
Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Introduce some of the most relevant “advanced”
 features of CUDA
  The majority of features here will probably not be necessary or

 useful for any particular application

 CUDA Programming Guide (CPG) 3.1 sections will
 be referenced

2

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Tools
 A note on pointer-based data structures
 Warp-level intrinsics
 Streams
 Events
  Textures
 Atomic operations
 Page-locked memory & zero-copy access
 Multi-GPU
 Graphics interoperability
 Dynamic compilation

3

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Some nvcc features:
 --ptxas-options=-v
 Print the smem, register and other resource

 usages

 #pragma unroll X
 You can put a pragma right before a loop to tell

 the compiler to unroll it by a factor of X
 Doesn't enforce correctness if the loop trip count isn't a

 multiple of X

 CPG E.2

4

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  The cuda profiler can be used from a GUI or on
 the command line
 Cuda profiler collects information from specific counters for

 things like branch divergence, global memory accesses, etc.

5

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  printf and cuprintf in kernel function
  cudagdb

 Debugger with gdb-like interface that lets you set
 breakpoints in kernel code while it's executing on the
 device, examine kernel threads, and contents of host and
 device memory

 Parallel Nsight for Visual Studio
 Build-in interfaces for debug in GPU

 Break points
  Local variables

 Multi-GPU support
 Video tutorial:

  http://developer.download.nvidia.com/tools/ParallelNsight/Videos
/Parallel_Nsight_1.0_CUDADebug.wmv

6

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Device pointers and host
 pointers are not the same

  For an internally-consistent
 data structure on the
 device, you need to write
 data structures with device
 pointers on the host, and
 then copy them to the
 device

7

Host Device

data

ptr

data

ptr

data

ptr

data

ptr

data

ptr

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 warpsize
 Another built-in variable for the number of threads

 in a warp
 If you have to write code dependent on the warp size, do

 it with this variable rather than “32” or something else

 Warp voting
 Warp And, Warp Or (__all and __any)

 Allows you to do a one-bit binary reduction in a warp with
 one instruction, returning the result to every thread

 CPG B.2

8

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 All device requests made
 from the host code are
 put into a queue
 Queue is read and

 processed asynchronously
 by the driver and device

 Driver ensures that
 commands in the queue are
 processed in sequence.
 Memory copies end before
 kernel launch, etc.

9

host thread

memcpy
launch
sync

fifo

device driver

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 To allow concurrent
 copying and kernel
 execution, you need to
 use multiple queues,
 called “streams”
 Cuda “events” allow the

 host thread to query and
 synchronize with the
 individual queues.

 CPG 3.2.7.5
10

host thread

device driver

Stream 1 Stream 2

Event

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 CUDA uses Events for timing purpose and
 synchronization
 GPU timer
 Synchronization (wait until an event is recorded)

 CPG 3.2.7.6

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  texture<Type, Dim, ReadMode> texRef(norm,
 fMode, aMode)

 Creates a reference to a texture object
  Type: the element type of the stored texture

 Can be short vector types, like char4 or uint2

 Dim: the dimensionality of the texture
 ReadMode: choice of return type from fetch

 functions
  cudaReadModeElementType: fetches the “real” elements
  cudaReadModeNormalizedFloat: elements automatically

 converted to normalized floats with magnitude [0,1] when
 fetched

12

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  texture<Type, Dim, ReadMode> texRef(norm,
 fMode, aMode)

  norm: selects normalized indexes or not
  0: texture indexes are integers [0,width-1]
  1: texture indexes are floats [0,1]

  fMode: filtering mode
  cudaFilterModePoint: fetch nearest element
  cudaFilterModeLinear: linearly interpolate result from nearest

 points – only for floating-point Type

  aMode: addressing mode
  cudaAddressModeClamp or cudaAddressModeWrap, for

 whether accesses are clamped to image edge wrap around

13

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 After creating a texture reference, you must bind
 it to a region or memory before use.

  The best way to allocate memory for textures is to
 use cudaArrays

 Compared to global memory, textures have some
 extra overhead, but have some bandwidth
 benefits
 Cached: gives bandwidth benefit when locality exists

 latency still high, even if cached
 Coalescing requirements do not apply

14

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

  Integer atomic ops to global memory
 Supported for compute capability 1.1 and higher (G92 on)
  Fundamentally has the same bandwidth and coalescing

 attributes as normal global memory accesses
 Consumes bandwidth for read and write
 Uncoalesced accesses still burn excess bandwidth
 Non-blocking instructions

  Integer atomic ops to shared memory
 Supported for compute capability 1.2 and higher (GT200 on)

 Major features to look into for doing histograms

15

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Page-locked memory is memory guaranteed to
 actually be in memory
  In general, the operating system is allowed to “page” your

 memory to a hard disk if it's too big, not currently in use, etc.

  cudaMallocHost() / cudaFreeHost()
 Allocates page-locked memory on the host

 Significantly faster for copying to and from the GPU
 Beginning with CUDA 2.2, a kernel can directly access host

 page-locked memory – no copy to device needed
 Useful when you can't predetermine what data is needed
 Less efficient if all data will be needed anyway
 Could be worthwhile for pointer-based data structures as well

16

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 One workstation can support multiple GPUs, each
 of which should be controlled by a CPU thread in
 different contexts (as least the same number of CPU cores as
 the number of GPUs)

 Select GPU by calling cudaSetDevice()
  Inter-GPU communication needs to go through

 host, using memcpy (pinned memory and async)
  The CPU code can use OpenMP and MPI interface

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 Want to render and compute with the
 same data?
 CUDA allows you to map OpenGL and Direct3D

 buffer objects into CUDA
 Render to a buffer, then pass it to CUDA for

 analysis
 Or generate some data in CUDA, and then render

 it directly, without copying it to the host and back

18

Advanced Features

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes

 The CUDA driver has a just-in-time
 compiler built in
 Currently only compiles PTX code
 Still, you can dynamically generate a kernel in

 PTX, then pass it to the driver to compile and run
 Some applications have seen significant speedup

 by compiling data-specific kernels

19

