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ABSTRACT
Product search forms an indispensable component of any e-commerce
service, and helps customers find products of their interest from a
large catalog on these websites. When products that are irrelevant
to the search query are surfaced, it leads to a poor customer experi-
ence, thus reducing user trust and increasing the likelihood of churn.
While identifying and removing such results from product search is
crucial, doing so is a burdensome task that requires large amounts
of human annotated data to train accurate models. This problem is
exacerbated when products are cross-listed across countries that
speak multiple languages, and customers specify queries in multiple
languages and from different cultural contexts. In this work, we
propose a novel multi-lingual multi-task learning framework, to
jointly train product search models on multiple languages, with
limited amount of training data from each language. By aligning
the query and product representations from different languages
into a language-independent vector space of queries and products,
respectively, the proposed model improves the performance over
baseline search models in any given language. We evaluate the
performance of our model on real data collected from a leading
e-commerce service. Our experimental evaluation demonstrates up
to 23% relative improvement in the classification F1-score compared
to the state-of-the-art baseline models.
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• Information systems→ Content ranking; Query represen-
tation; Online shopping; Learning to rank.
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1 INTRODUCTION
Online retail stores such as Amazon andWalmart have now become
an integral part of consumers’ lifestyle. With an ever increasing cat-
alog size, product search is the primary means by which a customer
finds the specific item she is interested in. Moreover, product search
is also used as a proxy for discovery when the customer does not
have a specific item in mind, leading to queries like ‘gifts for 10
year old boy’. A good search engine should be able to parse any
query provided by the customer, and display results that are most
relevant. A consequence of expanding online stores world-wide is
the listing of items across multiple countries, and the option for a
customer to search for items using multiple languages. For instance,
amazon.com allows customers to browse and shop in both English
and Spanish (Español). Each version of the store shows products
in the specific language (based on country or user preference) and
allows search in that language. To ensure high customer satisfac-
tion, the store should be able to surface relevant results for queries
typed in multiple languages, across multiple countries.

Figure 1: (Top row) A simple translation of the query from
English to Italian results in incorrect items being shown for
the latter. (Bottom row) Illustration of our proposedmethod.
The representations of products in languages L1 and L2 are
learned so that similar products across languages (p1, p2 and
P1) are closer. The same for queries (Q1, Q2, q1, q2).
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Information Retrieval (IR) models are typically trained using
historical data of query and click logs from the website. However,
this data is often noisy and suffers from counterfactual biases. Thus,
models trained on such data give results that often mismatch the
user query intent [8]. Training a robust classifier that can catego-
rize a query-item pair as relevant or not requires a large amount of
human annotated data, which is an expensive and time consuming
endeavor. The non-triviality of this task is further compounded
by the listing of products in multiple countries, and users issuing
queries in multiple languages in these stores. One might need to ob-
tain large amounts of human annotated data in multiple languages.

Second challenge with generating sufficient training data across
multiple countries is the rarity of irrelevant items. Most query-
product samples collected from the search engine will have samples
labeled as relevant, and obtaining a large enough set of irrelevant
items from multiple countries is non-trivial.

Finally, items that are popular in one country might not be pop-
ular in another country, and there are cultural differences across
countries that need to be modeled as well. For example, for the
query ‘men’s running shoe’, the most popular item in USA
might not be the most popular item in India. Similarly, ‘gifts for
10 year old boy’ are different in USA and India, due to varying
cultures. For this reason, a simple translation of the queries and
products (e.g., using a sequence to sequence model [30]) will not
work. We experimentally verify this in the sequel (Section 4.6).

The above issues make it challenging to train accurate and robust
relevance models for cross-lingual product search. However, train-
ing such a model is of extreme importance: it allows for sharing of
(sparse) annotated data between countries, and a shared model will
make it easier to maintain. Furthermore, multi-task learning has
shown to be advantageous when compared to single task models,
improving the performance of each task in the process. To this end,
we propose Language-Agnostic Product Search (LAPS), a novel
multi-task learning strategy to learn a language-agnostic query and
product representation for query-product matching, with a focus
on improving cross-lingual query-product relevance in e-commerce
online stores. Our work aims to reduce the number of mismatched
items shown in response to a user-specified query across multiple
languages across multiple countries. To be more precise, given a
tuple (q,p) of a query q and a product title p, we want to classify
whether this tuple is a match or not, based on the relevance be-
tween q and p 1. Learning language-agnostic representations for
queries and products allows us to learn a representation for queries
from different languages into a common latent query space, and for
products from different languages into a common latent product
space, respectively. This representation can then be used to train a
common shared classifier, that can classify whether a query-product
pair is relevant, irrespective of its language. It also enables the clas-
sifier to jointly learn from the search data from different languages,
as the classifier now uses the representation from the shared vector
spaces. Having a common representation allows the classifier to
be more robust, by accounting for inter-language vagaries. Once a
shared representation is learned, and we have a means to embed

1Note that the products that are finally shown to the user depends on multiple factors
beyond relevance, but that is beyond the scope of this paper.

queries and items in their language-agnostic latent spaces, we can
generalize the classifier to new languages.

The contributions of our work are as follows: We first propose
an efficient product classification model that takes as input a user
query, and a product title, and classifies whether they are relevant
or not. We use transformer-based encoders to learn the representa-
tion for both query and product titles. In contrast to the traditional
recurrent neural network (RNN) based models, transformer units
can compute the text sequence representation in a fully parallelized
manner, making our model an ideal fit for production environ-
ments, where latency is a primary concern. Second, to overcome
the problem of limited availability of training data, we propose a
novel mechanism to learn language-independent representations
for query and product titles, so that themodel can jointly utilize data
frommultiple languages for training. Our framework is a multi-task
model, where each task corresponds to a language, with the shared
parameters being from the classifier. We learn language-specific
query and product title encoders. We perform extensive qualitative
and quantitative experiments on data from an e-commerce web-
site and show that the proposed LAPS model outperforms several
mono-lingual and multi-lingual baselines. To the best of our knowl-
edge, our work is the first to address the problem of cross-lingual
information retrieval in a product search context, where similarities
between queries are based on items purchased and not a simple
translation.

The rest of this paper is organized as follows: Section 2 provides
an overview of the existing techniques related to the work proposed
in this paper. In Section 3, we introduce the proposed LAPS model,
and provide details regarding the training and optimization pro-
cess. Section 4 describes the details of the experimental evaluation
including baseline techniques and the results obtained from our
empirical evaluation. Finally, Section 5 concludes the paper, with
possible directions for future work.

2 RELATEDWORK
Search and Ranking Models: Most of the earlier works in the

information retrieval domain are inspired by the keyword-based
methods, which were first used for document retrieval [26, 27]. Re-
cently, many neural network based ranking models have been pro-
posed, primarily focused on text search. Such methods can broadly
be grouped into two categories: Representation based methods
learn a fixed vector representation for queries and documents, and
then compute their relevance. Examples of such methods include
Deep Semantic SearchModel (DSSM) [14] and Convolutional DSSM
(CDSSM) [29]. These methods learn query and document embed-
dings by using n-grams, which do not effectively learn semantic
intent. This is overcome by using word embeddings by ARC-1
model [13]. Another class of neural ranking models are interaction-
based methods, that first compute interaction matrices between
query and document vectors, and then pass this matrix through a
classification network. MatchPyramid [23] belongs to this class of
models, where it uses fixed word embeddings to compute the inter-
action matrix. This does not encode the contextual dependencies in
the representation, and can lead to poor performance. MV-LSTM
[32] and HAR [35] address this problem by using Bi-RNN encoders
to encode query and document word vectors, and then compute



their relevance. However, the use of LSTM/GRU layers makes these
models computationally slow. Moreover, interaction-based methods
cannot be used for online inference, since they need to compute
interaction vector of a query with every document in the corpus.

Product Search and Representation Learning: E-commerce search
is a broad area of research, and has multiple facets and unique chal-
lenges, as discussed in [15]. Several different techniques, ranging
from theory-based models [18], to keyword-based models [9], have
been proposed in this domain. The authors of [20] proposed an
e-commerce search model that ranks best-selling products higher
in product search. The work in [7] studied the importance of vi-
sual attractiveness in e-commerce search. Another line of work in
this domain focuses on the impact of product diversity in order to
improve the search results [25]. In the e-commerce search domain,
a majority of recent works focus on utilizing user activity data
(such as browsing history and click-through rate) for personaliz-
ing search results [4, 22, 33]. These behavioural models utilize the
implicit feedback signals from customers, based on their browsing
history, for improving the search results. However, there exists a
very fat tail of user queries for which there is no reliable behavioral
data, and hence methods that rely on user behavior typically do
not generalize well.

Machine Translation and Cross-Lingual Search: Machine trans-
lation using sequence-to-sequence models is a popular topic of
research [2, 30]. In [19], the authors propose a translation-based
methodology for product categorization in e-commerce platforms.
However, translation-based methods are aimed at generating a text
sequence in a target language, given an input in a different language.
Using neural networks for semantic similarity between a pair of
text sequences has been studied before in [24, 34], and for matching
sentences from different languages in [5]. A key difference in our
context is that we are interested in cross-lingual product search,
where notions such as semantic similarity carry less meaning. Most
previous works on cross-lingual IR (CLIR) has primarily focused on
dictionary based methods to translate queries between languages
[3]. In [28], the authors propose to learn shared representations for
CLIR, but the representations depend on language pairs, and no
effort is made to align queries across languages in a latent space.
Moreover, works on standard IR does not carry over seamlessly to
product search, due to various challenges mentioned above.

3 THE PROPOSED MODEL
In this section, we introduce our proposed Language-Agnostic Prod-
uct Search (LAPS) model, which is a neural network based model
which can classify whether a given query-product pair is relevant
or not, and can jointly be trained using the data from various lan-
guages.

3.1 Problem Setup and Notations
Let us assume that there are a set of languagesL = {l1, .., lk }, and hu-
man annotated query-product data Dcls = {dl1, ..,dlk } from each
of these languages. Let dli = {(q

li
1 ,p

li
1 ,y

li
1 ), .., (q

li
|li |
,pli
|li |
, ,yli
|li |
)},

where |li | is the number of pairs from the language li . In this paper,
we assume the labels ylij to be of binary relevance, but the method
that is being proposed in this work can be trivially extended to

other related problems such as regression, ranking, etc. The main
goal of this work is to build a model that can classify an unknown
query-item pair in any language in L as being relevant or not.

To further guide the model training, we also have two additional
datasets. DQQ = {d

qq
li ,lj
}ki , j=1,i,j is a query-query dataset across

pairs of languages, such that each sample corresponds to a pair
of queries that should be “aligned” (to be made clear later). Sim-
ilarly, we also assume we have a product-product dataset Dpp =

{d
pp
li ,lj
}ki , j=1,i,j . In the cross-lingual e-commerce search that is be-

ing investigated in this work, DPP are pairs of products that are
cross-listed across countries. DQQ consists of query pairs in two
countries that led to the purchase of the same (cross-listed) item.

3.2 Model Architecture
The basic building blocks of LAPS are described in detail below.
Figure 2 shows a detailed schematic of the architecture.

3.2.1 Word Embeddings and Dynamic Vocabulary. To feed the input
query and product title word features to our model, we use an
embedding lookup layer in our model. This layer takes as input
the raw word tokens {wq

1 , ..,w
q
m } for the query q and {wp

1 , ..,w
p
n }

for the product title p, and returns the word embedding vectors
{e
q
1 , .., e

q
m } and {e

p
1 , .., e

p
n } for q and p, respectively.

In contrast to the traditional text data, we require our models to
deal with a dynamic vocabulary, since items are continually being
listed and de-listed from the service, and user preferences change
over time and display seasonality. We use Sentencepiece [17], a
kind of subword tokenization to deal with this problem. Second,
user queries and item titles are structured very differently from
traditional “natural" language. Hence, we create separate corpora
of anonymized user query logs and item titles for every language,
and train our sentencepiece embeddings separately for queries and
titles, for each language.

3.2.2 Encoders for Query and Product Titles. We use a transformer
[31] based encoder to embed the contextual information in the
query and title sequences, as they are computationally cheaper
than recurrent architectures such as RNN, GRU, and LSTM [6, 12].
Furthermore, recurrent architectures computeword representations
conditioned on adjoining words, and as we mentioned earlier, user
queries and item titles do not follow standard natural language
structure to make recurrent units meaningful.

The encoder consists of a layer of transformer units, that takes
as input the word vectors, and returns the contextual representa-
tion for each of these words in the sequence. Given the embedding
vectors {eq1 , .., e

q
m } and {e

p
1 , .., e

p
n } from the previous layer, the en-

coders return the contextual representationsU q = {u
q
1 , ..,u

q
m } and

U p = {u
p
1 , ..,u

p
n }, respectively.

3.2.3 Self-Attention Layer. To compute fixed-dimensional vectors
for the query and product titles, we utilize a self-attention pooling
layer with a scaled dot-product attention [31]. This choice was
made considering the fact that it is much faster compared to other
attention mechanisms such as [2] or [21], while giving a perfor-
mance similar to others. This layer takes the output of the query
and product transformer encodersU q andU p , and returns a pooled
representation vq and vp , respectively, where



Figure 2: Transformer-based Mono-lingual product search
model.

Figure 3: Bi-lingual product search model. The model from
Figure 2 is used to learn the query and product representa-
tions, but an additional alignment module is added (in gray
blocks), while the underlying classifier is shared. The align-
ment module helps align the query and product representa-
tions across two languages.

Figure 4: Multi-lingual product search model. This architec-
ture is an extension of the bi-lingual model shown in Figure
3 tomultiple languages. The alignmentmodule aligns query
and item representations across several languages while the
underlying classifier is shared.

a
q
i =

u
q
i (u

q
i )
T

√
du

, α
q
i =

exp(aqi )∑m
j=1 exp(a

q
j )
, vq =

m∑
t=1

α
q
t u

q
t (1)

Here, du is the dimension of the transformer outputs. The repre-
sentation vp of the product title can also be computed similarly.

3.2.4 Classifier. The query and product feature vectors are fed to
a classifier, which computes the final relevance label. The classifier
has two main components:

Interaction Layer: After learning the query and product rep-
resentations, we compute the interactions between these two rep-
resentations. The interaction vector x is computed as follows: x =
[vq ,vp ,vq ⊙ vp ]. ⊙ denotes the Hadamard product.

Classification Layer: The interaction vector x is fed to a clas-
sification module that computes the final relevance label r . This
module is a 3-layer feed-forward network with Rectified Linear
Unit (ReLU) activation function.

Algorithm 1 Training Language-Agnostic Product Search Model

Require: Language set L, Classification dataset Dcls , alignment
datasets DQQ ,DPP , number of epochs Nepochs , network hy-
perparameters, step sizes η,γ .

1: Initialize model parameters {θ liq }ki=1, {θ
li
p }

k
i=1, θcls .

2: Pre-train the classifier and the encoders using the procedure
described in Section 4.5

3: for epoch ← 1 to Nepochs do
4: for all li ∈ L do
5: for all j , i do
6: Train θ liq , θ

lj
q on the query alignment task using dqqli ,lj .

θ liq ← θ liq − γ∇θ liq
L
QQ
li ,lj

θ
lj
q ← θ

lj
q − γ∇θ

lj
q
L
QQ
li ,lj

7: Train θ lip , θ
lj
p on the product alignment task using dppli ,lj .

θ lip ← θ lip − γ∇θ lip
LPP
li ,lj

θ
lj
p ← θ

lj
p − γ∇θ

lj
p
LPP
li ,lj

8: Train θ
lj
q , θ

lj
p , θcls on classification task using dclslj

.

θ liq ← θ liq − η∇θ liq
Lclsli

θ lip ← θ lip − η∇θ lip
Lclsli

θcls ← θcls − η∇θclsL
cls
li

3.3 Language Alignment for Queries and
Product Titles

The next step is to align queries and product titles across multi-
ple languages, in order to utilize a shared classifier. Specifically,
we need to embed queries (or products) in a universal query (or
product) vector space that is language-agnostic. To have a mean-
ingful language-agnostic representation, we need to ensure that
queries from multiple languages that have the same product in-
tent are aligned in the universal query latent space. For example,
consider the queries ‘audio jack cable’ and ‘aux cables’ in
English, and ‘aux kabel’ and ‘kopfhörerkabel’ in German. All
these queries have a similar product intent, which is aux cables.
Hence, in the language-agnostic query latent vector space, they



should be close to each other. Similarly, titles of same products
in different languages, such as ‘Firplast Round Cardboard’ and
‘Firplast Rund aus Pappe’, should be aligned close to each other
in the language-agnostic product vector space.

To this end, we use two alignment modules, one for the queries,
and other for the product titles. Each of these alignment mod-
ules ensures the language-independent alignment of queries and
product titles in their individual common vector spaces. Figure 3
illustrates this concept for two languages. Given two queries, qli
and qlj , from languages li and lj , respectively, we first compute
their pooled representation using their respective language-specific
encoders followed by pooling, to get the representations vliq and

v
lj
q , respectively (Equation (1)). We then minimize the squared dis-

tance d(vliq ,v
lj
q ) between these two vectors, which we term as the

query-query alignment loss. A similar process is carried out for
the product titles to align the pooled representations from different
languages with each other. More importantly, while training the
alignment module, only the weights of the respective encoders are
allowed to be tuned, and all other encoder weights are frozen.

3.4 Shared Classifier for Query-Product Pairs
from Multiple Languages

Figure 4 shows our complete LAPS architecture. We repeat the
architecture for two languages described above to the set of all
languages L. Finally, we obtain a language-agnostic query (and
product) space, where the respective encoders can embed queries
and product titles. These query-title pairs are fed to a common
classification module (Figure 2) to obtain the relevance score for the
query-product pair. While training the classifier, we only train the
weights of the classifier, and the query and product title encoders
of the language to which the query-product pair belongs to. The
weights of all other encoders are frozen.

3.5 Optimization
We will now provide additional details about model training. Note
that the dataset Dcls is made up of human annotated data from
multiple languages, and is relatively small. DPP can be obtained
from product catalogs, whileDQQ can be obtained from anonymous
user logs. In ourmulti-task learning based framework that optimizes
both classification and the query-product alignment tasks, each
dataset is used to optimize the loss corresponding to the using parts
of our LAPS model shown in Figure 4.

Classification Loss: We use a weighted binary cross entropy for
Dcls , to account for the heavy class imbalance. Specifically, since
the dataset is created from sampling search engine results, there
exists far more relevant items than irrelevant ones. For a given
language li , the classification loss is given by:

Lclsli
=

∑
(qlij ,plij ),y

li
j ∈d

cls
li

ylij log f cls (qlij ,p
li
j ) +

α ∗ (1 − ylij ) (1 − log f cls (qlij ,p
li
j ))

(2)

Here, α is the scaling factor for the minority class (in our case, is
the irrelevant pairs with label = 0). f cls (·) is the classifier for LAPS.

Alignment Loss: To align the query-query and product-product
representations together, we need to ensure that the queries in
different languages with similar product intent are close to each-
other in the feature space. We use the squared Euclidean distance
as the objective function for the alignment task. Given a pair of
languages li and lj , the objective function is:

L
QQ
li ,lj
=

∑
(qli ,qlj )∈dqqli ,lj

| |vliq −v
lj
q | |

2
2, (3)

where the minimization is over all pairs in DQQ . A similar loss is
applied for all pairs in DPP :

LPP
li ,lj
=

∑
(pli ,plj )∈dppli ,lj

| |vlip −v
lj
p | |

2
2 (4)

The detailed training procedure is described in Algorithm 1.

4 EXPERIMENTAL RESULTS
In this section, we perform an extensive set of experiments on
anonymized search data logs from Amazon.com, with products
listed in multiple countries and languages. First, we present quanti-
tative results, comparing LAPS with several baselines, and evalu-
ating it’s performance on the relevance task, as well as how well
LAPS aligns queries and titles in the language-agnostic space. Next,
we also include qualitative results, studying the quality of the query
and product alignment in the aforementioned vector space.

4.1 Dataset
The data we use in our experiments is collected from five different
languages: French (FR), Spanish (ES), Italian (IT), English (EN), and
German (DE). As explained in section 3.1, we need 3 datasets. We
obtainDcls via human annotated query-product pairs sampled from
the search results in each of the above country-specific services. The
annotators return a binary label that indicates the item’s relevance
to the query. Since this dataset consists of human labels, the relative
number of pairs is small. We provide some basic statistics of our
datasets in Table 1.

Table 1: Samples per country in Dcls . The positive and nega-
tive labels refer to relevant and irrelevant samples.

Dataset # Train pairs (+ | -) # Test pairs (+ | -)
FR 42,299 (37,267 | 5032) 20,797 (17,930 | 2,867)
ES 59,223 (50,813 | 8,410) 23,395 (19,973 | 3,422)
IT 118,404 (91,147 | 27,257) 46,309 (38,908 | 7,401)
EN 313,390 (289,864 | 23,526) 48,504 (45,638 | 2,866)
DE 287,346 (267,990 | 19,356) 64,392 (58,952 | 5,440)

We next describe the query and product alignment datasets,
DQQ and DPP . For the former, we use anonymous user logs across
the above countries. To create a query-query pair, we consider an
item that is cross-listed across different countries. Then, we let
qi ,qj ∈ D

QQ if qi was used to purchase the item in country i , and
qj was used to purchase the same item in country j . Thus, the pairs
of queries that we want to align are not perfect translations of each
other, but instead queries that have the same inherent product in



mind. This is important, since the same item might be purchased
in two countries via queries that are not translations. The dataset
DPP is easier to create, since we already have the cross-listed items
from the catalog across the countries. Hence, for both query-query
and product-product alignment tasks, we have 5C2 = 10 pairwise
combinations. Detailed statistics are shown in Table 2.

Table 2: Number of samples in the Alignment datasets.

Dataset #QQ pairs (Train | Test) #PP (Train | Test)
FR-ES 444,793 | 23,430 679,420 | 32,622
FR-IT 581,536 | 30,639 686,894 | 36,037
FR-EN 762,100 | 37,900 682,948 | 35,944
FR-DE 765,520 | 34,480 751,774 | 39,324
ES-IT 415,814 | 21,891 680,797 | 35,388
ES-EN 592,018 | 31,234 676,631 | 5,812
ES-DE 640,057 | 33,711 680,164 | 35,922
IT-EN 766,088 | 33,912 739,443 | 39,188
IT-DE 766,801 | 33,199 748,901 | 39,637
EN-DE 777,001 | 22,999 745,929 | 39,526

4.2 Evaluation Metrics
For the quantitative evaluation of our model against baseline tech-
niques, we use Precision, Recall, and F1-Score, since we deal with
classification tasks. For measuring the performance of the align-
ment tasks, we use Recall@k for k ∈ {1, 3, 5}. We use the notations
P,R, F to denote Precision, Recall, and F1-score, respectively.

4.3 Baseline Methods
We compare our LAPS model against the following baselines:
• Mono-lingual Model: The simple transformer-based mono-
lingual relevance model (as shown in Figure 2). The model takes
a query and a product title as the input, encodes them through
a transformer and self attention, and computes their relevance
using the classifier. This is the simplest baseline model that we
will use for comparison.
• Translation to English: We first train the mono-lingual model
mentioned above on English data, since that is the largest amongst
the classification datasets we have. For all other languages, we
translate the test queries and product titles to English using AWS
translate, a publicly available translation service, and then evalu-
ate the performance using the pre-trained mono-lingual model.
• Translation to Italian: Since IT was the best performing mono-
lingual model, we hypothesized that translation to Italian could
potentially give a good performance. Hence, similar to the above
baseline, we translate the query and product titles from other
languages to Italian, and then evaluate the performance on the
mono-lingual IT model.
• MatchPyramid [23]: This model computes pair-wise interac-
tions between the word vectors of two sequences, which is then
passed through a CNN to compute the relevance between the
sequences. The interaction matrix is independent of the input
features. Hence, we compute the interaction matrix of (q,p) pair
using their language-specific word vectors, and then use a com-
mon CNN shared across all languages for relevance computation.

• MV-LSTM [32]: This model computes the contextual represen-
tation of the two text sequences using Bi-LSTM encoders, and
then the interaction matrix using these contextual word repre-
sentations. It then uses a feed-forward network for computing
relevance.
• Model-Agnostic Meta Learning [11]: To study the impact of
using cross-lingual training over more sophisticated approaches
such as meta learning, we use this baseline for our experiments.
In our implementation, we regard each language as one task,
and hence, given a query and product title from this task, the
objective of the model is to predict their relevance. The model
uses a shared classifier, but different encoders for queries and
titles for each language.

4.4 Implementation Details
We implemented our model in TensorFlow [1]. The model was
trained using Adam optimizer [16] with a learning rate of 10−4.
The encoders for query and titles for all the languages used two
attention heads, with an output embedding dimension of 256. The
model was trained using a dropout of 0.3. For each country, the
initial token embedding dimension was fixed to be 256. The value
of the cross entropy weight for the minority defect class was set
to 10. All these hyperparameter values were obtained based on the
empirical results.

4.5 Model Initialization and Pre-training
Since pre-training [10] generally helps in improving the perfor-
mance of neural models by providing a good baseline initialization
for complex models, we randomly choose one language li ∈ L,
and train the corresponding encoders θ liq and θ lip , and the shared
classifier θcls , using the classification data from li . Then, we fix the
classification weights and the encoder weights for li , and ∀lj ∈ L\li .
We pre-train the corresponding transformer encoders by perform-
ing the pair-wise training using dqqli ,lj and d

pp
li ,lj

.

4.6 Quantitative Results
Wewill now present the results obtained in the empirical evaluation
of our model. We refer to our LAPS model trained on T languages
as LAPS-T. In Table 3, LAPS-2 refers to LAPS with 2 languages.
Also, the notation LAPS-2(+FR) refers to the LAPS model trained
on FR and the language corresponding to the particular column.

Model architecture analysis: From Table 3, we can observe that
MatchPyramid andMV-LSTMhave significantly lower performance
compared to the mono-lingual version of our transformer model.
Since MatchPyramid uses word vectors to compute the similarity
matrix, it’s performance is largely dependent on the quality of word
embeddings. However, as mentioned earlier, in the product search
scenario, the word vectors do not have rich semantic information.
MV-LSTM includes contextual information via a Bi-LSTM, but we
can observe that the transformer based models work better, due to
lack of proper ordering of words in user queries.

Multi-lingual learning analysis: We observe that using multi-
lingual training significantly improves the performance of the
search defect model. Even the bi-lingual LAPS significantly outper-
forms the other baselines by a wide margin. This can be attributed



Table 3: Quantitative comparison results of the proposed LAPS model with several state-of-the-art models on five different
query-product datasets from various European languages.We observe that the penta-lingual (LAPS-5) model achieves the best
results compared to using fewer languages, and also the other baseline methods. NA indicates ‘Not Applicable’.

Model Dataset
FR ES IT EN DE

P R F P R F P R F P R F P R F
Mono-lingual 40.93 44.15 42.48 41.54 44.72 43.07 49.93 49.86 49.89 38.98 38.51 38.74 34.30 37.61 35.88
Translate (EN) 35.89 49.93 41.76 31.08 56.01 39.97 34.44 49.75 40.70 38.98 38.51 38.74 22.95 34.85 27.68
Translate (IT) 24.68 60.89 35.12 23.86 54.05 33.10 49.93 49.86 49.89 12.34 49.09 19.72 12.56 48.09 19.92
MV-LSTM [32] 30.59 53.09 38.82 30.19 43.12 35.51 30.08 52.87 38.34 30.97 31.93 31.44 29.03 51.07 37.02
MatchPyramid [23] 19.02 53.71 28.09 17.63 63.61 27.61 22.09 55.07 31.53 9.29 40.93 15.15 13.01 46.40 20.33
MAML [11] 42.97 42.26 42.61 43.88 51.76 47.50 49.04 52.10 50.52 32.06 41.60 36.21 36.85 37.85 37.34
LAPS-2(+ FR) NA NA NA 47.19 45.13 46.14 50.42 51.08 50.75 38.38 36.13 37.22 37.47 41.12 39.21
LAPS-2(+ ES) 41.25 47.72 44.25 NA NA NA 52.34 48.41 50.30 37.07 39.01 38.01 39.71 40.24 39.97
LAPS-2(+ IT) 49.53 42.89 45.97 40.94 54.46 46.74 NA NA NA 36.94 41.95 39.29 43.18 40.68 41.89
LAPS-2(+ EN) 50.75 46.15 48.34 52.17 52.89 52.33 49.87 54.27 51.98 NA NA NA 43.51 43.18 43.35
LAPS-2(+ DE) 45.90 48.81 47.31 51.51 54.08 52.76 50.71 51.05 50.88 37.74 40.09 38.88 NA NA NA
LAPS-3(ES+DE+UK) NA NA NA 51.74 53.05 52.39 NA NA NA 39.52 40.58 40.04 44.50 42.09 43.26
LAPS-3(IT+DE+UK) NA NA NA NA NA NA 55.50 49.68 52.43 38.81 40.49 39.63 45.61 41.12 43.25
LAPS-5 53.47 52.28 52.87 56.83 54.63 55.71 57.93 52.23 54.93 39.54 41.63 40.56 44.80 43.77 44.28

Table 4: Similar Query and similar Product results using the language agnostic vectors. The upper (red) and lower (green)
triangular portions correspond to product and query alignments respectively. For each language pair, the first row represents
the recall values obtained by training a bi-lingual model, and the second row is the recall of LAPS-5.

Dataset
FR ES IT EN DE

R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5

D
at
as
et

FR NA NA NA 26 39 45 14 25 31 19 31 37 20 32 39
NA NA NA 41 56 63 38 53 60 35 50 58 38 54 61

ES 30 39 42 NA NA NA 11 20 25 33 50 59 19 33 40
65 69 71 NA NA NA 37 52 58 52 68 75 31 45 53

IT 28 39 44 36 44 46 NA NA NA 26 40 46 23 37 44
46 48 51 54 58 62 NA NA NA 35 50 57 31 46 53

EN 57 63 65 56 60 62 64 71 73 NA NA NA 37 51 58
66 74 76 73 75 77 66 74 76 NA NA NA 32 46 53

DE 28 37 40 54 64 66 43 48 51 67 71 74 NA NA NA
53 62 69 31 56 59 47 55 58 71 74 77 NA NA NA

to the fact that multi-lingual training helps in overcoming the data
sparsity issue, and exposes the model to more training data (cover-
ing a wide range of cases), which otherwise might not be present
in the single language data. Translation baselines have not been
trained to learn queries that are similar based on purchases, but
rather trained to produce accurate natural language translations.
This makes it hard for the model for discover semantic and product
intent of the query. Using data from multiple languages also helps
the model learn a richer semantic understanding of the queries and
products, since we use similar tuples from multiple language pairs
in the training process.

Impact of number of languages used in training: In general, we
observe that adding more languages in the training dataset helps
in improving the model performance. The tri-lingual model out-
performs the bi-lingual models in almost all the cases (except for
DE where the performance is at par with the bi-lingual models).

The penta-lingual model significantly outperforms all the other
versions of LAPS, which indicates that adding more languages is
generally better, as it exposes the model to more training data.

Table 4 quantifies the performance of our alignment module into
a language-agnostic query and product space. The lower triangular
portion represents Recall@k values for query alignment, and the
upper triangular portion for the product alignment. The recall is
computed by using the ground truth query and item pairs in the
DQQ and DPP test datasets, and considering the K nearest neigh-
bors by Euclidean distance over the embeddings of that particular
language. With the exception of DE-ES (query-query) and EN-DE
(product-product), we see that the LAPS-5 model significantly im-
proves upon the recall values compared to a bilingual (LAPS-2)
alignment, indicating that the presence of other languages strongly
forces the “correct" alignment.



Table 5: Nearest Neighbors of Queries in one language, for all other languages.

Source Query (EN): desktop speakers
FR ES IT DE
sony srs-xb10 noir altavoces ordenador sobremesa cassa bluetooth sony extra bass lautsprecher pc
haut parleur bluetooth altavoz ordenador cassa bose bluetooth portatile bluetooth für den pc
mini enceinte bluetooth altavoces pc cassa jbl bluetooth portatile powerful pc boxen
haut parleur pc microfono pc jbl flip 4 speaker lautsprecher laptop

Source Query (DE): microsd-karte
FR ES IT EN
carte sd classe 10 micro sd 64 gb clase 10 scheda sd 64 giga huawei sandisk extreme micro sd 64gb
carte memoire sdxc tarjeta memoria scheda sd 128gb micro sd card sandisk
carte micro sd tarjeta sd 64 gb memoria sd 16 gb sd cards 64gb
carte micro sd pour switch tarjeta memoria movil scheda micro sd micro sd card 64

(a) Mono-lingual models trained on IT and
EN. The queries and items for two languages
are spread out, since no effort ismade to align
them.

(b) LAPS-5 (IT and EN selected)model results.
The same as in Figure 5c, with IT/EN high-
lighted.

(c) LAPS-5 model results. Query and item em-
beddings separate out (approximately along
the 45◦ line). Across languages, queries and
items are intermingled, showing that the L2
loss that we use helps in alignment.

Figure 5: TSNE embeddings for the query and item representations learned from Mono-lingual and LAPS-5 models.

Table 6: Same language nearest neighbors of queries.

Source Query (EN): desktop speakers
bluetooth speakers

usb speakers
wireless speakers bluetooth powerful

portable speaker
Source Query (DE): microsd-karte

sd karte micro 32 gb
micro sd karte 64
mini sd karte

micro sd - karte

4.7 Qualitative Results
For a qualitative evaluation, we analyze the language-agnostic em-
bedding space obtained by our model. We obtain the nearest neigh-
bor queries for a source language in all other languages in Table 5,
and for the same language in Table 6. We also plot the query and

item embeddings using t-distributed stochastic neighbor embed-
ding (TSNE) method in Figure 5. From Figure 5a, we can observe
that a model trained separately on single language obtains good
separation of queries and items, but no alignment. However, in Fig-
ure 5c, LAPS-5 aligns queries and items across multiple languages
while maintaining query-item separability.

5 CONCLUSION
In this paper, we presented Language-Agnostic Product Search
(LAPS), a novel neural model to predict the relevance of a query-
product pair for improving e-commerce search across multiple
languages. The model utilizes training data frommultiple languages
and uses cross-lingual training to learn a language-independent
representation for queries and product titles. We use an efficient
transformer-based network with self attention pooling, to learn the
representations for queries and product titles. By using data across
multiple languages, we showed that we improve the performance of
our model over baselines trained on single language. Experimental
evaluation with state-of-the-art baselines suggest that LAPS gives
significant reduction in the number of irrelevant search results.
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