
����������
�������

Citation: Sarker, A.; Emenonye,

D.-R.; Kelliher, A.; Rikakis, T.;

Buehrer, R.M.; Asbeck, A.T.

Capturing Upper Body Kinematics

and Localization with Low-Cost

Sensors for Rehabilitation

Applications. Sensors 2022, 22, 2300.

https://doi.org/10.3390/s22062300

Academic Editor: Andrea Cataldo

Received: 1 February 2022

Accepted: 11 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Capturing Upper Body Kinematics and Localization with
Low-Cost Sensors for Rehabilitation Applications
Anik Sarker 1 , Don-Roberts Emenonye 2 , Aisling Kelliher 3 , Thanassis Rikakis 4, R. Michael Buehrer 2

and Alan T. Asbeck 1,*

1 Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; aniks@vt.edu
2 Department of Electrical & Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA;

donroberts@vt.edu (D.-R.E.); rbuehrer@vt.edu (R.M.B.)
3 Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA; aislingk@vt.edu
4 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA;

rikakis@usc.edu
* Correspondence: aasbeck@vt.edu

Abstract: For upper extremity rehabilitation, quantitative measurements of a person’s capabilities dur-
ing activities of daily living could provide useful information for therapists, including in telemedicine
scenarios. Specifically, measurements of a person’s upper body kinematics could give information
about which arm motions or movement features are in need of additional therapy, and their location
within the home could give context to these motions. To that end, we present a new algorithm for
identifying a person’s location in a region of interest based on a Bluetooth received signal strength
(RSS) and present an experimental evaluation of this and a different Bluetooth RSS-based localization
algorithm via fingerprinting. We further present algorithms for and experimental results of inferring
the complete upper body kinematics based on three standalone inertial measurement unit (IMU)
sensors mounted on the wrists and pelvis. Our experimental results for localization find the target
location with a mean square error of 1.78 m. Our kinematics reconstruction algorithms gave lower
errors with the pelvis sensor mounted on the person’s back and with individual calibrations for
each test. With three standalone IMUs, the mean angular error for all of the upper body segment
orientations was close to 21 degrees, and the estimated elbow and shoulder angles had mean errors
of less than 4 degrees.

Keywords: kinematics; inertial sensors; self-supervised learning; sparse sensors; activity recognition;
human pose estimation; localization; proximity reporting; Bluetooth beacon; Bluetooth RSS

1. Introduction
1.1. Overview

As the US population ages, there is an increasing need for effective and accessible
rehabilitation services for debilitating illnesses and injuries such as stroke and degenerative
arthritis [1,2]. Effective rehabilitation requires intensive training and the ability to adapt the
training program based on patient progress and therapeutic judgment [3]. Telemedicine
and telehealth are gaining prominence as avenues for delivering participatory health and
wellness in the home at scale. However, a practical approach to physical rehabilitation in
the home is not yet possible due to the challenges in capturing meaningful data about how
the patient is progressing in a low-cost, easy-to-use way. For upper extremity rehabilitation
for stroke survivors, over 30 low-level movement features need to be tracked as the patient
performs functional tasks in order to precisely and computationally characterize movement
impairment [4]. In addition, detailed activity documentation during daily life is needed to
understand the effect of therapy on functional recovery [5]. Although high-end sensing
technologies can provide some of the necessary detailed tracking, these technologies are
cumbersome even in the clinic and certainly not yet feasible for the home. Tracking of

Sensors 2022, 22, 2300. https://doi.org/10.3390/s22062300 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2569-7409
https://orcid.org/0000-0002-5392-8692
https://orcid.org/0000-0001-9175-2176
https://orcid.org/0000-0002-7196-1154
https://orcid.org/0000-0002-5589-7797
https://doi.org/10.3390/s22062300
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062300?type=check_update&version=1

Sensors 2022, 22, 2300 2 of 39

movement through marker-based capture or full-body inertial measurement unit (IMU)
systems is impractical and often costly [6–10]. Systems such as exoskeletons or other de-
vices that must be worn along the arm can be cumbersome and may lead to low patient
compliance [11,12]. Video or depth camera arrays [13,14] may be objectionable for patients
and home occupants due to the feeling of being under constant surveillance [15]. Tradi-
tionally, accelerometry has been used to give information about a patient’s motion in a
home environment [16–19], but this provides only coarse measures of patient capability.
Some work has also been done in activity recognition in the home [20], or have combined a
patient’s location in a home environment with estimates of their activity [21–23]; however,
quantifying a person’s actual arm kinematics may be more useful than activity recognition.

Consequently, there is a need for low-cost but accurate technologies that can accurately
capture a patient’s functional movements during daily life. With kinematics sensing,
a patient’s motions can be assessed to monitor progress with rehabilitation. Importantly,
contextualizing a person’s motions may be important to determine the circumstances in
which they do not use their limbs normally or perform compensatory motions. With this
information, therapists could determine the best course of action for rehabilitation. In this
paper, we propose a system that can capture both the location of a patient within their
home and also their upper body kinematics. As seen in Figure 1, this consists of two
components: First, a system based on Bluetooth that can localize the patient within the
home (Figure 1a). Second, a system that uses a minimal sensor set to infer the complete
upper body kinematics (Figure 1b,c). With these, we present the initial steps towards a
practical at-home tele-rehabilitation system.

Bluetooth
transmitter

Wrist-
mounted
IMU

Waist-
mounted
IMU,
Bluetooth
receiver

(a) (b) (c)

Figure 1. Overview of our strategy for in-home localization and kinematics monitoring. (a) In-home
localization approach. Bluetooth transmitters are installed around the home, and the received signal
strength is monitored at the patient. The localization provides context to the captured activities.
(b) Minimal sensor set that is unobtrusive during daily life, including IMUs worn on each wrist
and the waist, and a Bluetooth receiver worn at the waist. (c) Kinematic reconstruction of the torso
derived from the worn IMUs.

1.2. Background and Related Work on Localization

Location is a crucial context for determining activity. Although the worldwide Global
Positioning System (GPS) can provide sub-centimeter level position accuracy, this capability
does not extend to indoor scenarios with an absent line-of-sight path from the target to
the GPS satellites [24]. Nonetheless, location awareness will still serve as an enabler
for indoor health care systems. Location awareness in indoor systems can be enabled
by measuring both wireless propagation characteristics (transmitted by known beacons)
and motion-related characteristics like acceleration (through accelerometers) and angular
velocity (through gyroscopes). The accurate estimation of these characteristics enables
location inference.

There are two schools of thought employed in mapping wireless characteristics to
location estimates: (1) model-based approaches and (2) fingerprinting-based approaches.
In the former, researchers usually assume a wireless propagation model. Subsequently, data
points are collected at reference points (RPs) and are used to fit the assumed propagation

Sensors 2022, 22, 2300 3 of 39

model. Hence, given observed/estimated wireless characteristics, the distance is readily
derived from the assumed propagation model. The difficulty in this approach lies in
deriving the appropriate propagation model given that wireless propagation is complex
and can vary substantially from location to location [25].

In contrast, fingerprinting-based approaches treat wireless signal measurements as sig-
natures observed in space, frequency, and time. During training, these wireless signatures
are observed and intelligently associated with particular locations [25]. After deployment
or during testing, new wireless characteristics are observed and compared with previous
signatures; and through the association learned during training, the new locations are
approximated. The two fundamental building blocks of fingerprinting-based approaches
are the association algorithm used and the wireless characteristics selected as signatures.

The most commonly used signature in fingerprinting approaches is the received signal
strength (RSS). This commonality is because RSS can be easily obtained from wireless
receivers found in phones, Raspberry Pis, and computers [26]. In [26–31], an RSS-based
fingerprinting database was developed, and the location estimate of a new RSS value was
derived as a function of the locations of the k most similar RSS values in the database. In [27],
the location estimate of the new RSS value was obtained by simply averaging the location of
the k nearest values in the database. In [26], a Spearman criterion for ranking the k-nearest
neighbors (k-NN) is provided, and the effects of varying k on the accuracy of the location
estimate are investigated. In [28], the authors recognize that the similarity distance used in
prior k-NN works incorrectly assumes that similar RSS values translate to similar geometric
distances. The authors compensate by proposing a modified feature scaling-based k-NN.
In [32], a correlation database (CDS) for fingerprinting is built based on the Okumura-Hata
propagation model [33]. In that work, to ensure the transmit power is known, the database
is built based on transmissions in the control channel. In [34], by relating the locations
where RSS signatures are collected to genetic chromosomes, a genetic algorithm [35] is
applied to reduce the size of the fingerprinting database.

In addition, artificial neural networks (ANN) have been proposed as fingerprinting-
based association algorithms. In [36], a single hidden layer neural network is trained and
used to provide location estimates at test time. The neural network has three input nodes,
16 hidden nodes, and two output nodes. The input nodes correspond to the RSS observed at
the target from the three access points, and the output nodes provide 2D location estimates.
This neural network design provided an accuracy of 1.75 m. In [37], the previous work
is extended to a neural network with multiple layers. In that work, the neural network
is divided into a data processing section, a denoising section, and a location estimation
section. The neural network input is the RSS from the access points, while its output is
the 2D location estimate of the target. More recently, a recurrent neural network has been
proposed for location estimation [38]. Authors in that work recognize that RSS values
received while a target is on a trajectory will be correlated. With this, a recurrent neural
network (RNN) enabled trajectory positioning scheme is developed. Recently, a dynamic
model estimation technique has been used for indoor positioning [39]. In [40], a chest-
mounted IMU is proposed for indoor positioning. In [41], a systematic review is provided
for collaborative indoor positioning techniques. A study on indoor positioning systems
in harsh wireless propagation environments is presented in [42]. Finally, an automatic
context-based positioning system based on Wi-Fi is presented in [43].

Although RSS-aided positioning has been studied rigorously, the requirements for
a wireless positioning system in a smart health context are considerably different. For
instance, health care professionals are more interested in localizing the subject to a region
of interest (RoI) than localizing to the exact coordinates. Hence, for healthcare systems, it
will be more suitable to provide proximity reports. Proximity reports reveal how close a
subject is close to a set of anchors. A proximity report can be specified by a binary vector
y = [1, 0, 1, 0] where the i-th element in the vector y specifies whether the subject is in the
vicinity of the i-th reference node. Clearly, the intersection of the respective vicinity confines
the subject to a specific unambiguous RoI. One way to generate proximity reports is by

Sensors 2022, 22, 2300 4 of 39

comparing the instantaneous RSS received from different access points to pre-defined RSS
thresholds. These thresholds can be derived in a cooperative or non-cooperative fashion.
Proximity reports describe the vicinity of the desired subjects without explicitly providing
their location estimates. In [44], a campaign is conducted to measure RSS values from
different access points at various reference locations. The data collected is used to fit both a
linear log-distance model and a Gaussian process regression. Subsequently, the collected
data is used to find the optimal threshold for proximity reporting. The selected optimality
criterion is the Cramer-Rao bound (CRB). In [45], the work is extended to incorporate
multiple thresholds for each reference point. Furthermore, the Barankun bound [46] is used
as an optimality criterion. Authors in [47] derive the CRB for a K-level RSS quantization
scheme. In that work, it is shown that the lower bound on the MSE for proximity location
is 50% higher than the bounds in conventional RSS-based systems. Although these prior
works are promising, the optimization thresholds are based on propagation models, which
may not represent the wireless environments’ actual characteristics. Moreover, most of
these works fail to consider the correlation in RSS due to the desired subject trajectory.
In order to circumvent the need to assume a model, we propose employing deep neural
networks (DNNs) to generate proximity reports. We also propose an RNN to account
for the correlation between the current RSS values and previous RSS values. Lastly, as a
separate contribution, we validate an already existing algorithm [29] with experimental
data. In [29], an improved k-NN algorithm was proposed, but was not validated with real-
world data. We test the accuracy of that fingerprinting technique proposed for simulated
data with real data.

1.3. Background and Related Work on Motion Inference

A number of prior works have examined the problem of motion inference via sparse
sensors, i.e., predicting the joint angles for the entire body by using only a few sensors.

Several works have used IMUs in conjunction with a video camera [48–52] or depth
cameras [53,54]. Generally speaking, the fusion of two different sensor technologies is
beneficial; however, for our application, it is impractical and privacy-invasive to use
cameras inside a home environment. Another work used RFID tags in conjunction with
IMUs to provide more information [55].

A number of recent works have used solely IMUs to reconstruct kinematics [56–61].
These have used a variety of approaches for motion inference. Initially, Gaussian processes
were used by [56]. Next, ref. [58] used an optimization-based approach, which required
knowledge of the person’s initial pose and the sensor locations on their body, with impres-
sive results. More recently, neural networks have been used for motion inference [59–61];
these have each used bidirectional long short-term memory (LSTM) neural network archi-
tectures [62], where the time history of each sensor provides cues to the current kinematic
pose. Both Huang [59] and Yi [61] train their models on the AMASS dataset [63] and the
TotalCapture dataset [64] as well as another dataset collected by Huang called DIP-IMU.
Their architectures are somewhat similar, but Yi uses a dedicated processing step to estimate
ground-foot contacts. Both groups use six IMUs worn on the wrists, lower legs, pelvis,
and head, and predict the full-body kinematics.

In our previous work, we used a custom dataset and various numbers of sensors
to perform motion inference [60]. The dataset, called the Virginia Tech Natural Motion
dataset, contains kinematic recordings of people doing activities of daily living as well as
stockers in a warehouse environment. The data was captured with an XSens MVN Link
system [65,66] and contains more than 40 h of motion. Using this dataset, we conducted
motion inference of both the whole body and the upper body based on 3–6 different body
segments. Specifically, we used the XSens-generated orientations and accelerations from
each segment to infer the other joints. We note that the orientations and accelerations of
the segments are based on the whole-body kinematic reconstruction; thus, their values are
somewhat different than if a standalone IMU was placed on each segment. In the present
work, we use sparse standalone IMUs to perform kinematics reconstruction. The results

Sensors 2022, 22, 2300 5 of 39

are not as good as gold-standard motion capture, but may be sufficient to understand a
patient’s motion for rehabilitation.

1.4. Contributions

In this paper, we have several contributions. Overall, we present a new strategy for
understanding human motion during activities of daily living with just a few unobtrusive
sensors, both determining the location of an individual within their home and estimating
their kinematics.

In the area of localization, we present new algorithms based on Bluetooth beacons to
reduce the uncertainty of a person’s position to an RoI. Our first contribution to both the
general area of positioning and in the area of positioning for health care is to develop DNNs
for proximity reporting. Similar to existing DNNs for positioning, the neural network tries
to learn the nonlinear relationship between the RSS and the target location, but unlike
existing DNNs, the neural network does not produce a 2D or 3D location estimate. Instead,
the DNN produces a vector that describes the vicinity of the target location. This structure
is similar to multilabel classification [67] in machine learning theory, in which a single
observed sample can belong to multiple classes. In this paper, we perform simulations to
demonstrate the algorithms.

Since healthcare systems use location context to provide recommendations to patients,
it is not an absolute necessity to have the exact coordinate of the patients. In this scenario, it
is sometimes more important to be able to determine what vicinity the patient is in. Hence,
the proposed proximity reporting technique can find application in healthcare systems.
However, to have the option of determining the exact coordinates of the patient, our
second contribution for positioning estimation is to validate the improved k-NN algorithm
proposed in the literature [29] with actual Bluetooth beacons. The localization operation in
this scenario is divided into training and test stages. During the training stage, the BLE
signals from the beacons are collected using a Raspberry Pi [68]. The Raspberry Pi is
synchronized with the Beacons and programmed to time stamp the Beacon data and
store their RSS values. These RSS values are used to build a fingerprinting database for
positioning. During the testing stage, new RSS values are collected and compared with the
RSS values in the database. This comparison is used to provide a location estimate. We
demonstrate the algorithm with experimental data in a home environment.

In the area of kinematics estimation, we use standalone IMUs combined with our
motion inference algorithms [60] to generate an estimate of upper body kinematics during
activities of daily living. While several works have examined inferring kinematics of the
entire body using sensors on the arms, legs, and torso or head, we use a reduced sensor set
with only off-the-shelf sensors on the wrists and pelvis to infer only the upper body. This
sensor set is simple, unobtrusive, and easy to use during daily life, especially for people in
need of rehabilitation. We compare the accuracy of upper-body kinematic inference using
standalone IMUs to information from the ground truth whole-body kinematics. We present
the kinematic inference accuracy for each individual joint in the torso since, in rehabilitation
contexts, it is useful to understand which joints need additional attention. We also examine
the differences in performance between putting the pelvis sensor on the back of the pelvis
(as was done previously) versus the side, a location that is more suitable for long-term wear
in the home.

The rest of the paper is organized as follows. In Section 2, we present our algorithms
and methods for experimental evaluation of localizing a person in a home environment.
In Section 3, we present our algorithms and experimental evaluation methods for inferring
the kinematics of the upper body. In Section 4, we present all of our experimental results,
and in Section 5, we provide the discussion.

Sensors 2022, 22, 2300 6 of 39

2. Materials and Methods for Positioning
2.1. Overview

In this section, we discuss our localization algorithms and the experimental setup for
their evaluation. In the next section, we discuss our kinematics reconstruction algorithms
and their experimental evaluation.

2.2. Methods for Localization—Proximity Reporting

In this section, we consider a proximity reporting-based technique for indoor posi-
tioning, where RSS received from a set of anchors/beacons is compared to predetermined
thresholds to determine the position of a target. Note that the actual coordinates of the
target is not provided by the proximity reports, the proximity reports only confines the
target to a region of interest (RoI). We consider a simulated environment with a set of U
anchors with known locations in a two-dimensional grid. The locations of the U anchors
can be defined as:

U =

[
x1 x2 · · · xU
y1 y2 · · · yU

]
.

The goal is to find the position of a target described with the following vector
s = [x, y]T . Each anchor has a wireless transmitter with Bluetooth 4.0 capabilities that
broadcasts ibeacon packets. Each ibeacon packet contains a unique identifier (UUID) that
is unique to the broadcasting transmitter. The anchors broadcast at a sampling frequency
of 10 Hz, i.e., a single packet is broadcast every 100 ms. A Bluetooth receiver attached to
the target collects and stores the packets. The RSS of the signal from each anchor is also
stored along with the associated UUID. This UUID differentiates the packets from different
anchors. The received power measured in dBm at the target from the uth anchor can be
characterized as:

r(du) = Pt − r̄(du) + Xσu , (1)

where Pt (dBm) is the transmit power of the source, r̄(du) is propagation loss at a distance
du, du = ‖s− su‖ =

√
(x− xu)2 + (y− yu)2 and Xσu ∼ N (0, σu) is a slow-fading term due

to shadowing. The propagation loss can be written as:

r̄(du) = PLu(d0) + 10ξu log
(

du

d0

)
, (2)

where PLu(d0) is the path loss measured at a reference distance d0, and ξu is the path loss
exponent [25]. Because PLu(d0) is deterministic, the equivalent mean RSS can be written as:

ν̄u = PLu(d0)− r̄(du),

= 10ξu log
(

d0

du

)
.

(3)

Clearly, ν̄u is dependent on the hub/target position s and the random variable specifying
the RSS is given as:

νu = ν̄u + Xσu . (4)

Due to lognormal random variable, the ith sample from the uth anchor νu,i can be charac-
terized by a lognormal distribution:

fv(νu,i) =
1√

2πσu
exp

(−(νu,i − ν̄u,i)
2

2σ2
u

)
. (5)

The model specified by Equations (3)–(5) is used to derive and optimize thresholds
in [44,45,69]. However, these thresholds are complex and heavily dependent on the specific
environment. To circumvent this challenge, we propose to use a neural network to generate
the proximity reports.

Sensors 2022, 22, 2300 7 of 39

2.2.1. Overview of Neural Network

Deep neural networks act as universal function approximators that can learn the
complex relationship between an observation and its label. Given an unknown function,
f ∗, that completely describes the observations and their labels in a dataset {S, y}, a DNN
tries to learn a set of parameters ϑ = {ϑ1, ϑ2, · · · , ϑZ} that can produce an approximation
of f ∗ as f . Here, Z represents the number of neural network layers. A simple deep learning
network usually has no feedback loop, and its operation can be described as:

f (s) = f (Z)(· · · f (2)(f (1)(s))), (6)

where f 1, f 2, and f Z, represent the 1st, 2nd, and Zth layers respectively. The operation of
the Zth layer can be completely described as

wz = fϑz(wz−1) = Υl(Wzwz−1 + ζz), (7)

where Wz and ζz describes the weight and bias terms of the Zth layer, wz−1 describes
the output of the previous layer, Υz denotes the activation function of the Zth layer,
and ϑz = {Wz, ζz} denotes the parameters of the Zth layer. Clearly, the operation of
the neural network layers can be viewed as a linear transformation empowered by the
activation function. In this work, we will restrict our choice of activation functions to the
popularized ReLu function. Although DNNs are adept at learning the complex relation-
ships between the input and output, they are not structured to learn temporal correlation.
This is intuitive because a plain DNN does not contain any feedback loops, as shown in
Figure 2. In order to solve this challenge, recurrent neural networks (RNNs) with built-in
loops were developed. These loops allow for information to persist from one time step to
another. An RNN is designed to learn the temporal among a sequence of inputs.

Figure 2. Schematic of a deep neural network with an input layer capable of accepting a nine feature
input vector, two hidden layers each with 12 neural network nodes, respectively, and an output layer
of 4 nodes.

In Figure 3, the Zth layer of the recurrent neural network accepts as input wz
t , and pro-

duces output wz+1
t . The loop allows for information to be shared across time instances.

Sensors 2022, 22, 2300 8 of 39

(a) (b)

Figure 3. (a) A compact representation and (b) an unrolled representation of a recurrent
neural network.

2.2.2. System Setup and Data Generation for Proximity Reporting

The rest of this sub-section will be focused on developing an indoor positioning system
with RSS as the selected wireless propagation characteristic and a recurrent neural network
as the selected signature-to-location association function. The output of the neural network
is a vector that describes the vicinity of the target. This vector is similar to multi-label
classification in image processing [67]. We consider a simulated 50 m by 50 m indoor
patient rehabilitation center, which is divided into ten subcenters. An anchor was placed
at the middle of each subcenter. Hence, U = 10 anchors each equipped with Bluetooth
low energy (BLE) beacon transmitters. On entry, the simulated patients were equipped
with a mobile hub capable of measuring RSS data from the U anchors. The simulated
patients were asked to interact with one another and ensure that they are in motion for a
particular time interval. The simulated therapists tasked with rehabilitation offer different
instructions on physical activities to the simulated patient in the form of push notifications
depending on whether they are in the vicinity of certain anchors. Figure 4a shows the grid
with 10 access points.

0 10 20 30 40 50
0

10

20

30

40

50

(a)
0 10 20 30 40 50

0

10

20

30

40

50

(b)

Figure 4. (a) Representation of the grid: the vicinity next to an anchor is defined as 15 m from the
anchor. (b) Simulated patient bounded random walk.

We model the movement of the simulated patient as a bounded random walk from the
green arrow to the orange circle. We assume that U RSS values sampled from a log-distance
model are received at the patient’s hub at every time step. The data received over the time
period given by Ttrain is the training data. The log-distance characteristics of each anchor is
given in Table A2.

Sensors 2022, 22, 2300 9 of 39

The received RSS values are pre-processed by clipping to ensure that they lie within
the range [−100,−50] dBm. The clipping operation can be defined as:

νu =


−100 dBm, if νu < −100 dBm,
−50 dBm, if νu > −50 dBm,
νu, Otherwise.

(8)

2.2.3. Training of Recurrent Neural Network for Proximity Reporting

This section focuses on the training of a long term short memory (LSTM) type of an
RNN for proximity reporting. We use a dataset of Ttrain training samples, each with
U number of features. The features of the ith training example can be described as
st,i = {ν1, ν2, · · · , νU}. The dataset is collected offline and each training sample has a label
describing the vicinity of the target. Unlike prior works, that use the location estimates as a
label, the label is described as a vector y in which its ith element is specified as:

y[i] =

{
1, if the patient is within the vicinity of the ith anchor,
0, otherwise.

The input vector st,i is standardized so all the features lie between 0 and 1. This vector
serves as input to the LSTM layers, which has a memory of TLSTM time steps. The neural
network is depicted below in Figure 5.

Input

L
S

T
M

 L
ay

er

D
en

se
 L

ay
er

 (
R

eL
u

)

D
en

se
 L

ay
er

 (
S

ig
m

o
id

)

Output

Figure 5. Deployed LSTM neural network for proximity detection.

The estimate of the patient’s vicinity, vector ŷ can be written as:

ŷ[i] =

{
1, (wZ)[i] > 0.5,
0, otherwise.

The cross entropy loss function used for training can be written as:

L(ϑ) = − 1
Ttrain

Ttrain

∑
t=1

yT
t log(wL). (9)

With this loss function, and a learning rate, α, the stochastic gradient descent algorithm is
used to update the neural network parameters as:

ϑ := ϑ − α∇L(ϑ). (10)

The training parameters are given in Table 1.

Sensors 2022, 22, 2300 10 of 39

Table 1. Training parameters.

Parameter Value

Learning Rate, α 0.01
Iterations (epochs) 400
Batch size, Ttrain 500
Training Shadowing variance, σs 7.5

2.2.4. Testing Stage for Proximity Reporting

To test the proximity detection system, the simulated patient equipped, as previously
described, performs another random walk starting from the green arrow and ending at the
orange circle as shown in Figure 6.

0 10 20 30 40 50

0

10

20

30

40

50

Figure 6. Trajectory used for testing.

To show the accuracy of the recurrent neural network, we define the following perfor-
mance metrics:

• Proximity accuracy: this specifies the indoor system’s ability to detect whether the
simulated patient is within a predefined range from the anchor.

• Distance accuracy: this specifies the indoor system’s ability to detect when the simu-
lated patient is not within a predefined range from the anchor.

• Overall accuracy: this specifies the indoor system’s ability to either place the simulated
patient within range from the anchor or to determine the absence of the simulated
patient within a certain range from the anchor.

2.3. Localization with Real Data

In this section, we present a localization technique with real-world data. The RSS is
normally distributed in dB and related to the target position. Hence, assigning a unique
signature, known as an RSS fingerprint, to different locations is possible. The fingerprint
at the target can be described as G = [ν1, ν2, · · · , νU]. The fingerprint is very useful if it
varies substantially from one location to another. Fingerprint-based approaches treat RSS
as signatures observed in space and time. This fingerprinting operation can be divided into
training and testing stages. The training stage involves building a table/codebook with
feature vectors and labels. We want to take as little training data as possible, but have it
be sufficient to build a good codebook to predict location. The feature vectors are the RSS
received from the U anchors, while the labels define the target’s (x, y) locations. New RSS

Sensors 2022, 22, 2300 11 of 39

values are obtained from the U anchors in the testing stage, and a location estimate has to
be determined.

2.3.1. Training of RSS Fingerprinting Technique with Real Data

In developing the fingerprinting codebook, we separate an arbitrary area into Rm
number of rooms. A reference grid is created. Each point in the grid is labeled according
to room number and its (i, j)th position in the grid. The (i, j) fingerprint in room k is
defined as,

Fi,j,k =
[
νi,j,1 νi,j,2 · · · νi,j,U

]T (11)

The origin of the coordinate system is the leftmost corner point of the geographical area.
The position vector for the (i, j) reference point in room k is defined as:

Di,j,k = [xi,j,k yi,j,k, zi,j,k]
T (12)

During the training stage, received signal strength is collected at all the (i, j) points in
all k rooms. This data collection was carried out for a duration of five minutes at each of the
reference points and is averaged in time. The data is stored in a codebook F . The (i, j, k)th
entry of the codebook can be accessed as Fi,j,k = F [i, j, k]. The signal strength received from
the uth anchor at the (i, j) reference point in room k can be accessed through F [i, j, k][u].
Note that:

Fi,j,k[u] = F [i, j, k][u]

Similarly, the position vectors are stored in a distance codebook defined as D = Di,j,k.
The (i, j, k)th entry of the codebook can be accessed as Di,j,k = D[i, j, k].

2.3.2. Specifications of Area of Interest

We evaluated our k-NN-based localization technique in a home environment. The en-
vironment had an area of 10.6× 7.4 m, which was divided into Rm = 7 rooms. Within this
area, four beacons were placed, and 19 reference points were selected. RSS information
is collected at each reference point for a duration of five minutes in order to form the
signal strength fingerprint. The resulting data at each specific reference point is averaged
and placed in a codebook. The figure in Appendix C gives coordinates of the beacon
locations and it also provides the positions of the reference points used for building the
fingerprinting codebook.

2.3.3. Real-World Validation

For validation, the target was placed at five different test locations and left there for
approximately 45 s each. Note that the target is a Raspberry Pi, which is attached to the
human body. At each location, RSS is collected at the target from the U anchors. The RSS
received from each anchor is averaged down to 4 Hz. If no packets are received from
the uth anchor, the RSS from that anchor is set to νu = νmin, where νmin is the minimum
possible RSS. The RSS at the target during testing is defined as:

G =
[
ν1 ν2 · · · νU

]T (13)

The process of extracting position estimates is described by Algorithms 1 and 2.
Algorithm 1 specifies the procedure to determine the closest reference points to the target.
These reference points are obtained by comparing the received RSS signatures with the
RSS signatures in the codebook. These comparisons are through the Euclidean norm. Note
that different RSS signatures in the codebook are associated with different reference points.
Furthermore, note that the number of reference points returned (W) is a parameter that can
be optimized depending on the environment. In this work, W = 3 is used. Algorithm 2
returns the centroid of the closest reference points. In this algorithm, the position vector is
initialized as a zero vector. Subsequently, the closest reference coordinates are sequentially

Sensors 2022, 22, 2300 12 of 39

summed. This cumulative sum is divided by W. This centroid is the position estimate of
the target.

Algorithm 1 Generate Closest Fingerprints.

1: ∀i, ∀j, ∀k Compute
∥∥Fi,j,k −G

∥∥
2:
3: Sort then store the indices of the W smallest values in the setW .
4:
5: return W

Algorithm 2 Get Position Estimates Using K-Nearest Neighbors.

Require: D̂ =
[
0 0 0

]T

1:
2: while w < W do
3:
4: Get (i, j, k) =W [w]
5:
6: D̃ = D[i, j, k]
7:
8: D̂ = D̂ + D̃
9:

10: end while
11:
12: D̂ = D̂/W
13:
14: return D̂

3. Materials and Methods for Kinematics Estimation

In this section, we discuss our kinematics reconstruction algorithms and the methods
for their experimental evaluation.
3.1. Overview

Briefly, we used our dataset and our motion inference algorithms [60] to generate the
machine learning models for the upper body motion inference. The full-body kinematics
contains information for 23 segments, while the upper body contains information for 15 seg-
ments. We aimed to predict the upper body kinematics using only information (orientation
and acceleration data) from 3 segments, with the measured upper body kinematics of all
15 segments as the ground truth.

A summary of the pipeline for our work is presented in Figure 7. The top of the figure
shows how we train our machine learning models. The Virginia Tech Natural Motion
Dataset contains kinematic data for the whole body. We extracted just the upper body,
and then used motion sequences of orientation and acceleration data from only three
segments (pelvis and forearms) as inputs to the machine learning model. The model
predicts the orientations of all 15 segments of the upper body, with the ground truth values
from the dataset.

Following the creation of the machine learning models, we captured N = 4 partici-
pants’ full-body kinematics using the XSens MVN Link suit. Simultaneously, we used three
XSens DOT sensors (standalone IMUs) to capture orientations and accelerations from the
pelvis and forearms. We used the newly captured dataset as the test set for our work: we
inferred the predicted upper body kinematics based on (1) orientations from the XSens
MVN system for the three sparse body segments (pelvis and forearms), and corresponding
sensor accelerations, and (2) orientations and accelerations from the XSens DOT sensors.
We compared the inferred upper body kinematics from each of these to the ground truth
(15 segments of XSens MVN).

Sensors 2022, 22, 2300 13 of 39

Virginia Tech Natural
Motion Dataset

23 Segments

Extract Upper-body Information
from Full-body data

15 Segments

Input X
X : 𝑞𝑞𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠); 𝑎𝑎𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

of 3 segments and
5 motion sequences

5 frames
0.125 s

Sparse Sensor Locations
(Input Segments)

Deep Learning Framework
(Seq2Seq Shown here)

EncoderStateDecoder

Output Ŷ
Ŷ : 𝑞𝑞𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠)

of 15 segments
Ground TruthSubtask 1: Model Generation

Newly Captured
XSens MVN Link Data

23 Segments

Upper-body
Information
15 Segments

Example Locations of XSens DOT Sensors,
corresponding XSens MVN Sensors

Trained Models
(Seq2Seq, Transformers etc.)

Subtask 2: Inference

Input X
X : 𝑞𝑞𝑡𝑡

(𝑠𝑠𝑠𝑠𝑠𝑠); 𝑎𝑎𝑡𝑡
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

of 3 segments
and 5 motion

sequences

Upper-body
Prediction (Y2)
Inputs from
three DOT
sensors

Upper-body
Prediction (Y1)
Inputs from
three MVN
sensorsX1: Inputs from Sparse XSens MVN

X2: Inputs from XSens DOT

Ri,j (Ori)

X1:

X2:

Ri,j (Acc)

𝑞𝑞𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠); 𝑎𝑎𝑡𝑡

𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑞𝑞𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟𝑟𝑟)

𝑎𝑎𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷(𝑟𝑟𝑟𝑟𝑟𝑟) 𝑎𝑎𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑞𝑞𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠𝑔𝑔)

Figure 7. Subtask 1: We used the Virginia Tech Natural Motion Dataset to train our deep learning
models. We used three sparse segments (pelvis, right forearm, left forearm), passed five frames

of segment orientation (qMVN(seg)
t) and sensor linear acceleration data (aMVN(sens)

t) into a neural
network, and then predicted upper body segment orientations for those five frames. Subtask 2:
For Inference, we used newly captured XSens data (upper body; 15 segments) for the ground truth.
We used two sets of sparse inputs: 3 XSens DOT sensors (X1), and 3 XSens MVN segments (X2).
The machine learning models from Subtask 1 produced two sets of output upper body kinematics
for the two sets of inputs. We then compared the predicted kinematics with the ground truth upper
body information from the newly captured XSens MVN Link data. The data used for inference from

the MVN was similar to that in Subtask 1; for the DOT sensors, the raw orientation (qDOT(raw)
t) and

acceleration (aDOT(raw)
t) were calibrated to match the MVN coordinate system by multiplying with a

rotation matrix Ri,j.

3.2. Training Dataset Description

The Virginia Tech Natural Motion Dataset [70] is an enriched dataset of full-body
human motion. The data was captured using an XSens MVN Link and includes more than
40 h of unscripted daily life motion in the open world.

The XSens MVN Link suit collects synchronized inertial sensor data from 17 IMU
sensors placed in different segments of the body. The data collected from XSens (17 sensors)
have reduced magnetic disturbance via a specialized Kalman filter design, and are post-
processed to construct accurate human kinematics of 23 segments. The XSens MVN captures
full-body kinematics within 5◦ of absolute mean error compared to an optical motion
capture system for various tasks, including carrying, pushing, pulling, and complex manual
handling [66,71–74]. The data includes measurements for segment position, segment linear
velocity, both sensor and segment linear acceleration, both sensor and segment orientation,
and segment angular velocity and acceleration.

Sensors 2022, 22, 2300 14 of 39

The data were collected from 17 participants, where 13 participants were Virginia
Tech students, and 4 were employees of a local home improvement store. Fourteen were
male, and three were female. Participants were asked to perform many routine works and
material handling tasks, including walking, carrying, pushing, pulling, lifting, and complex
manipulation. While generating the deep learning models in this paper, we used orientation
and acceleration data of the motion dataset participants {P1, P2, P3, P4, P5, P6, P8, P9, P13,
W1, W2, W4} for training, {P10, P12, W3} for cross-validation, and {P7, P11} for testing. Here,
‘P’ refers to Virginia Tech participants, with ranges from P1–P13; ‘W’ refers to workers,
with ranges from W1–W4. Details on data collection, data quality, and the role of each
participant are documented in [60].

3.3. Subtask 1: Model Generation
3.3.1. Training Inputs and Outputs

In this paper, we studied upper-body motion inference, where only the kinematics
of the upper body were predicted. We started the training subtask by extracting upper-
body information from our training dataset. The XSens MVN Link generates a skeleton
of 23 “segments” for the full body, where the first 15 segments are considered as upper
body segments. In addition to providing the final body model of 23 segments, the XSens
MVN Link also provides the raw data collected from each of the sensors placed on the body.
In our previous work [60], we used the orientation and acceleration of sparse segments
from the final reconstructed model. Here, we used the linear acceleration of one of the
actual sensors from the XSens system (“sensor acceleration”) in combination with the
orientation of the reconstructed skeleton segments (“segment orientation”) in our study.

The upper-body inference task was framed as a sequence-to-sequence problem. We
entered a sequence of three segment orientations (pelvis, right forearm = RFA, left fore-
arm = LFA) and the corresponding sensor accelerations to predict the orientation of all
15 segments of the upper body over the same sequence. To construct sequences, we down-
sampled the upper-body orientation and acceleration data from 240 Hz to 40 Hz. We then
took five frames of data as both input and output. Five frames of data at 40 Hz corresponds
to a motion sequence that is 0.125 s long. Longer input and output sequences add computa-
tional complexity to the model without improved results, as discussed in [60]. We apply
hyperparameter tuning to maximize neural network performance.

Possible rotational representations of the body segments include Euler angles, rotation
matrices, exponential mapping, and quaternions [60]. Euler angle representation has some
unavoidable issues namely locking and singularities [75]. Furthermore, rotation matrices
incur some computational complexity [59]. An exponential map has been used in many
prior works of human motion prediction [76–79]. However, for representing orientation,
we used 4-dimensional quaternions for several well-defined reasons [60].

Before passing the parameters to the model, we normalize the segment orientation and
sensor acceleration values of all segments with respect to the root (pelvis) segment. This
normalization procedure is the same as in other works, such as [57,59,60]. The root (pelvis)
segment orientation with respect to the global frame is RGP (R refers to the orientation, G
refers to the global reference frame, P refers to the pelvis segment reference frame). Then,
normalized orientation of any segment with respect to the pelvis segment can be found
using the following equation:

RPBi = R−1
GP · RGBi (14)

In Equation (14), B refers to body or segment frame, i refers to segment number (ranges
from 1 to 15 for the upper body). Thus, RGBi is the ith segment orientation with respect to
the global frame. The normalized orientation of segment i is RPBi (ith segment orientation
with respect to the pelvis frame). Similarly, the sensor’s normalized acceleration can be
found using the following equation:

āBSi = R−1
GP · RGBi (15)

Sensors 2022, 22, 2300 15 of 39

In Equation (15), āBSi refers to the normalized sensor acceleration for segment i. BS
refers to the corresponding sensor frame of the segment frame B. After normalizing
orientation and acceleration using Equations (14) and (15), we zero the mean and divide by
the standard deviation of each feature in the training set. Since the validation and test data
both simulate unseen data collected in the real-world, we made the assumption that they
come from the same underlying distribution as the training data [60].

Briefly, for each task, the input to our model was 5 continuous poses of normalized
segment orientation (‘normOrientation’) and normalized sensor acceleration (‘normSen-
sorAcceleration’) for three segments (pelvis, RFA, LFA). The output of the model is the
normOrientation value of 15 segments over the sequence of 5 poses.

3.3.2. Deep Learning Models

We used two deep learning architectures for human motion inference: sequence-to-
sequence (Seq2Seq) and Transformers [60]. We used the same architectures for inferring
upper-body motion from standalone XSens Dot sensors. We chose these architectures
because human motion is naturally a temporal sequence, and Seq2Seq and Transformer
architectures are efficient for predicting temporal sequences [78,80,81].

Sequence-to-sequence (Seq2Seq) has proven to be successful in neural machine transla-
tion [82] and other applications in natural language processing. Seq2Seq models consist of
an encoder and a decoder. Furthermore, these models typically contain one or more layers
of long short-term memory (LSTM) layers or gated recurrent unit (GRU) layers [62,83].
We also used a variant of the Seq2Seq architecture, where a bidirectional encoder was
used [84,85]. Along with the bidirectional encoder we also used Bahdanau attention [85].
This attention mechanism helps to learn the important encoder hidden states.

Similar to the Seq2Seq architecture, a Transformer is also an encoder-decoder-based
architecture. It can also be used for human motion inference [86] and other applications in
natural language processing [87–91]. Unlike Seq2Seq models, it does not have recurrent lay-
ers. We made two models using the Transformer architecture: using a bidirectional encoder,
which we refer to as ‘Transformer Encoder’; and using both an encoder and decoder, which
we refer to as ‘Transformer Full’. More detail of the Transformer architecture and exact
implementation can be found in the original paper [86] and two helpful tutorials [92,93].

In summary, we used two deep learning architectures (1) Seq2Seq (2) Transformers.
From these architectures, we prepared four models (algorithms). We refer to these models as
(1) Seq2Seq (2) Seq2Seq (BiRNN, Attn.) (3) Transformer Encoder, and (4) Transformer Full.

3.3.3. Training Parameters, Hyperparameter Tuning, and Performance Matrices

We generated the aforementioned models using PyTorch [94]. We conducted hyperpa-
rameter tuning using a training and cross-validation set. For each model, we used the same
training/validation split. We placed P1, P2, P3, P4 P5, P6, P8, P9, P13, W1, W2, and W4 in
the training set (Here, P = Virginia Tech participants and W = worker). In the validation set,
we placed P10, P12, and W3. In total, we used 882,452 and 318,484 sequences for training
and validation, respectively. We used a V100 GPU and AdamW optimizer with a learning
rate of 0.001. Other details of the hyperparameters are provided in Table 2. We used mean
absolute error (MAE) as the training loss function.

MAE =
1

mn

m

∑
j=1

n

∑
i=1
|q̂i − qi| (16)

In Equation (16), q̂i is the predicted segment quaternion, qi is the ground truth segment
quaternion, n is the number of segments in the body being predicted (15 for the upper
body), and m is the number of frames in the output sequence (5 frames).

Sensors 2022, 22, 2300 16 of 39

Table 2. Important training parameters used in different deep learning models. In addition to these
parameters, both the Transformer models used tuning parameters β1 = 0.95 and β2 = 0.99.

Parameters
Deep Learning Models

Seq2Seq Seq2Seq (BiRNN, Attn.) Transformer Encoder Transformer Full

Batch Size 32 32 32 32
Sequence Length 30 30 30 30

Downsample 6 6 6 6
In-out-ratio 1 1 1 1

Stride 30 30 30 30
Hidden-Size 512 512 N/A N/A

Number of Epochs 3 3 3 3
Dropout 0.1 0.1 0.1 0.1

Number of Heads N/A N/A 21 4
Number of Layers N/A N/A 2 4
Feedforward Size N/A N/A 200 2048

3.3.4. Training Performance Evaluation

For evaluating training performance, we used separate test sets (never used for training
or cross validation). Our model evaluation test set came from participants P7 and P11.
We used the mean angle difference θ̄ between the ground truth orientation and predicted
orientation as a performance matrix of our models. We used the following equation to
calculate θ̄ (in degrees).

θ̄ =
360

πmn

m

∑
j=1

n

∑
i=1
|< q̂i, qi >| (17)

In Equation (17), qi is the ground truth quaternion and q̂i is the predicted quaternion
for each segment, i is the index of the individual body segments, j is the index of the frames
in the output, n is the number of segments (15 for the upper body), and <·, ·> is the inner
product between two quaternions.

For visualization, we use a forward kinematics solver to plot a line model of the
human upper body from the normalized orientation output. The forward kinematics solver
uses the segment orientations and then multiplies by a single participant’s segment lengths
taken from an XSens MVNX file [60]. We used the following equation to perform forward
kinematics given the orientation of the segment:

PG
segment
i = PG

origin
i + RGBi · X

segment
i (18)

In Equation (18), PG
segment
i is the position of the target segment’s (ith segment) endpoint,

PG
origin
i is the position of the origin, and Xsegment

i is the segment’s length. As before, G
refers to the global reference frame and B refers to the segment’s reference frame.

Although normalization improves generalization, we multiplied by the orientation of
the pelvis to view the posture as it would be viewed without normalization for qualitative
evaluation. We used the following equation on the all predicted poses:

RGB = RGP · RPB (19)

3.4. Subtask 2: Inference
3.4.1. Test Dataset Overview

As discussed before, we wanted to compare the performance of sparse sensor configu-
rations with three sensors derived from the XSens MVN system versus the performance
of standalone sensors. Therefore, we collected data using XSens DOT sensors along with
the full XSens MVN Link suit. We collected data from N = 4 new participants (2 males,
2 females; ages 23.0 ± 2.3 years). All subjects provided informed consent (Virginia Tech
IRB #18-877). After putting on the required sensors, participants were asked to perform

Sensors 2022, 22, 2300 17 of 39

some activities of daily living (ADL), listed in Table A1. The data collection was performed
in a simulated house environment. Details of the data collection are discussed in the
following section.

3.4.2. Data Collection

At the beginning of each experiment, the experiment rooms were prepared with the
supplies required to perform the activities (full list in Table A1). Then, the participants put
on the full XSens MVN Link system. After wearing the suit, four XSens DOT sensors (“DOT
sensors”) were secured on top of the Link sensors or the Link suit with tape (see Figure 8).
Three DOT sensors were taped on top of the XSens MVN sensors on the pelvis, right
forearm, and left forearm; these were sensors that corresponded to the sparse segments in
our machine learning framework. The fourth DOT sensor was placed on the left side of the
hip, which did not have a corresponding XSens MVN sensor. Complete details of the setup
for data collection are presented in Figure 8.

1. Pelvis
2. Left Forearm (LFA)
3. Right Forearm (RFA)
4. Left Side Hip (LSH)

(a) (b)
(e) (f)

(h)

(g)

(c) (d)

Figure 8. The data collection process using XSens MVN and XSens DOT sensors. In (a,b), we show
the local coordinate system of the XSens MVN sensor and DOT sensors, respectively. In (c,d), we
present front and back views of a participant wearing both sensor systems. In (e–h) we show detail
of the locations of the XSens DOT sensors.

We recorded data with a rate of 240 Hz with XSens MVN and with a rate of 60 Hz with
the DOT sensors. The DOT sensors were programmed to collect orientation (quaternions)
and acceleration. Later, we downsampled data from both sensors to a rate of 40 Hz and
synchronized them manually.

3.4.3. Study Design

Placing an IMU sensor at the back of the pelvis is quite popular in kinematic inference
from sparse sensors (e.g., in [58,59,61]). However, we assumed for practical applications
like stroke rehabilitation, that it might be uncomfortable for a patient to wear a sensor on
their back for an extended period of time. To investigate solutions to this, we used two
configurations to compare the accuracy of upper body inference. As presented in Figure 8,
we placed four DOT sensors to formulate two configurations (Figure 9). For Configuration 1,
we used DOT sensors at the pelvis, LFA, RFA segments. For Configuration 2, we use a
sensor on the left side of the hip (LSH) instead of the pelvis sensor in Configuration 1.

Sensors 2022, 22, 2300 18 of 39

2
(RFA)

3
(LFA)

3
(LFA)

4
(LSH)

2
(RFA)

Configuration 1 Configuration 2

1
(Pelvis)

Figure 9. Diagram of the two different possible sensor configurations explored in this paper. Both of
them have wrist-mounted sensors in the same locations. On the left, Configuration 1 has the pelvis
sensor at the person’s back, which is coincident with the XSens system pelvis sensor. On the right,
Configuration 2 has the pelvis sensor at the person’s left hip. LFA = left forearm, RFA = right forearm,
SH = left side of hip.

In our study, as the ground truth, we used upper body (15 segments) orientation
information from the full XSens MVN suit. We then performed motion inference using
(a) three sparse segment configurations derived from the XSens MVN, (b) using three DOT
sensors in Configuration 1, and (c) using three DOT sensors in Configuration 2.

3.4.4. Mathematical Framework: Inference Inputs and Outputs, and Sensor Calibration

With the two configurations of the DOT sensors in Figure 9, we mapped the orientation
of the three DOT sensors to the three XSens MVN segments (since the segment orientations
are inputs to our machine learning models). Similarly, we map the accelerations of the three
DOT sensors to the corresponding XSens MVN sensor accelerations. We define two types of
mapping functions to translate the DOT measurements to the MVN model, considering two
cases: a variable mapping function that is customized for each trial, and a fixed mapping
function that is the same across all participants.

For the variable mapping, we mapped the DOT sensor orientation and acceleration in
two steps. In the first step, we mapped orientation (DOT sensor to MVN segment), and in
the second step, we mapped acceleration (DOT sensor to MVN sensor). For orientation
mapping, we assumed that a fixed rotation matrix (mapping function) existed between
the DOT sensors and corresponding XSens MVN segment for each individual recording
session. Similarly, for acceleration mapping, we assumed that a fixed rotation matrix
existed between each DOT sensor and the corresponding XSens MVN sensor.

That means the mapping functions (orientation and acceleration) on a particular day
(or recording session) may not be the same as the next day. We made this assumption
because, for each recording session, the XSens MVN system performs a local calibration.
This calibration might be different for a different recording session. We mapped the
orientation and acceleration of DOT sensors to XSens MVN using the following equations:

Ri,j(Ori) = (Ri,j
MVN(seg))n · (Ri,j

DOT(raw))n
−1

(20)

(Ri,j
DOT(seg)) = Ri,j(Ori) · (Ri,j

DOT(raw)) (21)

Ri,j(Acc) = (Ri,j
MVN(sens))n · (Ri,j

DOT(raw))n
−1

(22)

Sensors 2022, 22, 2300 19 of 39

(ai,j
DOT(sens)) = Ri,j(Acc) · (ai,j

DOT(raw)) (23)

In Equations (20)–(23), (Ri,j
MVN(seg)) and (Ri,j

MVN(sens)) are the MVN segment orientation
and MVN sensor orientation of the ith segments (pelvis, LSH, LFA, RFA, etc.) from the
jth recording session. These values are rotation matrices corresponding to the orientations
(quaternions) of each segment. Similarly, (Ri,j

DOT) is the orientation of a DOT sensor and
(ai,j

DOT) is the linear acceleration from a DOT sensor. Values with (raw) superscripts are
the raw DOT sensor data, while values with (seg) and (sens) have been calibrated to match
the MVN segment and sensor data, respectively. For both MVN and DOT data, values with
n subscripts were those corresponding to a particular frame n that we used for calibration.
Ri,j(Ori) and Ri,j(Acc) are the desired orientation and acceleration calibration mapping
functions (rotation matrices), respectively, for the ith segment and jth recording session.

Synchronization of the DOT sensor and XSens MVN is crucial to determine the map-
ping functions Ri,j(Ori) and Ri,j(Acc). For synchronization, we first downsampled the
DOT sensors and corresponding XSens MVN segments to a frequency of 40 Hz. We then
carefully synchronized both sensor data with a standard starting and ending frame based
on a sudden bump, which is visible in the acceleration data. To then find the orienta-
tion mapping function Ri,j(Ori), we picked a random single frame (n), took the value
of (Ri,j

MVN(seg))n, and multiplied (matrix product) it with the inverse of the correspond-

ing DOT sensor orientation (Ri,j
DOT(raw))n

−1
. This is shown in Equation (20). Similarly,

to find the acceleration mapping function Ri,j(Acc), we used the same frame n, took the

value of (Ri,j
MVN(sens))n, and multiplied (matrix product) it by (Ri,j

DOT(raw))n
−1

. This is in
Equation (22).

Once we constructed the fixed mapping functions, we then used these mapping
functions for all of the data collected in that session (Equations (21) and (23)), to map
the orientation and acceleration of all frames of the XSens DOT sensor to XSens MVN
coordinate system. Finally, we used the mapped data (Ri,j

DOT(seg), ai,j
DOT(sens)) as the input

to the models. These relationships can also be seen in Figure 7.
For the fixed mapping, we assumed that a fixed rotation matrix (mapping function)

exists between the DOT sensors and the corresponding XSens MVN segment and sensors,
irrespective of the recording session. In other words, we assumed there exists a constant
universal mapping function between DOT sensors and XSens MVN (sensors and segments).
We made this assumption to investigate a generalized approach to using standalone IMUs
for human motion inference. We found this fixed mapping function by averaging the
variable mapping functions, using Equation (24).

Ri,j = quaternion_average(Ri,j1 , Ri,j2 , Ri,j3 , . . .) (24)

In Equation (24), we simply average the mapping functions of different recording
sessions using the quaternion averaging method [95]. We then used Ri,j (refers to both
the orientation and acceleration mapping functions) to map all DOT sensor data to XSens
MVN data. In our study, we averaged the variable mapping functions from j = 4 recording
sessions to estimate the fixed mapping function. Figure 10 shows the individual rotation
matrices (Ri,j

MVN(sens)) for each of the j = 4 recording sessions and the average rotation
matrix from these four quaternions.

Sensors 2022, 22, 2300 20 of 39

(a) (b)

(c) (d)

(e)

Figure 10. In (a–d), we plot the rotation matrix (variable mapping function) of XSens DOT sensors
to MVN sensors for different persons on different recording sessions (only right forearm sensor is
shown here). In (e), we plot the fixed rotation function (fixed mapping function). The fixed mapping
function (using Equation (24)) is the quaternion average of the other four rotations. In each graph,
the red, green, and blue lines correspond to the x, y, and z axes of each rotation matrix.

Inference using the sparse configuration of XSens MVN was straightforward. We
used the segment orientation and sensor acceleration information of three sparse segments
from the newly collected data to predict the upper body using the four machine learning
models. However, for inference with standalone DOT sensors, we considered all possible
combinations of the factors: deep learning models could be {Seq2Seq, Seq2Seq (BiRNN,
Attn), Transformer Enc., Transformer Full}; the DOT sensors could be in {Configuration 1,
Configuration 2}; and the Mapping Function could be {Variable Mapping, Fixed Mapping}.

4. Results
4.1. Localization Results: Proximity Reporting in Simulation

As simulation validation, we show the ability of the trained recurrent neural network
(a DNN with a single LSTM layer) to withstand highly variable data; we also present
the performance of a plain DNN. The anchor characteristics are presented in Appendix B.
The path loss PLu(d0) and path loss exponent ξu in that table describes the characteristics
unique to a specific anchor. In Figure 11a, as the shadowing variance increased, σs, the ac-
curacy of the LSTM degraded more slowly than with a simple DNN. More specifically, at a
variance of σs = 15 dB, the proximity accuracy of the DNN was 78%, while the proximity
accuracy of the LSTM was 87%. At the same variance, the distance accuracy of the DNN and
LSTM was 89% and 95%, respectively. The training loss presented in Figure 11b indicates
that the LSTM might have better performance since it converges to a smaller loss value.

Sensors 2022, 22, 2300 21 of 39

0 5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 100 200 300 400

10
−1

(b)

Figure 11. (a) Accuracy versus shadowing variance. (b) Training loss versus time step.

4.2. Localization Results: Proximity Reporting with Real World Data

In this section, we validate the model-free neural network proximity reporting system
with real data. The considered environment is an area of 10.6 × 7.4 m. The reference
points and the beacons are placed as described in Section 2.3.2. The beacons and reference
coordinates are also shown in Appendix C. However, unlike in Section 2.3.2, the area was
divided into four regions of interest, as shown in Figure 12a. The red line indicates the
wall separating the indoors and the outdoors. The yellow lines indicate walls separating
various indoor regions, while the blue lines indicate a separation from one indoor region to
the next without a wall. A three layered LSTM was trained to recognize each RoI. There
were four inputs to the LSTM, each representing the mean RSSI values measured over 0.5 s
from each of the four beacons. There were also four LSTM outputs, each representing the
four RoIs. From Figure 12b, the LSTM was able to perfectly determine when the target was
in each RoI.

Beacon ID 1 Beacon ID 2 Beacon ID 5 Beacon ID 9

(a)

� � � �

�	�

�
�

�
�

�	
�

�� � � �

� �� � �

� � �� �

� � � ��

���

���

���

���

���

���

(b)

Figure 12. (a) Floor plan, showing the beacon locations and the regions of interest; (b) confusion
matrix showing accuracy of neural network-based proximity reporting.

4.3. Localization Results: Positioning with Real World Data

In this section, we present real-world results using the k-NN algorithm presented
in [29]. Two examples of RSS data at different locations are shown in Figures 13 and 14.
The average values of the RSS were used to form the codebook for localization.

Sensors 2022, 22, 2300 22 of 39

� � �

�������
�

�
�

�	�

���

���

���

�
��

���
��

(a)

� ��� ��� ��� ����

�����

�
�

�	�

���

���

���

�

���
�� ������

�
�
�

(b)

Figure 13. RSS at Reference point 1. (a) Distributions of RSS for different beacons; (b) RSS versus
sample number (samples are taken at 4 Hz).

� � �

�������
�

�
�

�	�

���

���

���

�
��

���
��

(a)

� ��� ��� ���
������

���

�
�

�	�

���

���

��

���
�� ������

�
�
�
�

(b)

Figure 14. RSS at Reference point 11. (a) Distributions of RSS for different beacons; (b) RSS versus
sample number (samples are taken at 4 Hz).

We provide test results for data collected in three of the seven rooms, as shown in
Figures 15–17. The colored lines in these figures represent the demarcations separating
the RoIs. These demarcations also affect the RSS in the form of shadowing. While the
minimum mean square error of the position estimates was 1.78 m, the figures show that
the target can be localized to an RoI. More specifically, the fingerprinting technique with
real world data can predict what region of the house the target is located. This is crucial for
smart health applications where knowing the section of the house that different motions
are performed in gives cues about the purpose of those motions and which activities of
daily living might need additional rehabilitation.

Figures 15b, 16b and 17b show the variation of the estimates over time in both the x
coordinates and y coordinates. It is important to note the relationship between the spatial
and the temporal view. For the kitchen, the algorithm produced varying estimates while
the target was positioned at a fixed coordinate (see Figure 15a); this variation was captured
best in the temporal view. In the temporal view (see Figure 15b), the estimates varied
over the time step. This trend was also observed in the dining room (see Figure 16a,b).
However, in the final test location (bedroom 2), the algorithm produced a stable estimate
(see Figure 17a). This stability was validated by the temporal view in Figure 17b.

Sensors 2022, 22, 2300 23 of 39

0 1 2 3 4 5 6 7 8 9 10 11
X-axis (m)

0

1

2

3

4

5

6

7

Y-
ax

is
(m

)

Actual
Estimates
Beacon ID 1
Beacon ID 2
Beacon ID 5
Beacon ID 9

(a)

0 5 10 15 20 25
Time step

0

2

4

6

8

10

12

14

Co
or

di
na

te
s (

m
)

Estimate x coord
Actual x coord
Estimate y coord
Actual y coord

(b)

Figure 15. Testing in the kitchen. (a) Floor plan view, and (b) location estimates over time.

0 1 2 3 4 5 6 7 8 9 10 11
X-axis (m)

0

1

2

3

4

5

6

7

Y-
ax

is
(m

)

Actual
Estimates
Beacon ID 1
Beacon ID 2
Beacon ID 5
Beacon ID 9

(a)

0 5 10 15 20 25
Time step

0

2

4

6

8

10

12

14

Co
or

di
na

te
s (

m
)

Estimate x coord
Actual x coord
Estimate y coord
Actual y coord

(b)

Figure 16. Testing in the dining room. (a) Floor plan view, and (b) location estimates over time.

0 1 2 3 4 5 6 7 8 9 10 11
X-axis (m)

0

1

2

3

4

5

6

7

Y-
ax

is
(m

)

Actual
Estimates
Beacon ID 1
Beacon ID 2
Beacon ID 5
Beacon ID 9

(a)

0 10 20 30 40
Time step

0

2

4

6

8

10

12

14

Co
or

di
na

te
s (

m
)

Estimate x coord
Actual x coord
Estimate y coord
Actual y coord

(b)

Figure 17. Testing in a bedroom. (a) Floor plan view, and (b) location estimates over time.

Sensors 2022, 22, 2300 24 of 39

4.4. Motion Inference Results

Here, we first provide results on the performance of our algorithms. We describe the
quantitative results for our algorithms, then we show the visualization of a few postures
predicted by the models.

4.4.1. Quantitative Analysis

With the quantitative results, we first present the inference performance of our models
using the VT Natural Motion Dataset. We then describe how the trained models performed
with the new dataset using sparse segments of XSens MVN. Finally, we present the perfor-
mance of our models using DOT sensors, considering the two configurations and the two
mapping functions.

Test Performance Evaluation Using Sparse Segments of XSens MVN

We first present results using our new test set, as described in Section 3.4.1. Here, we
expect similar results to our prior work [60], since we used the sparse data from XSens
MVN. In Figure 18, we plot the angular error distribution combining all predicted segments
for all four models, including the mean angular error for all models.

0 10 20 30 40 50 60 70
Angular error in degrees

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y
De

ns
ity

Mean: 16.09°
Mean: 16.07°
Mean: 16.04°
Mean: 15.65°

seq2seq
seq2seq (BiRNN, Attn)
Transformer Encoder
Transformer Full

Figure 18. Distribution of the mean angular error for motion inference using the sparse segments of
XSens MVN (from the new dataset).

Test Performance Evaluation Using XSens DOT Sensors

Next, we present inference results using the XSens DOT sensors considering different
factors. Figure 19 shows the distribution of the mean angular error of the predicted
segments relative to the ground truth segments for the two configurations we described in
Figure 9. We consider the variable mapping function for the results shown in Figure 19.
Overall, all the models performed similarly in both Configurations 1 and 2. However,
results were slightly better in Configuration 1. Therefore, comparing the results of all
configurations with the variable mapping, we used Configuration 1 and the Transformer
Full model for further analysis, as these had the best results.

In Table 3, we present the results from the DOT sensors using the fixed mapping
function. Here, average results were much better in Configuration 1 than Configuration 2.
In Configurations 1 and 2, the transformer models had the minimum mean angular error,
with values of ∼33◦ in Configuration 1 and ∼43◦ in Configuration 2.

Sensors 2022, 22, 2300 25 of 39

0 25 50 75 100
Angular error in degrees

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
De

ns
ity

Mean: 21.06°

Mean: 20.93°

Mean: 20.92°

Mean: 20.35°

Variable Mapping, Configuration 1
seq2seq
seq2seq (BiRNN, Attn)
Transformer Encoder
Transformer Full

0 25 50 75 100
Angular error in degrees

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
De

ns
ity

Mean: 21.95°

Mean: 21.41°

Mean: 21.05°

Mean: 21.84°

Variable Mapping, Configuration 2
seq2seq
seq2seq (BiRNN, Attn)
Transformer Encoder
Transformer Full

Figure 19. Angular error distribution of motion inference using Xsens DOT sensor with varying
configurations (from the new dataset). Configuration 1 had the pelvis sensor on the back of the pelvis,
next to the XSens sensor; Configuration 2 had the pelvis sensor on the side of the pelvis.

Table 3. Mean angular error of different models with varying configurations for inference using DOT
sensors with the fixed mapping function (with the new test set).

Deep Learning Model Fixed Mapping, Configuration 1 Fixed Mapping, Configuration 2

Seq2Seq 34.75◦ 44.85◦

Seq2Seq (BiRNN, Attn) 33.07◦ 46.37◦

Transformer Enc. 33.81◦ 42.92◦

Transformer Full 32.65◦ 43.03◦

Comparison of Segment-Wise Mean Angular Error of Predictions by XSens MVN and
XSens DOT Sensors

In Figure 20, we compared inference results of the DOT sensors with results from
sparse XSens MVN segments. We only compared the performance of the Transformer
Full model. For DOT sensors, we present results with the variable mapping function and
Configuration 1. There are 15 sub-figures for the 15 upper-body segments. For both XSens
MVN and XSens DOT, we plot the mean angular error distribution for each segment relative
to the ground truth. While the overall minimum mean angular error of prediction using
XSens MVN and XSens DOT are ∼15.65◦ and ∼20.35◦, respectively, for the Transformer
Full model (see Figures 18 and 19), Figure 20 shows how these errors are distributed among
the segments.

In most cases, the two inputs gave similar results, but using sparse segments of the
XSens MVN performed several degrees better. Both inputs had relatively low mean angular
errors for the first six segments (Pelvis, L5, L3, T12, T8, Neck), and the MVN inputs had
low errors for the right and left forearms. For the XSens MVN, the maximum mean error
occurred for the ‘Head’ segment, ∼29◦. Noticeably, the XSens DOT had much higher mean
errors for inferring motions of the ‘Left Forearm’ and ‘Right Forearm’, with errors of ∼24◦

and ∼26◦, respectively; for comparison, the MVN inputs had errors of ∼3◦.
We next computed histograms of the distribution of the joint angles measured in

the test set (Figure 21). Specifically, we plot the left and right elbows and left and right
shoulders. To find the joint angles, we took the angle between the two quaternions for the
segments on either side of the joint. Therefore, the elbow angles were computed via the
angle between the upper arm and forearm, while the shoulder angles were computed by
the angle between the T8 segment (near the upper chest) and the upper arm. Note that this

Sensors 2022, 22, 2300 26 of 39

method finds the smallest angle between the two quaternion orientations, so we do not
distinguish between the three different degrees of freedom at the shoulder. Notably, both
the XSens MVN and DOT inputs gave joint angle distributions very close to the ground
truth for all of the angles investigated.

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 0.08°

Mean: 0.08°

Pelvis

T12

Head

Right Upper Arm

Left Upper Arm

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 14.57°

Mean: 12.72°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 28.89°

Mean: 26.49°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 25.25°

Mean: 21.27°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 23.02°

Mean: 19.15°

XSens MVN XSens DOT

Right Shoulder

Right Forearm

Left Forearm

T8

L5
0 20 40 60 80

0.00

0.05

0.10

0.15

0.20

0.25

Mean: 7.06°

Mean: 6.13°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 15.70°

Mean: 13.64°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 20.12°

Mean: 16.07°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 26.45°

Mean: 2.84°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 24.48°

Mean: 3.42°

Right Hand

Left Shoulder

Left Hand

Neck

L3
0 20 40 60 80

0.00

0.05

0.10

0.15

0.20

0.25

Mean: 11.46°

Mean: 10.02°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 18.43°

Mean: 16.09°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 29.35°

Mean: 17.95°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 16.91°

Mean: 14.58°

0 20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

Mean: 27.28°

Mean: 15.09°

Figure 20. Segment orientation errors for each segment in the XSens model. X-axis is angle in degrees.
Blue histograms show the angular error distribution for the MVN segments, while red histograms
show the angular error distribution using the DOT sensors. The mean error is shown in each case.

Next, we computed histograms of the error between the ground truth joint angle
and the joint angles predicted by either the MVN sparse segments or the DOT sensors
(Figure 22). To find these values, we took the ground truth joint angles (as computed
above) and subtracted from them the inferred joint angles (from the MVN and DOT sensors
separately). In these graphs, negative values indicate that the inferred angle predicted a
more acute angle than the ground truth. For the shoulder, negative values indicated that
the arm was closer to the side than the ground truth. In each case, the mean joint angle
error was less than 4.0◦ for both the MVN sparse sensors and the DOT sensors. The error
distributions were approximately symmetric around zero in both cases.

Sensors 2022, 22, 2300 27 of 39

XSens MVN XSens DOTGround Truth

0 50 100 150
0.00

0.01

0.02

0.03

0.04

0 50 100
0.000

0.025

0.050

0.075

0.100

0.125

0 50 100 150
0.00

0.01

0.02

0.03

0 50 100
0.000

0.025

0.050

0.075

0.100

0.125

Right ShoulderLeft Shoulder

Right ElbowLeft Elbow

Joint Angle in degrees Joint Angle in degrees

Joint Angle in degrees Joint Angle in degrees

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

Figure 21. Joint angle distribution for selected joints. The blue histogram shows the joint angle
distribution for the MVN segments, while the red histogram shows the joint angle distribution using
the DOT sensors (variable mapping, Configuration 1). The grey histogram presents the ground truth
for the corresponding joint angles. For the elbow, 0◦ corresponds to the arm straight.

XSens MVN XSens DOT

Right ShoulderLeft Shoulder

Right ElbowLeft Elbow

Joint Angle in degrees Joint Angle in degrees

Joint Angle in degrees Joint Angle in degrees

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

100 50 0 50
0.00

0.01

0.02

0.03

0.04 Mean: 2.08°
SD: 16.55°

Mean: 3.42°
SD: 21.29°

50 0 50
0.00

0.02

0.04

0.06

0.08

0.10
Mean: 1.75°
SD: 8.52°

Mean: 2.54°
SD: 10.45°

100 50 0 50
0.00

0.01

0.02

0.03

0.04
Mean: −0.88°
SD: 16.47°

Mean: −1.85°
SD: 20.27°

50 0 50
0.00

0.02

0.04

0.06

Mean: 3.96°
SD: 10.85°

Mean: 4.00°
SD: 13.56°

Figure 22. Joint angle error distribution for selected joints. The blue histogram shows the error
distribution for the MVN segments, while the red histogram shows the error distribution using the
DOT sensors (variable mapping, Configuration 1). The mean error and standard deviation are shown
for each distribution.

Sensors 2022, 22, 2300 28 of 39

4.4.2. Qualitative Analysis

Qualitative evaluation is performed in most of the studies of human motion infer-
ence [48,59,96] to give intuition into how well the reconstruction performs. Quantitative
measures help analyze different aspects of the models’ performance, and a visual evalua-
tion is necessary to build intuition for how the models make predictions. We only evaluated
a few poses to demonstrate our work.

Figure 23 presents four sample poses and the ground truth reconstructed using the
XSens MVN Link system. We note that the actual human poses in Figure 23 correspond
to slightly different times than the stick figures. The poses are representative of the ac-
tivities listed in Table A1. The first pose shows vacuum cleaning, and the second pose
shows folding laundry. The third pose is from organizing groceries, which is similar to
picking something up from the ground. The fourth pose illustrates placing an object (either
grocery/laundry) on a higher-level shelf.

(Pose 1) (Pose 2) (Pose 3) (Pose 4)

Figure 23. Figures in the first row are the samples of actual human poses during the different ADL
tasks listed in Table A1. These include: vacuum cleaning (pose 1), folding laundry (pose 2), picking
grocery items (pose 3), and putting objects on a high shelf (pose 4). In the second row, we present
the skeleton model of the ground truth for the upper body for similar poses. The ground truth is
reconstructed using the XSens MVN Link system. The actual human poses in the first row look
slightly different than the ground truth poses in the second row because the photos correspond to
slightly different times than the ground truth poses.

In Figures 24 and 25, we compare motion inference results using sparse segments of
XSens MVN and XSens DOT (Configuration 1, variable mapping function). In each of the
two figures, in the left-most column, we present the ground truth pose (as described in
Figure 23), and on the right, we present inference results for both XSens MVN and XSens
DOT from the four different machine learning models.

In the first pose (Figure 24 top), the person is standing and performing vacuum
cleaning. Almost all the models performed well for both the XSens MVN and DOT sensors,

Sensors 2022, 22, 2300 29 of 39

giving reasonable-looking results. Therefore, we expect good inference results for similar
tasks where the person will be standing and doing other activities of daily living such as
washing dishes in the kitchen, making food, or cleaning. In the second pose (Figure 24
bottom), the person folds laundry while sitting in a chair. This pose is similar to sitting for
a meal or working on a study table or similar environment where the person does not need
to bend much. Both sensor types again gave reasonable results. In the case of DOT sensors,
the left elbow was inferred to be slightly more open than in the ground truth. Both sensor
types show the right upper arm to be rotated slightly relative to the ground truth.

Seq2Seq
Seq2Seq

(BiRNN, Attn)
Transformer

Enc.

Transformer
Full

Ground Truth
(Pose 1)

Ground Truth
(Pose 2)

Inference Using Xsens MVN

Inference Using Xsens DOT

Inference Using Xsens MVN

Inference Using Xsens DOT

Figure 24. Qualitative evaluation for general human poses while standing (Pose 1) and sitting
(Pose 2).

The third and fourth poses (Figure 25) were more challenging than the first two
poses. In the third pose, the person bends more than 90◦. This is similar to tasks such
as picking up objects from the floor or organizing low objects. All models performed
similarly for both the XSens MVN and DOT sensors, and gave reasonable outputs. In
all of the models, the arms are not as far forward as in the ground truth. In the fourth
pose, the person was reaching upward. Pose 4 was similar to organizing objects on a shelf,
grabbing grocery objects from a refrigerator, placing laundry items in the closet, or similar
tasks. The transformer models did not perform as well for the DOT sensors, but overall

Sensors 2022, 22, 2300 30 of 39

all of the models performed reasonably. The MVN inference was slightly better than the
DOT inference. Overall, the qualitative results resemble the quantitative evaluation of
our models.

Seq2Seq
Seq2Seq

(BiRNN, Attn)
Transformer

Enc.

Transformer
Full

Ground Truth
(Pose 3)

Ground Truth
(Pose 4)

Inference Using Xsens MVN

Inference Using Xsens DOT

Inference Using Xsens DOT

Inference Using Xsens MVN

Figure 25. Qualitative evaluation is presented for challenging human poses while standing (Pose 4)
and sitting (Pose 3). These poses are relatively challenging for inference since the person uses many
hand or body movements.

5. Discussion
5.1. Discussion on Localization
5.1.1. Proximity Reporting

This work has developed model-free techniques for proximity reporting. The neural
network takes as input RSS signatures from the beacons. During training, the neural
network jointly learns the correlation among the beacons and the correlation between the
target’s position and received RSS. This learning approach circumvents the need to derive
RSS thresholds for each beacon. The learning approach is validated in terms of its ability
to detect whether the simulated patient is within a predefined range from the anchor, its
ability to detect when the simulated patient is not within a predefined range from the
anchor, and its ability to either place the simulated patient within the range from the anchor
or to determine the absence of the simulated patient within a certain range from the anchor.

Sensors 2022, 22, 2300 31 of 39

From the results presented in Figure 11a, all evaluated metrics deteriorate as the shadowing
variance increases. This is intuitive, as the shadowing models the power fluctuation due to
objects obstructing the propagation path between transmitter and receiver. A measurement
from an obstructed beacon will most times have a reduced RSS value, giving the illusion
that the target is much farther away than it actually is. This bias hampers any effect to
accurately position the target. Figure 11 also depicts the advantage of accounting for the
correlation between past and current measurements. The LSTM has better accuracy metrics
than the DNN because it considers past measurements as well as future measurements
when returning a proximity report.

5.1.2. Positioning with Real World Data

Figures 13a and 14a describe the time variation of the RSS from all of the anchors at
the 1st reference point and 11th reference point, respectively. Clearly, the closest anchor
has the highest mean RSS values. At the 1st reference point, the anchor with beacon ID
5 was the closest and had the highest mean RSS value (−69 dB). At the 11th reference
point, the anchor with beacon ID 1 was the closest and had the highest mean RSS value
(−63 dB). Figures 15a, 16a and 17a depict a few results showing the estimates and true
positions. The estimates are roughly within the bounds of a room, which is likely sufficient
for the interpretation of upper body kinematics. In [36], a multi-layer perceptron was used
to achieve an accuracy of 2.82 m. In [97], a discriminant-adaptive neural network was
developed for indoor positioning. A 23× 30 m area was considered and a position accuracy
of 2 m was achieved 60% of the time. In [28], a weighted k-NN approach was used for
indoor positioning. For a similar 23× 30 m area, an accuracy of 2 m was achieved 40% of
the time. Considering all these works, our results also provide similar positioning accuracy.
The positioning accuracy of our system varied from 1.3 m to 2.3 m.

5.2. Discussion on Motion Inference

Our results are well comparable to other previous work such as [57,59,61]. In [57],
the authors used five sparse XSens MVN segments for predicting full-body poses, and com-
pared six different configurations. Among them, configuration B was similar to our work.
In configuration B, they placed sensors in the ‘pelvis’, ‘left forearm’, ‘right forearm’, ‘left
lower leg’, and ‘right lower leg’ segments. The upper body in this configuration was compa-
rable with our study (variable mapping with DOT sensor and sparse segment configuration
of XSens MVN). Their estimates had an average joint angle error of ∼7◦ and joint position
error of ∼8 cm for the full body, which is impressive. However, considering only the joints
in the upper body, the mean joint angle errors were ∼12–15◦ (Figure 5 in reference [57]),
using five sparse sensors. In [59], the authors predicted skinned multi-person linear model
(SMPL, [98]) parameters of a single frame using 20 past frames and five future frames
at test time with a bidirectional LSTM network. They performed both online and offline
evaluations. From Table 3 in reference [59], for offline evaluation after fine-tuning, their
model estimated mean (±standard deviation) joint angle errors of ∼16◦ ± 13◦ for the Total-
Capture test dataset and ∼18◦ ± 12◦ for the DIP-IMU dataset. In the recent work in [61],
authors also used the SMPL parameters, and they performed both localization and motion
inference using six standalone IMU sensors. Looking at the results for offline comparison
in Tables 2 and 3 in [61], they estimated a mean global rotational error of ∼12◦ ± 6◦ for the
TotalCapture test dataset and ∼8◦ ± 5◦ for the DIP-IMU dataset. Although [59,61] list joint
angle errors, these works use SMPL as a model, while we use segment orientation directly,
which may lead to some differences in comparison. In all cases, there is a moderately large
standard deviation.

All the works listed used five or more sensors to predict full-body motion, whereas
our work uses three sensors to predict just the upper body. It may be that the upper and
lower body halves function somewhat independently in their works, and would not affect
their results if they just used the upper body and pelvis sensors. Our work found a mean
segment orientation error of ∼15◦ using XSens MVN segments, and a mean of ∼20◦ using

Sensors 2022, 22, 2300 32 of 39

XSens DOT sensors for upper body inference. When we computed the joint angles (elbow
and shoulder), we found mean average errors of <4◦ and standard deviations of 9–21◦.
These results are favorable as compared to previous works.

Furthermore, from Figures 21 and 22, we find that joint angle distributions were
similar to the ground truth. However, the segment orientations had a higher margin of
error. This is because joint angles were computed as the angle between two segments. If the
respective segments of inference equally deviate from the respective ground truth segments,
the joint angle for inference and ground truth will be theoretically the same. Thus, looking
at the segment orientation error will give more insight into a model’s performance.

Furthermore, we found that the forearms gave large errors with the DOT sensors but
not the MVN sensors. This was confusing, since the inference was based on the sensors
located on the forearms. It is likely that the forearm errors were caused by the DOT sensors
drifting over time; the calibration mapping between the DOT sensors and machine learning
model inputs were done once for each session, using a data frame near the beginning of
the session. Thus, the DOT sensor drifting would result in errors since it would no longer
match the true segment orientation. Surprisingly, the inference models seemed to be fairly
immune to this drift in their estimation of the joint angles.

Overall, the DOT sensors did not perform as well as the MVN sensors. One reason for
this is the imperfect mapping between the DOT sensors and the MVN system, which is
what the machine learning models were trained on. The effects of the imperfect mapping
are most evident when comparing the fixed mapping and the variable mapping. We found
that the fixed mapping function did not perform very well at all (Figure 10 and Table 3).
It turned out that the rotation matrices in Figure 10 for the individual calibrations varied
substantially, with around 90◦ of rotation between two of them. It appears that, in general,
a calibration must be performed for each individual, and again periodically over time as
sensors move or drift. We note that the specific way the sensors will attach to a person’s
forearm will likely differ somewhat between wearers, based on arm shape and variability
in sensor placement, so a universal mapping may be difficult. With the MVN system, a full
calibration was performed at the beginning of each data collection session, including special
poses and walking for a short distance. The MVN system benefits both from this and also
the presence of sensors on all body segments, which are used to solve the full skeleton.

As described before in Section 3.3.1, the XSens MVN uses 17 IMU sensors to reconstruct
full body kinematics of 23 segments. MVN sensor reference frames are located inside the
sensor (Figure 8a). However, the segment reference frames have a different location than
the actual sensor locations. For example, segment frames for the left forearm and right
forearm are located in the respective elbow joints. In comparison, we place the forearm
sensors near the wrist (Figure 8e). Thus, the linear acceleration values were different for
the segment and sensor. As the input to the model, we used segment orientation and
experimented with both segment acceleration and sensor acceleration. We found that when
doing MVN inference, using the segment acceleration gave better results (by 0.3–0.65◦).
However, when doing inference for the DOT sensors, using the sensor acceleration gave
much better results (by 6–7◦ of mean segment angular error, and 2–7◦ of mean joint angle
error). Since our ultimate goal was a standalone system with just a few IMUs, we ultimately
used the sensor accelerations as inputs to our machine learning models.

It turned out that Configuration 1 (pelvis sensor on back of pelvis) performed bet-
ter than Configuration 2 (pelvis sensor on the left hip), although the results were very
comparable. As seen in Figure 20, Configuration 1 had mean errors about 1◦ less than
Configuration 2 for all of the models. It may be that the sensor location in the back of the
body moves with the pelvis more closely.

Overall, the kinematics estimated by this system do provide relatively large errors,
as compared to whole-body IMU-based motion capture systems. However, this system is
much easier to put on and is lower cost (<500 USD). It remains to be seen if the kinematic
information is sufficient for rehabilitation applications; it is promising that the overall joint
angle distributions were close to the ground truth distributions, and the average joint angle

Sensors 2022, 22, 2300 33 of 39

errors were small. Hopefully, with improvements, the overall trends in activity will provide
insights into which upper extremity motions need additional rehabilitation.

5.3. Limitations of our Study
Motion Inference

Although we can predict upper-body motion with a reasonable error margin, there
are some limitations and room for improvement in the future.

One easy way to improve the results with the DOT sensors is to increase their sampling
rate. With the DOT sensors, the error increases with dynamic applications. We recorded
data with the DOT sensors at a 60 Hz rate, but it would be better to record at a 120 Hz rate,
which is recommended for dynamic applications.

Another limitation is that a custom calibration seems to be necessary for each person
and possibly each data collection session. Since the fixed mapping with the DOT sensors did
not work well, in the future, algorithms that automatically calibrate the sensor placement
to a person are important to minimize the mapping error. We expect that these will need to
be continuously updating algorithms that adjust even if a sensor moves over the course of
a day, for example if a person takes off a wrist-mounted sensor and puts it back on again or
if they disturb the orientation of the pelvis sensor. These algorithms should ideally also
take into account any translational offsets between the MVN skeleton and wrist or pelvis,
and thus improve the treatment of the acceleration.

6. Conclusions

In conclusion, we present several algorithms for in-home localization and kinematics
reconstruction. We first present and simulate a new model-free technique for localizing
a person to a region of interest. This is useful for identifying which room of a house
a person is in. This technique employs a neural network to provide proximity reports
based on the received RSS from beacons with known locations. Second, we validate the
model-free proximity reporting by designing a neural network to localize a person to an
RoI. Third, we conducted experiments validating a Bluetooth RSS fingerprinting-based
approach to localization in a home environment. Finally, we presented algorithms for
motion inference and data on how well three standalone IMU sensors can reconstruct the
upper body kinematics. We compared two different configurations of the pelvis sensor,
finding that they performed similarly. We also evaluated the possibility of a fixed mapping
between the standalone IMUs and the MVN system used to train the machine learning
models. We found that a calibration is necessary for each individual participant in order
to get usable results. Once properly calibrated, the upper body inference system gave
moderate segment orientation errors, but small mean errors for the joint angles.

It remains to be seen if the localization accuracy and the joint angle error accuracy are
necessary for effective rehabilitation. It is likely important to have moderately-accurate
human sensing so that the rehabilitation suggestions are based upon true data. While
not explored in this paper, there may be other derived features (such as joint velocities)
that may be especially useful for rehabilitation; it is unknown how well the algorithms
presented here would accurately measure or estimate those. Overall, however, the work in
this paper is promising for quantitative in-home rehabilitation.

Author Contributions: Conceptualization, A.K., T.R., R.M.B. and A.T.A.; data curation, A.S., D.-R.E.,
R.M.B. and A.T.A.; investigation, A.S. and D.-R.E.; project administration, A.K., T.R., R.M.B. and A.T.A.;
software, A.S. and D.-R.E.; supervision, A.K., T.R., R.M.B. and A.T.A.; writing—original draft, all;
writing—review and editing, R.M.B. and A.T.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Science Foundation (Grant # 2014499).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Virginia Tech (protocol
#18-877, approved 23 November 2021).

Sensors 2022, 22, 2300 34 of 39

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Links to the Virginia Tech Natural Motion Dataset and code used to
train our machine learning models can be found in [60].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed List of ADL Activities

Following is a detailed list of the activities performed during data collection for the
kinematics reconstruction.

Table A1. List of activities performed by the new participants. The Activity Time is the approximate
number of minutes to complete the activity.

Task Group Room Preparation and List of Activities in Details Activity Time

(1) Walking 3 Laps in the room Setup/Room Preparation: Remove any objects from the ground. Make sure there
are minimal obstacles in the room while walking.
Direction/Steps of activities:

• Stay in N-pose for 10 s, then walk back and forth .
• First loop: Walk slowly from one room to another room and return to the

starting location.
• Second loop: Walk in a medium speed from one room to another room and

return to the starting location.
• Third loop: Walk in a faster speed from one room to another room and return

to the starting location.
• Stay in N-pose for 10 s, then walk back and forth .

2.5

(2) Pick up things (clothing, books, toys,
words blocks, safety pins) off floor, tidy
up in order to vacuum, then vacuum.

Setup/Room Preparation: Place variety of items scattered across floor. Make sure
vacuum is present and accessible. Initially 5 objects (book, toy, pen, cloth, coffee
mug).
Direction/Steps of activities:

• Pick 2/3 items from the floor, then place items on the coffee table.
• Pick remaining items from the floor, then place the items on the coffee table.
• Grab the vacuum cleaner, plug it in to the power source, and start vacuuming.
• Unplug the vacuum cleaner, then place it in its original location.
• Pick up all the five objects (one by one) from the coffee table and place them

at their designated place. For example, the book will go to the bookshelf; the
coffee mug will go to the kitchen shell, etc.

• Stay in N-pose for 10 s, then walk back and forth.

4

(3) Fold laundry and put it away in cabi-
nets with appropriateabel/low drawers
in multiple rooms (i.e., bedroom, linen
closet, kitchen towels, hanging clothes,
etc.)

Setup/Room Preparation: Prepare laundry basket. Include linens, hanging clothes,
and folded clothes. These cloths will be placed in drawers, shelves, and linen closet
labeled.
Direction/Steps of activities:

• Take the laundry basket (full of 2 shirts, 1 T-shirt, 1 pillow cover, 1 pair socks)
to the linen closet

• Sit in a chair. Then pick up the clothes and fold them.
• After folding each clothing item, place them in their designated location.

For example, T-shirts will be hung on the hanger, linens will go to the linen
closet, etc.

• Stay in N-pose for 10 s, then walk back and forth.

3.5

(4) Packing and unpacking a bag of gro-
ceries and put each piece in the cabi-
net/fridge with the appropriate label (by
category).

Setup/Room Preparation: Need to place grocery items (5 items, e.g., a bag of coffee
beans, jar of sugar, salt cellar, soda can, canned tuna) in the kitchen; also, a grocery
bag should be accessible. Prepare/empty shelf space; label spots for the type of
goods.
Direction/Steps of activities:

• Take the grocery bag and load all items carefully into the grocery bag.
• Unpack the grocery items one by one and place them at their designated

destinations. For example, the soda can will go to the fridge; the sugar jar will
be placed in the kitchen cabinet.

• After organizing the groceries, fold the grocery bag and put it into a drawer.
• Stay in N-pose for 10 s, then walk back and forth.

2

Sensors 2022, 22, 2300 35 of 39

Appendix B. Anchor Characteristics

Table A2. Anchor characteristics for proximity reporting.

Beacon ID Position (x, y) Parameters (PL(d0), ξu, σs,u)

1 (5, 37.5) (−57.6,−2.5, σs)
2 (15, 37.5) (−68.3,−1.8, σs)
3 (25, 37.5) (−68.0,−1.9, σs)
4 (35, 37.5) (−60.8,−2.3, σs)
5 (45, 37.5) (−60.3,−2.4, , σs)
6 (5, 12.5) (−66.5,−1.9, σs)
7 (15, 12.5) (−55.7,−2.6, σs)
8 (25, 12.5) (−73.0,−1.2, σs)
9 (35, 12.5) (−61.9,−2.0, σs)

10 (45, 12.5) (−57.6,−2.6, σs)

Appendix C. Anchor Positions and Reference Positions

0 1 2 3 4 5 6 7 8 9 10 11

X-axis (m)

0

1

2

3

4

5

6

7

Y
-a

x
is

 (
m

)

Reference Pts

Beacon ID 1

Beacon ID 2

Beacon ID 5

Beacon ID 9

Figure A1. Positions of the anchors (beacons) used for transmitting Bluetooth signals, as well as the
reference points where the signal strength was measured.

References
1. Haghi, M.; Thurow, K.; Stoll, R. Wearable devices in medical internet of things: Scientific research and commercially available

devices. Healthc. Inform. Res. 2017, 23, 4–15. [CrossRef] [PubMed]
2. Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans.

Syst. Man Cybern. Part C Appl. Rev. 2009, 40, 1–12. [CrossRef]
3. Kleim, J.; Jones, T. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J.

Speech Lang. Hear. Res. 2008, 51, S225–S239. [CrossRef]
4. Chen, Y.; Duff, M.; Lehrer, N.; Sundaram, H.; He, J.; Wolf, S.L.; Rikakis, T. A computational framework for quantitative evaluation

of movement during rehabilitation. In Proceedings of the AIP Conference Proceedings, Toyama, Japan, 11–13 October 2011;
Volume 1371, pp. 317–326.

5. Lang, C.E.; Bland, M.D.; Bailey, R.R.; Schaefer, S.Y.; Birkenmeier, R.L. Assessment of upper extremity impairment, function, and
activity after stroke: Foundations for clinical decision making. J. Hand Ther. 2013, 26, 104–115. [CrossRef] [PubMed]

6. Baran, M.; Lehrer, N.; Duff, M.; Venkataraman, V.; Turaga, P.; Ingalls, T.; Rymer, W.Z.; Wolf, S.L.; Rikakis, T. Interdisciplinary
concepts for design and implementation of mixed reality interactive neurorehabilitation systems for stroke. Phys. Ther. 2015,
95, 449–460. [CrossRef] [PubMed]

7. Chen, Y.; Xu, W.; Sundaram, H.; Rikakis, T.; Liu, S.M. Media adaptation framework in biofeedback system for stroke patient
rehabilitation. In Proceedings of the 15th ACM international conference on Multimedia, Augsburg, Germany, 24–29 September
2007; pp. 47–57.

8. Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neuroreha-
bilit. Neural Repair 2009, 23, 313–319. [CrossRef]

http://doi.org/10.4258/hir.2017.23.1.4
http://www.ncbi.nlm.nih.gov/pubmed/28261526
http://dx.doi.org/10.1109/TSMCC.2009.2032660
http://dx.doi.org/10.1044/1092-4388(2008/018)
http://dx.doi.org/10.1016/j.jht.2012.06.005
http://www.ncbi.nlm.nih.gov/pubmed/22975740
http://dx.doi.org/10.2522/ptj.20130581
http://www.ncbi.nlm.nih.gov/pubmed/25425694
http://dx.doi.org/10.1177/1545968308328727

Sensors 2022, 22, 2300 36 of 39

9. Slade, P.; Habib, A.; Hicks, J.L.; Delp, S.L. An Open-Source and Wearable System for Measuring 3D Human Motion in Real-Time.
IEEE Trans. Biomed. Eng. 2022, 69, 678–688. [CrossRef] [PubMed]

10. Choo, C.Z.Y.; Chow, J.Y.; Komar, J. Validation of the Perception Neuron system for full-body motion capture. PLoS ONE 2022,
17, e0262730. [CrossRef]

11. Vega-Gonzalez, A.; Bain, B.J.; Dall, P.M.; Granat, M.H. Continuous monitoring of upper-limb activity in a free-living environment:
A validation study. Med. Biol. Eng. Comput. 2007, 45, 947–956. [CrossRef]

12. Ambar, R.B.; Poad, H.B.M.; Ali, A.M.B.M.; Ahmad, M.S.B.; Jamil, M.M.B.A. Multi-sensor arm rehabilitation monitoring device.
In Proceedings of the 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 27–28 February 2012;
pp. 424–429.

13. Stenum, J.; Cherry-Allen, K.M.; Pyles, C.O.; Reetzke, R.D.; Vignos, M.F.; Roemmich, R.T. Applications of pose estimation in
human health and performance across the lifespan. Sensors 2021, 21, 7315. [CrossRef]

14. Milosevic, B.; Leardini, A.; Farella, E. Kinect and wearable inertial sensors for motor rehabilitation programs at home: State of the
art and an experimental comparison. BioMed. Eng. Online 2020, 19, 25. [CrossRef] [PubMed]

15. Duff, M.; Attygalle, S.; He, J.; Rikakis, T. A portable, low-cost assessment device for reaching times. In Proceedings of the 2008
30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25
August 2008; pp. 4150–4153.

16. Uswatte, G.; Foo, W.L.; Olmstead, H.; Lopez, K.; Holand, A.; Simms, L.B. Ambulatory monitoring of arm movement using
accelerometry: An objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch. Phys. Med. Rehabil.
2005, 86, 1498–1501. [CrossRef] [PubMed]

17. Michielsen, M.E.; Selles, R.W.; Stam, H.J.; Ribbers, G.M.; Bussmann, J.B. Quantifying Nonuse in Chronic Stroke Patients: A Study
Into Paretic, Nonparetic, and Bimanual Upper-Limb Use in Daily Life. Arch. Phys. Med. Rehabil. 2012, 93, 1975–1981. [CrossRef]
[PubMed]

18. Marschollek, M.; Becker, M.; Bauer, J.M.; Bente, P.; Dasenbrock, L.; Elbers, K.; Hein, A.; Kolb, G.; Künemund, H.; Lammel-Polchau,
C.; et al. Multimodal activity monitoring for home rehabilitation of geriatric fracture patients–feasibility and acceptance of sensor
systems in the GAL-NATARS study. Inform. Health Soc. Care 2014, 39, 262–271. [CrossRef] [PubMed]

19. Lemmens, R.J.; Timmermans, A.A.; Janssen-Potten, Y.J.; Smeets, R.J.; Seelen, H.A. Valid and reliable instruments for arm-hand
assessment at ICF activity level in persons with hemiplegia: A systematic review. BMC Neurol. 2012, 12, 21. [CrossRef] [PubMed]

20. Bavan, L.; Surmacz, K.; Beard, D.; Mellon, S.; Rees, J. Adherence monitoring of rehabilitation exercise with inertial sensors: A
clinical validation study. Gait Posture 2019, 70, 211–217. [CrossRef]

21. De, D.; Bharti, P.; Das, S.K.; Chellappan, S. Multimodal wearable sensing for fine-grained activity recognition in healthcare. IEEE
Internet Comput. 2015, 19, 26–35. [CrossRef]

22. Rodrigues, M.J.; Postolache, O.; Cercas, F. Physiological and behavior monitoring systems for smart healthcare environments: A
review. Sensors 2020, 20, 2186. [CrossRef] [PubMed]

23. Zhang, H.; Zhang, Z.; Gao, N.; Xiao, Y.; Meng, Z.; Li, Z. Cost-Effective Wearable Indoor Localization and Motion Analysis via the
Integration of UWB and IMU. Sensors 2020, 20, 344. [CrossRef] [PubMed]

24. Paul, A.S.; Wan, E.A. RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers. IEEE J. Sel. Top. Signal
Process. 2009, 3, 860–873. [CrossRef]

25. Zekavat, R.; Buehrer, R.M. Handbook of Position Location: Theory, Practice and Advances; John Wiley & Sons: Hoboken, NJ, USA,
2011; Volume 27.

26. Chen, H.; Zhang, Y.; Li, W.; Tao, X.; Zhang, P. ConFi: Convolutional Neural Networks Based Indoor Wi-Fi Localization Using
Channel State Information. IEEE Access 2017, 5, 18066–18074. [CrossRef]

27. Liu, C.; Fang, D.; Yang, Z.; Jiang, H.; Chen, X.; Wang, W.; Xing, T.; Cai, L. RSS Distribution-Based Passive Localization and Its
Application in Sensor Networks. IEEE Trans. Wirel. Commun. 2016, 15, 2883–2895. [CrossRef]

28. Bahl, P.; Padmanabhan, V. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the Proceedings
IEEE INFOCOM 2000 Conference on Computer Communications Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064), Tel Aviv, Israel, 26–30 March 2000; Volume 2, pp. 775–784. [CrossRef]

29. Xie, Y.; Wang, Y.; Nallanathan, A.; Wang, L. An Improved K-Nearest-Neighbor Indoor Localization Method Based on Spearman
Distance. IEEE Signal Process. 2016, 23, 351–355. [CrossRef]

30. Li, D.; Zhang, B.; Yao, Z.; Li, C. A feature scaling based k-nearest neighbor algorithm for indoor positioning system. In
Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 436–441. [CrossRef]

31. Xue, W.; Hua, X.; Li, Q.; Yu, K.; Qiu, W. Improved Neighboring Reference Points Selection Method for Wi-Fi Based Indoor
Localization. IEEE Sens. Lett. 2018, 2, 1–4. [CrossRef]

32. Campos, R.S.; Lovisolo, L. A Fast Database Correlation Algorithm for Localization of Wireless Network Mobile Nodes using
Coverage Prediction and Round Trip Delay. In Proceedings of the VTC Spring 2009—IEEE 69th Vehicular Technology Conference,
Barcelona, Spain, 26–29 April 2009; pp. 1–5. [CrossRef]

33. Hata, M. Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. 1980, 29, 317–325.
[CrossRef]

34. Campos, R.S.; Lovisolo, L. Mobile station location using genetic algorithm optimized radio frequency fingerprinting. In
Proceedings of the ITS, International Telecommunications Symposium, Tehran, Iran, 4 December 2010; Volume 1, pp. 1–5.

http://dx.doi.org/10.1109/TBME.2021.3103201
http://www.ncbi.nlm.nih.gov/pubmed/34383640
http://dx.doi.org/10.1371/journal.pone.0262730
http://dx.doi.org/10.1007/s11517-007-0233-7
http://dx.doi.org/10.3390/s21217315
http://dx.doi.org/10.1186/s12938-020-00762-7
http://www.ncbi.nlm.nih.gov/pubmed/32326957
http://dx.doi.org/10.1016/j.apmr.2005.01.010
http://www.ncbi.nlm.nih.gov/pubmed/16003690
http://dx.doi.org/10.1016/j.apmr.2012.03.016
http://www.ncbi.nlm.nih.gov/pubmed/22465403
http://dx.doi.org/10.3109/17538157.2014.931852
http://www.ncbi.nlm.nih.gov/pubmed/25148561
http://dx.doi.org/10.1186/1471-2377-12-21
http://www.ncbi.nlm.nih.gov/pubmed/22498041
http://dx.doi.org/10.1016/j.gaitpost.2019.03.008
http://dx.doi.org/10.1109/MIC.2015.72
http://dx.doi.org/10.3390/s20082186
http://www.ncbi.nlm.nih.gov/pubmed/32290639
http://dx.doi.org/10.3390/s20020344
http://www.ncbi.nlm.nih.gov/pubmed/31936175
http://dx.doi.org/10.1109/JSTSP.2009.2032309
http://dx.doi.org/10.1109/ACCESS.2017.2749516
http://dx.doi.org/10.1109/TWC.2015.2512861
http://dx.doi.org/10.1109/INFCOM.2000.832252
http://dx.doi.org/10.1109/LSP.2016.2519607
http://dx.doi.org/10.1109/GLOCOM.2014.7036847
http://dx.doi.org/10.1109/LSENS.2018.2818161
http://dx.doi.org/10.1109/VETECS.2009.5073292
http://dx.doi.org/10.1109/T-VT.1980.23859

Sensors 2022, 22, 2300 37 of 39

35. Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [CrossRef]
36. Battiti, R.; Villani, R.; Nhat, T. Neural Network Models for Intelligent Networks: Deriving the Location from Signal Patterns.

In Proceedings of the First Annual Symposium on Autonomous Intelligent Networks and Systems, Los Angeles, CA, USA,
4 June 2002.

37. Xu, J.; Dai, H.; Ying, W.H. Multi-layer neural network for received signal strength-based indoor localisation. IET Commun. 2016,
10, 717–723. [CrossRef]

38. Hoang, M.T.; Yuen, B.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. Recurrent Neural Networks for Accurate RSSI Indoor
Localization. IEEE Internet Things J. 2019, 6, 10639–10651. [CrossRef]

39. Assayag, Y.; Oliveira, H.; Souto, E.; Barreto, R.; Pazzi, R. Indoor positioning system using dynamic model estimation. Sensors
2020, 20, 7003. [CrossRef]

40. Lu, C.; Uchiyama, H.; Thomas, D.; Shimada, A.; Taniguchi, R.I. Indoor positioning system based on chest-mounted IMU. Sensors
2019, 19, 420. [CrossRef]

41. Pascacio, P.; Casteleyn, S.; Torres-Sospedra, J.; Lohan, E.S.; Nurmi, J. Collaborative indoor positioning systems: A systematic
review. Sensors 2021, 21, 1002. [CrossRef] [PubMed]

42. De Blasio, G.; Quesada-Arencibia, A.; García, C.R.; Molina-Gil, J.M.; Caballero-Gil, C. Study on an indoor positioning system for
harsh environments based on Wi-Fi and Bluetooth low energy. Sensors 2017, 17, 1299. [CrossRef] [PubMed]

43. López-Pastor, J.A.; Ruiz-Ruiz, A.J.; García-Sánchez, A.J.; Gómez-Tornero, J.L. An Automatized Contextual Marketing System
Based on a Wi-Fi Indoor Positioning System. Sensors 2021, 21, 3495. [CrossRef] [PubMed]

44. Yin, F.; Zhao, Y.; Gunnarsson, F. Proximity report triggering threshold optimization for network-based indoor positioning. In
Proceedings of the 2015 18th International Conference on Information Fusion (Fusion), Washington, DC, USA, 6–9 July 2015;
pp. 1061–1069.

45. Yin, F.; Zhao, Y.; Gunnarsson, F.; Gustafsson, F. Received-Signal-Strength Threshold Optimization Using Gaussian Processes.
IEEE Trans. Signal Process. 2017, 65, 2164–2177. [CrossRef]

46. Bergman, N. Recursive Bayesian Estimation. Ph.D. Thesis, Department of Electrical Engineering, Linköping University, Linköping
Studies in Science and Technology, Linköping, Sweden, 1999; Volume 579.

47. Patwari, N.; Hero III, A.O. Using proximity and quantized RSS for sensor localization in wireless networks. In Proceedings of the
2nd ACM International Conference on Wireless Sensor Networks and Applications, San Diego, CA, USA, 19 September 2003;
pp. 20–29.

48. Pons-Moll, G.; Baak, A.; Helten, T.; Müller, M.; Seidel, H.P.; Rosenhahn, B. Multisensor-fusion for 3D full-body human motion
capture. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San
Francisco, CA, USA, 13–18 June 2010; pp. 663–670.

49. Pons-Moll, G.; Baak, A.; Gall, J.; Leal-Taixe, L.; Mueller, M.; Seidel, H.P.; Rosenhahn, B. Outdoor human motion capture using
inverse kinematics and Von Mises-Fisher sampling. In Proceedings of the 2011 International Conference on Computer Vision,
Barcelona, Spain, 6–13 November 2011; pp. 1243–1250.

50. Malleson, C.; Gilbert, A.; Trumble, M.; Collomosse, J.; Hilton, A.; Volino, M. Real-time full-body motion capture from video and
IMUs. In Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 449–457.

51. von Marcard, T.; Henschel, R.; Black, M.J.; Rosenhahn, B.; Pons-Moll, G. Recovering accurate 3D human pose in the wild using
IMUs and a moving camera. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 601–617.

52. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using Part Affinity
Fields. arXiv 2018, arXiv:1812.08008.

53. Helten, T.; Muller, M.; Seidel, H.P.; Theobalt, C. Real-time body tracking with one depth camera and inertial sensors. In
Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1105–1112.

54. Andrews, S.; Huerta, I.; Komura, T.; Sigal, L.; Mitchell, K. Real-time physics-based motion capture with sparse sensors. In
Proceedings of the 13th European Conference on Visual Media Production (CVMP 2016), London, UK, 12–13 December 2016;
pp. 1–10.

55. Colella, R.; Tumolo, M.R.; Sabina, S.; Leo, C.G.; Mincarone, P.; Guarino, R.; Catarinucci, L. Design of UHF RFID Sensor-Tags for
the Biomechanical Analysis of Human Body Movements. IEEE Sens. J. 2021, 21, 14090–14098. 3069113. [CrossRef]

56. Schwarz, L.A.; Mateus, D.; Navab, N. Discriminative human full-body pose estimation from wearable inertial sensor data. In 3D
Physiological Human Workshop; Springer: Berlin/Heidelberg, Germany, 2009; pp. 159–172.

57. Wouda, F.J.; Giuberti, M.; Bellusci, G.; Veltink, P.H. Estimation of full-body poses using only five inertial sensors: An eager or lazy
learning approach? Sensors 2016, 16, 2138. [CrossRef]

58. von Marcard, T.; Rosenhahn, B.; Black, M.J.; Pons-Moll, G. Sparse inertial poser: Automatic 3D human pose estimation from
sparse IMUs. Comput. Graph. Forum 2017, 36, 349–360. [CrossRef]

59. Huang, Y.; Kaufmann, M.; Aksan, E.; Black, M.J.; Hilliges, O.; Pons-Moll, G. Deep inertial poser: Learning to reconstruct human
pose from sparse inertial measurements in real time. ACM Trans. Graph. (TOG) 2018, 37, 1–15. [CrossRef]

60. Geissinger, J.; Asbeck, A. Motion Inference Using Sparse Inertial Sensors, Self-Supervised Learning, and a New Dataset of
Unscripted Human Motion. Sensors 2020, 20, 6330. [CrossRef] [PubMed]

http://dx.doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1049/iet-com.2015.0469
http://dx.doi.org/10.1109/JIOT.2019.2940368
http://dx.doi.org/10.3390/s20247003
http://dx.doi.org/10.3390/s19020420
http://dx.doi.org/10.3390/s21031002
http://www.ncbi.nlm.nih.gov/pubmed/33540703
http://dx.doi.org/10.3390/s17061299
http://www.ncbi.nlm.nih.gov/pubmed/28587285
http://dx.doi.org/10.3390/s21103495
http://www.ncbi.nlm.nih.gov/pubmed/34067813
http://dx.doi.org/10.1109/TSP.2017.2655480
http://dx.doi.org/10.1109/JSEN.2021.3069113
http://dx.doi.org/10.3390/s16122138
http://dx.doi.org/10.1111/cgf.13131
http://dx.doi.org/10.1145/3272127.3275108
http://dx.doi.org/10.3390/s20216330
http://www.ncbi.nlm.nih.gov/pubmed/33171977

Sensors 2022, 22, 2300 38 of 39

61. Yi, X.; Zhou, Y.; Xu, F. TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors. arXiv 2021,
arXiv:2105.04605.

62. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
63. Mahmood, N.; Ghorbani, N.; Troje, N.F.; Pons-Moll, G.; Black, M.J. AMASS: Archive of motion capture as surface shapes. arXiv

2019, arXiv:1904.03278.
64. Trumble, M.; Gilbert, A.; Malleson, C.; Hilton, A.; Collomosse, J. Total Capture: 3D Human Pose Estimation Fusing Video

and Inertial Sensors. In Proceedings of the British Machine Vision Conference, BMVC 2017, London, UK, 4–7 September 2017;
Volume 2, p. 3.

65. Schepers, M.; Giuberti, M.; Bellusci, G. XSens MVN: Consistent Tracking of Human Motion Using Inertial Sensing; Xsens Technologies:
Enskode, The Netherlands, 2018; pp. 1–8.

66. Roetenberg, D.; Luinge, H.; Slycke, P. XSens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors; Tech. Rep.;
Xsens Motion Technologies BV: Enschede, The Netherlands, 2009; Volume 1.

67. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
68. Gay, W. Raspberry Pi Hardware Reference; Apress: New York, NY, USA, 2014.
69. Zhao, Y.; Fritsche, C.; Yin, F.; Gunnarsson, F.; Gustafsson, F. Sequential Monte Carlo Methods and Theoretical Bounds for

Proximity Report Based Indoor Positioning. IEEE Trans. Veh. Technol. 2018, 67, 5372–5386. [CrossRef]
70. Geissinger, J.; Alemi, M.M.; Chang, S.E.; Asbeck, A.T. Virginia Tech Natural Motion Dataset [Data Set]; University Libraries, Virginia

Tech: Blacksburg, VA, USA, 2020. [CrossRef]
71. Roetenberg, D.; Luinge, H.; Veltink, P. Inertial and magnetic sensing of human movement near ferromagnetic materials. In

Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality, Tokyo, Japan, 10 October
2003; pp. 268–269.

72. Roetenberg, D.; Luinge, H.J.; Baten, C.T.; Veltink, P.H. Compensation of magnetic disturbances improves inertial and magnetic
sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 395–405. [CrossRef] [PubMed]

73. Kim, S.; Nussbaum, M.A. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures
during manual material handling tasks. Ergonomics 2013, 56, 314–326. [CrossRef] [PubMed]

74. Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial measurement units for clinical movement
analysis: Reliability and concurrent validity. Sensors 2018, 18, 719. [CrossRef] [PubMed]

75. Grassia, F.S. Practical parameterization of rotations using the exponential map. J. Graph. Tools 1998, 3, 29–48. [CrossRef]
76. Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent network models for human dynamics. In Proceedings of the IEEE

International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4346–4354.
77. Jain, A.; Zamir, A.R.; Savarese, S.; Saxena, A. Structural-RNN: Deep Learning on spatio-temporal graphs. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5308–5317.
78. Martinez, J.; Black, M.J.; Romero, J. On human motion prediction using recurrent neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2891–2900.
79. Taylor, G.W.; Hinton, G.E.; Roweis, S.T. Modeling human motion using binary latent variables. In Proceedings of the Advances

in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 1345–1352.
80. Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3.6M: Large scale datasets and predictive methods for 3D human

sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1325–1339.
81. Pavllo, D.; Grangier, D.; Auli, M. Quaternet: A quaternion-based recurrent model for human motion. arXiv 2018, arXiv:1805.06485.
82. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in

Neural Information Processing Systems, Montreal, QC, USA, 8–13 December 2014; pp. 3104–3112.
83. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

2014, arXiv:1412.3555.
84. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
85. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
86. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

87. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018.
Available online: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_
understanding_paper.pdf (accessed on 25 April 2020).

88. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

89. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

90. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv 2019, arXiv:1910.10683.

91. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/TVT.2018.2799174
http://dx.doi.org/10.7294/2V3W-SB92
http://dx.doi.org/10.1109/TNSRE.2005.847353
http://www.ncbi.nlm.nih.gov/pubmed/16200762
http://dx.doi.org/10.1080/00140139.2012.742932
http://www.ncbi.nlm.nih.gov/pubmed/23231730
http://dx.doi.org/10.3390/s18030719
http://www.ncbi.nlm.nih.gov/pubmed/29495600
http://dx.doi.org/10.1080/10867651.1998.10487493
http://dx.doi.org/10.1109/78.650093
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Sensors 2022, 22, 2300 39 of 39

92. Rush, A.M. The annotated transformer. In Proceedings of the Workshop for NLP Open Source Software (NLP-OSS), Melbourne,
Australia, 20 July 2018; pp. 52–60.

93. Alammar, J. The Illustrated Transformer. 2018. Available online: http://jalammar.github.io/illustrated-transformer (accessed on
25 April 2020).

94. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

95. Markley, L.; Cheng, Y.; Crassidis, J.; Oshman, Y. Averaging Quaternions. J. Guid. Control Dyn. 2007, 30, 1193–1196. [CrossRef]
96. Yin, K.; Pai, D.K. Footsee: An interactive animation system. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, San Diego, CA, USA, 26–27 July 2003; pp. 329–338.
97. Fang, S.H.; Lin, T.N. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments. IEEE

Trans. Neural Netw. 2008, 19, 1973–1978. [CrossRef] [PubMed]
98. Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M.J. SMPL: A skinned multi-person linear model. ACM Trans. Graph.

(TOG) 2015, 34, 248. [CrossRef]

http://jalammar.github.io/illustrated-transformer
http://dx.doi.org/10.2514/1.28949
http://dx.doi.org/10.1109/TNN.2008.2005494
http://www.ncbi.nlm.nih.gov/pubmed/19000967
http://dx.doi.org/10.1145/2816795.2818013

	Introduction
	Overview
	Background and Related Work on Localization
	Background and Related Work on Motion Inference
	Contributions

	Materials and Methods for Positioning
	Overview
	Methods for Localization—Proximity Reporting
	Overview of Neural Network
	System Setup and Data Generation for Proximity Reporting
	Training of Recurrent Neural Network for Proximity Reporting
	Testing Stage for Proximity Reporting

	Localization with Real Data
	Training of RSS Fingerprinting Technique with Real Data
	Specifications of Area of Interest
	Real-World Validation

	Materials and Methods for Kinematics Estimation
	Overview
	Training Dataset Description
	Subtask 1: Model Generation
	Training Inputs and Outputs
	Deep Learning Models
	Training Parameters, Hyperparameter Tuning, and Performance Matrices
	Training Performance Evaluation

	Subtask 2: Inference
	Test Dataset Overview
	Data Collection
	Study Design
	Mathematical Framework: Inference Inputs and Outputs, and Sensor Calibration

	Results
	Localization Results: Proximity Reporting in Simulation
	Localization Results: Proximity Reporting with Real World Data
	Localization Results: Positioning with Real World Data
	Motion Inference Results
	Quantitative Analysis
	Qualitative Analysis

	Discussion
	Discussion on Localization
	Proximity Reporting
	Positioning with Real World Data

	Discussion on Motion Inference
	Limitations of our Study

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

