location.

15

» No conflict.

15

RN Ny S N S N S N TS N R Ny RS Ny RS
VI ENJENE BN ENE BN ENE EN

(e)R (o>} [} [e>} o)} [e)]} [e2] [0))

— o000

Oleee |O|O|OC|O|O|O|O|O
N|leoee [NINININININININ
Wl eee |[WWIW[W[W|W|[W]|W
BRloeoe [AIDNIMNIDIDIMNID|ID
Or1|eee (O[O OO [O1|O1|On

O |eee
~|ooeo

ol [X X]

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

M VirginiaTech GPU Memory I

Invent the Future

Does Matrix Multiplication Incur Shared Memory Bank Conflicts?

12. for (int k = 0; k < TILE WIDTH; ++k) {
13. Pvalue += Mds|[ty] [k] * Nds[k][tx];
14. Synchthreads () ;

15. 1}

Nds [k*TILE WIDTH + tx]

»For TILE_WIDTH = 8
» Since the memory storage organization is
row-maijor for 2D array, so it's the same with
TILE_WIDTH = 16.
» No conflict.

10]11]12]|13]|14|15

10111[12[{13]14]15

10]11]12]|13]|14|15

ow|o|m|o|w|o|x|o
©|=a|o|=|o|=|ov]|=

N

w

N

3

o

~

10]11]12]13]14]15

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

