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ABSTRACT 
Technology assisted home based rehabilitation therapy offers a 
potentially cost-effective and convenient solution for those 
affected by neuro and musculoskeletal impairments. Home based 
solutions, however, face many challenges, the most significant of 
which is trying to reproduce a complex adaptive therapy 
experience in the home without the continuous presence of the 
therapist. Building on our prior work creating interactive systems 
for the clinic, we present our home-based system that integrates 
customized therapy objects, camera based movement capture and 
assessment techniques, and a flexible exercise protocol aimed at 
generalizing to variable daily life activities. We present findings 
from two pilot studies with unimpaired and impaired users and 
describe how insights from these studies will guide future work. 

CCS CONCEPTS 
• Human Centered Computing → Usability Testing; Interaction 
design process and methods 
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1 INTRODUCTION 
According to the American Heart Association [6] every year over 
795,000 people in the United States experience stroke, with  
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approximately 80% of stroke survivors experiencing hemiparesis,  
meaning weakness of the left or right side of the body. As a result, 
those impacted may have trouble performing everyday activities 
such as eating, dressing, using the bathroom, and manipulating 
daily life objects like door handles, driving wheels, etc. In 
additional to its effect on everyday life, stroke costs an estimated 
$36 billion each year within the United States alone. This total 
includes the cost of health care services, medications to treat 
stroke, and missed days of work, making stroke the leading cause 
of serious long-term disability.  
 
Stroke survivors can benefit from long-term rehabilitation 
therapy, as determined by findings from several large-scale 
studies [14, 31]. However, there are multiple challenges with this 
approach, notably the financial cost, access to and availability of 
therapists, and difficulties arranging regular transportation to 
hospital and clinic facilities over a prolonged period of time. A 
potential alternative has emerged in recent years in the form of 
technology assisted home-based unsupervised or lightly 
supervised therapy.  Home based interactive rehabilitation can be 
defined as computer-assisted therapy with limited engagement of 
the therapist, either through remote supervision [25] or a limited 
number of visits to the home [4]. Recent developments using 
relatively cheap technologies such as tablet computers and depth 
cameras such as the Kinect increase the possibility of long-term, 
affordable home monitored care [5, 18, 25, 30]. This form of 
therapy can be effective as the primary mode of treatment [2], or 
as a support mechanism for traditional therapy in the clinic [1].  
However, the scaling of interactive home-based therapy faces 
significant challenges [5], beginning with the replication of the 
therapist functions, the cost and potentially intrusive nature of 
domestic systems [3], the lack of consensus regarding quantitative 
movement measurements [16], and challenges in motivating 
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adherence to home based training [22]. A viable system for 
interactive home-based rehabilitation must coherently address 
these nested problems from a multidimensional perspective, 
integrating technical, social, medical, design, and HCI knowledge.   
 
In this paper, we describe the development of our approach to 
home based stroke rehabilitation, building on findings from the 
literature and our own work carried out in hospitals and clinics 
over the last decade. We introduce the current implementation of 
our interactive system and describe findings from two pilot 
studies with unimpaired and impaired users. We conclude with 
discussion of the opportunity space moving forward and proposed 
future work.   

2 RELATED WORK 

2.1 Fundamentals of Contemporary Adaptive Therapy 
Traditional therapy of the upper extremity in the clinic is usually 
composed of repetitive movement tasks such as reaching and 
grasping an object.  A participant performs these movement tasks 
in the clinic under the supervision of a physical therapist, who 
visually monitors the improvement in functionality and quality of 
movement over time, to provide personalized rehabilitation 
therapy. To make all these decisions, the therapist needs to track 
and analyze the activity of the stroke survivor (including 
interactions with different objects, environments, and people) over 
multiple time brackets (from real-time performance to progress 
over months). The observations include an overall assessment of 
functionality, as well as detailed aspects of movement quality that 
may affect functionality.  
 
Approaches to stroke rehabilitation have evolved considerably in 
the last two decades, with an emerging focus on patient use of 
goal-driven, active problem solving strategies [24] and 
experimentation with training tasks that can generalize to multiple 
activities of everyday relevance [22, 24, 31].  Adherence to long 
term training and functional use of the affected extremity 
improves with enhanced self-efficacy [22]. The therapist therefore 
needs to carefully adapt the protocol to be challenging, but not 
frustrating. The therapist must support active participation by the 
patient, reinforce success and help the patient construct a narrative 
of improvement that can motivate and overcome potential 
failures, fatigue, or boredom. The therapist also needs to help the 
patient connect improvement in training to empowerment in 
everyday life, especially in daily life functions important to each 
patient. Finally, the therapist needs to also monitor and address 
the presence of physical or emotional discomfort.  This very 
complex work by the therapist results in a continuous Adaptive 
Training Plan (which we term ATP). The ability of a therapist to 
produce successful ATPs results from years of collective and 
individual experience that is not readily observable or easily 
quantifiable. Therefore, the first and most significant challenge for 
automated, home-based interactive rehabilitation is to reproduce a 
complex adaptive therapy experience in the home without the 
continuous presence of the therapist, while advancing patient self-

efficacy, improving adherence and increasing patient quality of 
life.  

2.2 Movement Capture and Assessment 
Automated movement capture and analysis is a fundamental 
component of the above challenge. Automated approaches for 
tracking and assessing upper extremity activities require capturing 
both the movement of the person and the relation of that 
movement to artifacts of various shapes and functions [13]. 
Detailed information on the hand and object manipulation needs 
to be captured in conjunction with the movement of the whole 
upper limb and the torso [16, 29, 41]. The arms and hands of 
stroke survivors are often deformed and contorted due to a loss of 
neuromuscular control. Because of such physiological limitations, 
stroke survivors often use compensatory movements to perform 
functional tasks, which further increases variance in movement 
performance. Results from prior clinical upper extremity studies 
emphasize the most promising features for functional movement 
analysis, including end effector activity, torso compensation, hand 
shape, and object behavior [5, 11, 15]. The technical infrastructure 
for home based systems must be appropriately reduced, which 
necessitates a concurrent simplification of the sensing approach. 
Insights from the work above, particularly with regard to a 
reduced set of movement features for analysis, are extremely 
useful in helping to determine the selection and implementation of 
ideal sensing technologies and methods. 
 
A key feature used by therapists to evaluate the quality of upper 
extremity functionality is the shape of the hand during a grasping 
task. Understanding hand configurations in terms of functional 
grasps categories is a critical technology needed for understanding 
hand use overall [13] and especially in the context of 
rehabilitation [19, 28, 31]. From a hardware perspective, the 
creation of smart objects presents a potential support solution in 
this context, with several clinical systems developing artifacts 
embedded with sensors to assist in the measurement of movement 
quality, and in particular, with tracking the hand [5, 11]. This 
technical approach has proven effective in supervised settings 
(including our own work), where issues with charging, object 
setup, and object maintenance can be handled by a dedicated 
development team. However, translating this approach to an 
unsupervised home setting presents difficult challenges as each 
electronic or technical component adds another layer of 
complexity for the patient and/or the caregiver to deal with.   
 
Once the movement capture and assessment challenges are 
addressed, the issue of automated feedback needs to be tackled.  
Since internal feedback and assessment mechanisms are affected 
by the stroke, during therapy, patients rely on assistive feedback 
from the therapist to effectively and consistently evaluate their 
performance. These feedback functions need to be transferred to 
computational agents during interactive therapy [15]. Finally,  the 
adaptation decisions made by the therapists also need to be 
gradually transferred to a computational agent [7]. All of these 
issues need to addressed within systems comprised of inexpensive 
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infrastructure, which can fit unobtrusively in small homes and not 
be too complicated or confusing to operate. 

2. 3 Our Approach 
In working together over many years, our diverse team of 
physiotherapists, computer scientists, engineers, designers, and 
HCI experts have tackled the problem of interactive 
neurorehabilitation for the upper extremity of stroke survivors 
over three key stages.  
 
In the first stage, we developed systems for supervised interactive 
rehabilitation in the clinic [8, 9, 11]. Supervised use in the clinic 
allowed for expert observers to monitor the therapy, document 
challenges and areas of improvement, and intervene when 
necessary when, and if, problems appeared. This system was 
marker based and used an extensive array of motion capture 
cameras [11]. Through a series of studies with stroke survivors, 
we were able to identify key kinematic features for evaluating 
movement quality and model their interrelation and their 
correlation to standardized clinical measures of functionality [9]. 
We used arts and interactive computing principles to map each 
feature to an appropriate stream of multimodal feedback (i.e. time 
series data mapped to sound). Through appropriate multimodal 
compositions techniques, we were able to present as many as 6 
streams of feedback together that could be parsed and used by the 
patient for performance evaluation [11]. We were furthermore 
able to analyze the adaptation processes used by the therapists and 
successfully train a computational agent to imitate and predict a 
limited set of adaptation decisions [7].   However, to achieve all 
these computational advances, we needed to limit the set of 
movement tasks that could be performed with the system so that 
we could get a significant amount of coherent data for the actions 
being modeled. A clinical study with 24 stroke survivors showed 
that our system could promote active learning and meaningful 
improvements to movement quality [11].  The study also showed 
that the translation of the training gains to activities of daily living 
required a much more varied set of training activities and 
increased possibilities of therapy adaptation so as to address the 
unique characteristics of each patient [11].  
 
During the second stage, we developed a self-contained system (a 
custom table and screen) aimed towards home use.  The 
movement capture and analysis approach combined a significantly 
reduced marker set, with three motion capture cameras mounted 
on the screen and smart objects embedded in the table.  Therefore, 
only a reduced set of movement features could be captured and 
assessed and used to drive automated feedback. The second 
version increased the variability of tasks that could be performed. 
We tested the system in the clinic with 15 patients using the 
system under light supervision by the therapist [5]. Training with 
the system promoted active learning by the patients, but even this 
reduced infrastructure proved too technologically complex to 
embed in the home.  The multimodal feedback provided by the 
system was effective, but could be overwhelming to interpret 
without the assistance from a therapist.  The variability of tasks 
and the adaptation options were also still too limited for producing 

generalizable learning. This cycle of testing included offline 
rating of videos of patient task performance by expert therapists in 
order to further inform the computational assessment of tasks by 
our system.  Although the therapist ratings were limited to a sub- 
group of the tasks performed, this work showed that an expert 
constructed movement rating system, used in a consistent manner 
by trained therapists, could provide good data for training 
computational agents.  
 
We concluded that successful training at the home needs an even 
simpler computational infrastructure. However, the variability of 
training tasks needs to be increased, along with their ability to 
promote generalizable learning that maps to meaningful activities 
of daily living.  Effective adaptive training at the home needs to 
be lightly supervised by the therapist and the most effective mode 
of light supervision still need to be discovered.   
 
The results of this extensive and varied evaluation helped us 
identify key improvements for the third stage in our process, 
namely the redesign and evaluation of the system as proposed and 
presented in this paper. For the third version of the system, we 
adopted a cyber human system approach, with several complex 
functions offloaded to human actors (patient, therapist, system 
designer). This enables us to reduce the cost and scale of the 
technology infrastructure for a rehabilitation system, while also 
providing a solution that is unobtrusive, adaptable, and suitable 
for varying home environments.  We tested the functionality of 
this version with a group of 15 unimpaired subjects and the 
feasibility of the system with a small group of stroke survivors. In 
the next section we review our system design for the third phase 
of our work and the testing and outcomes from the pilot testing. 
 

Figure 1. a) The interactive stroke rehabilitation system 
including mat, objects, tablet and mounted Kinect; b) set of 6 
objects; c) combining two objects by screwing together 

3 HOME BASED INTERACTIVE REHAB SYSTEM 
Our current home based interactive rehabilitation system consists 
of a laser etched mat (see Fig 1a), six customizable therapy 
artifacts (see Fig 1b), a table mounted Kinect camera and mini-
computer module clamped underneath, and a tablet device (see 
Fig 1a). The mat is placed on a table and acts as a stage on which 
the patient performs each rehabilitation activity using the artifacts 
individually or in combination. Visual markers etched on the mat 
are used to guide the user and can  also support system 
calibration. The Kinect camera is integrated into an adjustable 
stand which allows for maximum visibility of the upper body of 
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the user. The tablet device hosts the dynamic web application 
presenting the training protocol, including the activity 
instructions. 

3.1 System design and implementation 
In the following section, we describe how the design and 
implementation of our system aims to address the key challenges 
identified earlier in creating interactive home based rehabilitation 
systems and developing suitable training environments and 
protocols. 

Embedding systems in the home 
Our system is designed to fit on typical tabletop surfaces found in 
the home, such as a kitchen, dining room, or computer/office 
table. The components are compact and lightweight (none 
individually weighing more than a pound) and can be lifted, 
installed, adjusted, and disassembled using one hand. If desired, 
the system (entirely or individual components) can be removed 
and stored relatively quickly after use, meaning it does not require 
a dedicated permanent installation space, and thus will not intrude 
unnecessarily in the existing setup of the home. Physical system 
components also contain assistive features to both support the 
participant in the straightforward system (re)setup and to assist 
aspects of the computer vision mechanism. For example, metal 
hinges on the outer plane of the mat help setup and maintain 
alignment with the table edge, while embedded magnets in the 
mat, tablet stand, and objects container snap gently together to 
ensure consistent placement. 
 
The mini computer, camera, and tablet (when charging) are 
plugged into one power strip, thus minimizing effort in ensuring 
all components are powered and operational. The mat size and 
markings can be custom cut and inscribed for each user, 
depending on their height, handedness, and limb span and reach. 
Removable elements such as a customized ergonomic seat 
cushion (for comfort and stability), Velcro-mounted cushion pads 
on the seat back (to encourage correct posture), and floor tape 
markings (to ensure correct seat location) are low-cost and 
temporary interventions that support participant and system goals, 
without requiring permanent alterations to the home. Finally, the 
aesthetic look and feel of the mat, objects, and object container 
can also be customized for the participant to amplify the potential 
for seamless integration in their preferred home environment. 
 
The technical infrastructure of our system is greatly reduced 
compared to interactive systems found in the clinic. A Kinect 2 
camera, an ultra compact GIGABYTE mini-pc, and an iPad 
comprise the computational components of our system, which 
keeps the current overall technology cost at around $1300. The 
Kinect provides a relatively inexpensive (<$100) and 
unencumbered solution for tackling hand detection and torso 
movement, while its lightweight form factor means it can be 
easily and temporarily mounted to any available table. The iPad 
touchscreen tablet provides an accessible platform for the 
coordination of communication between the participant and the 
system. We choose to use a tablet computer as studies indicate 

that older adults (who make up the majority of stroke survivors) 
find touch computers ‘less intimidating, less frustrating, and less 
overwhelming’ than traditional computers [23]. The tablet is 
supported on the mat by a custom designed stand with adjustable 
angle settings, allowing the participant to orient the tilt of the 
device to their user preference.   

Movement Capture and Assessment 
Our system adopts a computer vision approach to movement 
capture as this obviates the need for placing specialized markers 
or other devices on the participant themselves. In addition, our 
prior work investigating hand detection using wearable cameras 
under changing light conditions and contexts indicates the 
potential of a vision based approach [17]. In our current 
implementation, we use the Kinect to passively measure hand 
movements and the Kinect SDK body tracking algorithm to track 
the positions of both shoulders as a proxy for torso movement. 
This approach provides coverage for the key movement features 
as defined by prior clinical work [5, 10] and as verified by the 
physiotherapists on our team, namely: 1) end effector activity over 
time and space (reach time, trajectory, velocity profile); 2) hand 
shape (grasp analysis); 3) torso compensation; and 4) object 
behavior. 
 
For hand detection, we use a state-of-the-art regressor as proposed 
in [17] on the RGB images only. The regressor learns a sparse 
combination of color, texture, and gradient histogram features to 
detect hand regions over a variety of illumination condition and 
hand poses. We also apply this regressor for object detection. We 
designed the objects so that their colors are significantly different 
from skin color. As a result, the hand and object detectors can 
robustly detect hand and objects simultaneously within the 
environment. The detection of an object is important because it 
allows us to determine when the subject’s hand is in contact with 
the object. Such information is useful to determine the correctness 
of the task. We train grasp classifiers for the three primary grasps 
(medium wrap, power sphere and precision pinch) using an 
approach used by Minnen and Zafrulla [20]. We use hand masks 
obtained from the hand detector along with depth data to learn 
random forest classifiers for each individual grasp category 
related to a task. Finally, we use the pose detection algorithm in 
[26] to compute 3D joint positions from depth images. In our 
analysis, we use the left and the right shoulder joints to keep track 
of movement of the torso.   
 
Using the above movement capture system (hand/object detection, 
grasp analysis, and torso tracking), we implement the movement 
assessment module to judge the performance of the activity. 
Specifically, we aim to track and evaluate, through the 
computational system, key performance errors that are tracked by 
therapists in evaluating performance. The six identified primary 
performance errors are: 1) Low speed: the time for completing the 
activity exceeds a pre-defined threshold; 2) Indirect path: the 
length of the trajectory of the hand movement for object 
manipulation exceeds a pre-defined threshold; 3) Dropped object: 
the object is moving without being held in the hand; 4) 
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Misplacement: the object is placed in an incorrect region for one 
of the activities; 5) Incomplete task: at least one element of the 
activity is not completed; and 6) Torso compensation: large torso 
displacement. The user starts and stops the recording at the 
beginning and end of the performance of each task using the tablet 
interface. This provides a user defined video segment for each 
task performance. We implement a heuristic state transition 
estimator to separate the task into sub-activities by identifying 
when a hand returns/leaves a predefined hand rest zone in the mat. 
The movement capture and assessment algorithms are 
implemented in C++ and the captured videos can be processed 
both in real-time or offline. On average, our implementation 
achieves 5-6 frames-per-second on high-resolution videos 
(1920x1080 pixels for RGB images and 512x424 for depth 
images) on a mini PC with a 2.5 GHz Intel i7 CPU and 16 GB 
memory. 
 
Training environment and protocol 
The set of objects in our system are designed to support cross-
mapping, problem solving, and generalizable activity strategies 
through their open-ended affordances, combinatorial possibilities, 
and perceived correlation with diverse artifacts of daily living. 
The design of the objects is informed by 1) comparative analysis 
of three complementary standards related to stroke rehabilitation, 
human hand grasps, and daily living activity assessment; 2) 
consideration of current and historical therapy artifacts; and 3) 
consultation with leading stroke rehabilitation experts. 
 
We began by performing an analysis of three complementary 
standards of direct relevance – the Wolf Motor Function Test 
(WMFT); the Taxonomy of Human Grasp Types (GRASP); and 
the Motor Activity Log (MAL). The WMFT [31] provides a well 
known method for evaluating upper extremity movement using a 
clearly defined set of common household objects (e.g. soda can, 
pencil, towel, etc.). The GRASP Taxonomy [12] systematically 
classifies 33 different grasp types that have proven useful for 
computational recognition and assessment of human hand grasps 
(e.g., precision grip, power sphere etc.). The MAL [27] is a 
structured set of interview questions used to measure the effects of 
stroke therapy on the use of the impacted limb during everyday 
activities outside the clinic environment. In studying and 
comparing these standards, we sought to identify commonalities 
(e.g. encountered everyday objects, dominant grasp types, 
connections between activities etc.) that would point towards key 
design functions, attributes, and conditions. Based on our studies 
and working in consultation with the doctors and physiotherapists 
on our team, we created a set of three base objects (tapered can, 
hourglass, covered tripod), and three tops (teardrop, checker, 
round ball) that can be used individually or variously combined by 
stacking, or in the case of the can and teardrop top, screwing 
together (see Fig. 1b and 1c). The objects can be grasped and 
manipulated in a wide variety of ways corresponding to the 
primary identified grasps, thus lending themselves to rich cross-
mapping opportunities.  
 

Renowned stroke expert Dr. Steve Wolf led the development of 
the protocol for the series of 12 activities involving reach (e.g. 
reach and lightly touch two objects); reach and grasp (e.g. reach 
and grip one of the tripod object legs), reach, grasp and transport 
(e.g. reach and lift the can object up towards the participant’s 
face); and reach, grasp, transport, and manipulate components 
(e.g. reach and hold the can object with the left hand and reach 
and pick up the tear drop object with the right hand, then screw 
the tear drop object into the can object).The activity tasks scaffold 
in complexity (from simple reaching exercises with single objects, 
to two-handed multi-stage manipulations with two objects) and 
are crafted to map to various activities of daily living, including 
those featured in the MAL set.  

4 PILOT STUDIES 
We evaluated our system in two pilot studies with unimpaired and 
impaired users. We now describe these studies in detail. 

4.1 Pilot Study 1 
Set up: We evaluated the functionality of the system through a 
pilot user study with 15 unimpaired subjects (using a similar 
approach to [25]). The first study aimed to assess and understand 
the following: 1) the overall functionality of the entire system; 2) 
the ability of the participant to understand and use the system; 3) 
the accuracy of the computer vision approach in assessing 
movement quality. The study took place in our research lab at 
Virginia Tech, with eight women and seven men participating, 
ranging in age from 20 to 63, with an average age of 34.  
 
During the session, participants were tasked with performing 12 
distinct activities (4 repetitions each) using the set of 6 objects. 
For the third and fourth repetitions, the participants were 
instructed to complete the activity, but each time with one of the 
identified 6 errors (assigned using a standard randomizing 
function), designed to simulate typical performance errors 
observed in stroke survivors during therapy: do the activity 
slowly; use an indirect path; drop an object; put the object in the 
incorrect place; do not fully complete the activity; and lean 
forward in the chair while completing the activity. It is important 
to note that while the errors as performed by unimpaired subjects 
might not 100% approximate stroke survivors, they are considered 
close enough by the therapists on our team to test the robustness 
and accuracy of our system.  

Results and Discussion 
System functionality: The system functioned smoothly throughout 
all 15 study sessions, with no technical hardware failures and 
correct communication maintained between the various system 
devices (Kinect, tablet, and mini-computer) throughout. The 
Kinect camera was able to capture skeletal data from all 
participants, regardless of height, without having to be adjusted. 
Participants were observed wearing accessories on their wrists and 
hands including bracelets, watches, large rings, and fitness 
devices, but the computer vision system handled the reflections 
and potential interference from them correctly. However, some 

253



 
 

 

errors were encountered with P2, who was wearing a blue shirt 
that was very similar in color to the blue objects. 
 
User comprehension: All 15 participants completed the study 
within the assumed 1-hour timeframe and all demonstrated 
observable growth in fluency and confidence with the system as 
they progressed through the activities. Several of the participants 
moved quite briskly through the activities, particularly during the 
repetitive sections, clicking quickly through the repeated setup 
and instruction screens. All participants watched the majority of 
the instruction videos at least once per activity, while the videos 
for the more challenging and involved activities were watched by 
many participants two or three times. Several of the participants 
practiced doing the activities before electing to record their 
performance.  
 
Movement assessment: Each user defined recorded task 
performance comprised one video of our data base. For the 
performance evaluation of our movement assessment algorithms, 
we manually excluded 70 problematic videos from our test 
dataset, for reasons such as the subject did not follow the 
instructions correctly, the video contains more than one simulated 
error, or the video was not recorded properly. As a result, we 
constructed a test set consisting of 410 videos in total. 
 
We quantify the performance of the movement assessment 
algorithms using precision and recall for each type of performance 
error. The recall values indicate the fraction of all videos with a 
particular simulated performance error (e.g. low speed) to the 
number of videos whose performance errors are correctly 
identified by the movement assessment system. The precision 
values, on the other hand, indicate the fraction of videos identified 
by the assessment system that actually contains the particular 
error. In Figure 2, we show the precision and recall plot for the six 
performance errors. We also report the precision and recall in 
identifying videos with ‘no error’ (i.e. the videos captured in the 
first two repetitions for each activity) by treating them as an 
independent class. 

 
Figure 2: Precision-Recall plot for the six primary error types 
and the ‘no error’ case. 

Among the six performance errors, five have recall values higher 
than 0.7. This suggests that our current movement assessment 
implementation is able to correctly identify a particular simulated 
performance error with decent accuracy. We note however that 
four of the performance errors have relatively low precision 
values, which can be attributed in the case of “Misplacement” and 
“Incomplete task” to the definition of these error types. For 
example, placing an object in the wrong location could result in 
both ‘Misplacement’ and ‘Incomplete task”, which therefore 
decreases the precision of the ‘Incomplete task’ error detection. 
‘Drop an object’ and ‘Indirect path’ also show somewhat lower 
precision values. We use hand and object trajectory information to 
detect whether the path is/is not indirect and if the object is/is not 
dropped. It is possible that unstable trajectory information is 
caused by object occlusion by the hand or failure to detect the 
hand or object.  

4.2 Pilot Study 2  
Set up: We evaluated the feasibility of our system with 3 stroke 
survivors in a lightly supervised study conducted at Emory 
University Rehabilitation Hospital. The 3 participants were 1 
woman (left-handed, mild moderate impairment); 2 men (1 left-
handed, moderate impairment; 1 right-handed, mild moderate 
impairment). The patients were asked to complete a similar 
movement protocol as the unimpaired subjects in pilot study 1, 
except they were not instructed to simulate errors in task 
repetitions 3 and 4, and the entire study also took place under the 
supervision of a physiotherapist. 
 
For this second study, we introduced an automated patient 
feedback mechanism to the system, which is critical for 
interactive therapy with patients. We know from previous work 
that feedback during unsupervised home-based therapy has to be 
simple but effective in promoting adherence and active learning. 
Both performance of the activity and movement quality, in that 
order of significance, has to be addressed by the feedback. The 
limitations of the low cost automated movement tracking and 
assessment system by definition, also necessitate simplified 
feedback structures. Feedback in this case was provided to 
patients through a simple “rating of performance” scheme shown 
on the tablet. All task performances with minimal detected errors 
produced an “excellent” rating. All task performances with 
significant errors in object placement or task completion but with 
minimal errors in movement quality were given a “very good” 
rating. Task performances with a significant error in both activity 
and movement quality were given a “nice try” rating.  

Results and Discussion 
The system successfully captured the performance of all three 
patients. The more impaired participants could not complete all 
four repetitions of the 12 tasks within the allotted one-hour time 
frame but all participants completed at least two repetitions of 
each task. The therapist intervened to advance the system to the 
next task for activities that participants found challenging after 
two repetitions. The tasks that each participant found challenging 
depended on the specific movement challenges of each patient.  
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The adaptation of therapy to each patient’s profile (dosage of each 
task, sequence of tasks, type of feedback) will need to be 
addressed in our future adaptation algorithms that are currently 
under development.  
 
All three participants understood the functioning of the system 
and demonstrated observable growth in fluency and confidence as 
their session progressed.  All three patients also asked that written 
instructions be presented in a larger font (which is a typical 
request for older populations). The therapist had to intervene a 
number of times at the beginning of each session to explain some 
of the system functions, especially for patients not very familiar 
with interactive technologies. During the debrief sessions with the 
patients and the therapists after the study, they proposed that this 
issue could be addressed through the development of an 
introductory video explaining system functionality. During the 
study, all three patients watched the instruction videos describing 
the activity tasks at least two times. One of the patients suggested 
that task comprehension could be enhanced if the videos were 
accompanied by audio instructions that described with accuracy 
the goal of each action, while allowing for adaptation to each 
patient’s ability. For example, “reach and touch the object with 
any digit”; or “reach and grasp the object and move it from the 
second to the third quadrant on the mat using the type of grasp 
most effective for you”. The therapists further suggested that 
numbering the mat quadrants and the objects could assist with 
task comprehension and help minimize error. 
 
The participants expressed mild annoyance at having to repeatedly 
click through extensive instructions for each task repetition (an 
issue broadly observed also with the unimpaired participants).  
We will address this issue by allowing the user to switch the 
system to expert mode where only the videos (with audio 
narration) are repeated ahead of each task repetition and the basic 
set up instructions for each task are skipped. In the debrief 
session, the participants and the therapists discussed their overall 
impressions of the cross-mapping potential between the objects.  
They described how they liked how the objects didn’t obviously 
“give away” what they could be, or what they could be used for, 
indicating that the setup succeeded in prompting patients to think 
actively and creatively during the exercise.   
 
The movement capture and analysis challenges observed with 
unimpaired subjects persisted and were exacerbated in the pilot 
with patients. Patients dropped and misplaced objects and failed to 
complete tasks much more often than unimpaired subjects.  
Patients needed to occasionally use the unimpaired limb to 
recover from task failure or task associated challenges, thus 
creating even more occlusions. The lighting conditions in the 
hospital were not as controlled as in the lab thus creating some 
instances where object tracking was dropped, which influences 
the rating of task performance.   
 
Patients paid significant attention to the ratings of task 
performance since the ratings provided motivation for adherence, 
and active self-evaluation of movement and improvement. In 

instances where uncertainties in movement tracking produced 
inconsistent ratings (i.e. an excellent performance receiving a very 
good rating because of occlusion) the therapist intervened to 
mitigate the potential confusion.  Given that the therapist will 
ultimately not be present at the home, ratings need to be robust 
and more reliable in our system or the patient will quickly get 
frustrated and abandon it. It is important to note that small errors 
in movement tracking and analysis can also happen when an 
unimpaired subject plays Kinect based games, but these are not 
catastrophic. The game is counting on the unimpaired user to 
analyze their error in performance and to filter out small system 
errors. This kind of self-evaluation and error filtering is an 
impossible task for impaired patients who do not have access to 
good internal feedback on their performance. Finally, the study 
also emphasized that our vision system cannot track in detail three 
elements that are critical to performance evaluation by the 
therapists: elbow extension, wrist flexion and hand digit opening 
and closing in relation to object engagement and manipulation.  
 
In response to these findings, we are now investigating different 
movement capture approaches through deep learning methods to 
further improve the generalizability of the system without 
increasing the cost or complexity of the infrastructure. Our 
learning-based approaches will rely on expert ratings of a large 
number of video recordings of task performances by patients with 
different movement challenges. Over the past three years, we have 
worked with expert therapists to develop a set of limited 
movement quality and activity performance features that can be 
rated by therapists in a standardized manner using a limited scale 
(0 to 3). To train our system we will combine supervised and 
unsupervised learning approaches so we can also capture potential 
latent features that therapists may use for ratings without being 
fully aware of their use [31].  This approach, however, requires 
that we switch our movement capture infrastructure. We require 
high resolution videos of the hand shape as well as the torso and 
limb that are captured from an angle that most therapists use to 
evaluate movement (profile view from the side of the impaired 
limb). We are thus replacing the Kinect with two small high 
resolution video cameras with one focused on the torso and limb 
and the other on the hand shape.  

5 CONCLUSION 
Developing interactive systems for home-based rehabilitation 
presents numerous challenges in terms of sensing approach, 
movement assessment, protocol adaptation, and patient adherence. 
Building on our prior work in the clinic, we introduce a simplified 
computer vision based system, driven by the patient using an 
interactive tablet interface. Based on findings from two pilot 
studies with unimpaired and impaired users, the system was 
deemed understandable, relatively straightforward to use, and 
functioned well in more controlled conditions. Important areas for 
improvement include increasing the robustness of the movement 
capture and assessment functions, refining the patient-system 
interactions, and developing a more generalized approach through 
learning based methods.   
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