
Computer Representation of Numbers and
Computer Arithmetic

January 21, 2019

Contents

1 Binary numbers 6

2 Signed Integer Numbers 9
2.1 Representing integer numbers in binary 9
2.2 Storing Integers in Memory 14

1

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 2

3 Floating-Point Numbers 17
3.1 Scientific representation of real numbers 17
3.2 Floating-point: representation of real numbers on finite real

estate . 19
3.3 Roundoff (approximation) errors 20
3.4 Details of the floating point representation 22
3.5 Binary floating point numbers 26

4 The IEEE standard 28
4.1 Floating Point Types . 29
4.2 Detailed IEEE representation 31
4.3 Number range . 31
4.4 Precision . 34

5 The Set of Floating Point Numbers 41

6 Rounding 43
6.1 Rounding up or down . 43
6.2 Rounding to zero (“chopping”) 45
6.3 Rounding to nearest . 47

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 3

6.4 Summary of rounding modes 50

7 Arithmetic Operations 52
7.1 IEEE Arithmetic . 56

8 Pitfalls with Floating Point Arithmetic 58
8.1 Binary versus decimal . 58
8.2 Floating point comparisons 59
8.3 Funny conversions . 61
8.4 Memory versus register operands 64
8.5 Cancellation (“Loss-of Significance”) Errors 64
8.6 Insignificant Digits . 67
8.7 Order matters . 68

9 Integer Multiplication 70

10 Special Arithmetic Operations 71
10.1 Signed zeros . 71
10.2 Operations with ∞ . 72
10.3 Operations with NaN . 72

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 4

10.4 Comparisons . 73

11 Arithmetic Exceptions 74
11.1 Division by 0 . 74
11.2 Overflow . 75
11.3 Underflow . 77
11.4 Inexact . 79
11.5 Summary . 79
11.6 Example: messy mathematical operations 79
11.7 Example: overflow . 81
11.8 Example: underflow . 83

12 Long Summations 85

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 5

1 Binary numbers

In the decimal system, the number 107.625 means

107.625 = 1 · 102 + 7 · 100 + 6 · 10−1 + 2 · 10−2 + 5 · 10−3 .

Such a number is the sum of terms of the form {a digit times a different
power of 10} - we say that 10 is the basis of the decimal system. There are
10 digits (0,...,9).

All computers today use the binary system. This has obvious hardware
advantages, since the only digits in this system are 0 and 1. In the binary
system the number is represented as the sum of terms of the form {a digit
times a different power of 2}. For example,

(107.625)10 = 26 + 25 + 23 + 21 + 20 + 2−1 + 2−3

= (1101011.101)2 .

Arithmetic operations in the binary system are performed similarly as in

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 6

the decimal system; since there are only 2 digits, 1+1=10.

1 1 1 1 0
+ 1 1 0 1

1 0 1 0 1 1

1 1 1
× 1 1 0

0 0 0
1 1 1

1 1 1
1 0 1 0 1 0

Decimal to binary conversion. For the integer part, we divide by 2
repeatedly (using integer division); the remainders are the successive digits
of the number in base 2, from least to most significant.

Quotients 107 53 26 13 6 3 1 0
Remainders 1 1 0 1 0 1 1

For the fractional part, multiply the number by 2; take away the integer
part, and multiply the fractional part of the result by 2, and so on; the
sequence of integer parts are the digits of the base 2 number, from most
to least significant.

Fractional 0.625 0.25 0.5 0
Integer 1 0 1

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 7

Octal representation. A binary number can be easily represented in
base 8. Partition the number into groups of 3 binary digits (23 = 8), from
decimal point to the right and to the left (add zeros if needed). Then,
replace each group by its octal equivalent.

(107.625)10 = (1 101 011 . 101)2 = (153.5)8

Hexadecimal representation. To represent a binary number in base
16 proceed as above, but now partition the number into groups of 4 binary
digits (24 = 16). The base 16 digits are 0,...,9,A=10,...,F=15.

(107.625)10 = (0110 1011 . 1010)2 = (6B.A)16

Homework 1 1. Convert the following binary numbers to decimal, oc-
tal and hexa: 1001101101.0011, 11011.111001;

2. Convert the following hexadecimal numbers to both decimal and bi-
nary: 1AD.CF, D4E5.35A;

3. Convert the following decimal numbers to both binary and hexadeci-
mal: 6752.8756, 4687.4231.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 8

2 Signed Integer Numbers

2.1 Representing integer numbers in binary

Unsigned binary integers.

• m binary digits (bits) of memory can store 2m different numbers.
They can be positive integers between 00. . . 00 = (0)10 and 11. . . 11 =
(2m − 1)10.

• For example, using m = 3 bits, we can represent any integer between
0 and 7.

In order to represent signed integers (i.e. both positive and negative num-
bers) using m bits, we can use one of the methods discussed next.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 9

Sign/Magnitude representation.

• Reserve the first bit for the signum (for example, let 0 denote positive
numbers, and 1 negative numbers).

• The other m − 1 bits will store the magnitude (the absolute value)
of the number.

• In this case the range of numbers represented is −2m−1+1 to +2m−1−
1. With m = 3 there are 2 bits for the magnitude, different possible
magnitudes, between 0 and 127; each of these can have a positive
and negative sign. Note that with this representation we have both
positive and negative zero.

• If we make the convention that the sign bit is 1 for negative numbers
we have:

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 10

Number10 ([S]M)2
-3 [1]11
-2 [1]10
-1 [1]01
-0 [1]00

+0 [0]00
+1 [0]01
+2 [0]10
+3 [0]11

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 11

Two’s complement representation.

• All numbers from −2m−1 to +2m−1−1 are represented by the smallest
positive integer with which they are congruent modulo 2m.

• With m = 3, for example, we have:

Number10 (2C)10 (2C)2
-4 4 100
-3 5 101
-2 6 110
-1 7 111
0 0 000
1 1 001
2 2 010
3 3 011

• Note that the first bit is 1 for negative numbers, and 0 for nonnegative
numbers.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 12

Biased representation.

• A number x ∈ [−2m−1, 2m−1− 1] is represented by the positive value
x̄ = x+ 2m−1 ∈ [0, 2m − 1].

• The mapping is done by adding the bias 2m−1 to obtain positive
results.

• For m = 3 we have bias = 4 and the representation:

Number10 (biased)10 (biased)2
-4 0 000
-3 1 001
-2 2 010
-1 3 011
0 4 100
1 5 101
2 6 110
3 7 111

• The first bit is 0 for negative numbers, and 1 for nonnegative num-
bers.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 13

2.2 Storing Integers in Memory

One byte of memory can store 28 = 256 different numbers. They can be
positive integers between 00000000 = (0)10 and 11111111 = (255)10.

For most applications, one byte integers are too small. Standard data
types usually reserve 2, 4 or 8 successive bytes for each integer. In general,
using p bytes (p = 1, 2, 4, 8) we can represent integers in the range

Unsigned integers: 0 · · · 28p − 1
Signed integers: −28p−1 · · · 28p−1 − 1

Homework 2 Compute the lower and upper bounds for signed and un-
signed integers representable with p = 2 and with p = 4 bytes.

Homework 3 (Integer overflow) Write a program in which you define
two integer variables m and i. Initialize m, read i, and print out the sum
m+ i.
Fortran version:
program test_integer_overflow

integer m,i

m = 2147483645

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 14

write(6,*) ’Please input i:’

read*, i

write(6,*) ’m+i=’,m+i

end program test_integer_overflow

Matlab version:
function test_integer_overflow(i)

m = int32(2147483645);

fprintf(’m+i = %d\n’, m+i);

end

Run the program several times, with i = 1,2,3,4,5.

1. Do you obtain correct results? What you see here is an example
of integer overflow. The result of the summation is larger than the
maximum representable integer.

2. What exactly happens at integer overflow? In which sense are the
results inaccurate?

3. How many bytes does Fortran use to represent integers ?

4. Modify the program to print -m-i and repeat the procedure. What is
the minimum (negative) integer representable?

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 15

Note. Except for the overflow situation, the result of an integer addition
or multiplication is always exact (i.e. the numerical result is exactly the
mathematical result).

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 16

3 Floating-Point Numbers

3.1 Scientific representation of real numbers

• For most applications in science and engineering integer numbers are
not sufficient; we need to work with real numbers.

• Real numbers like π have an infinite number of decimal digits; there
is no hope to store them exactly.

• On a computer, floating point convention is used to represent (ap-
proximations of) the real numbers. The design of computer systems
requires in-depth knowledge about floating point . Modern processors
have special floating point instructions, compilers must generate such
floating point instructions, and the operating system must handle the
exception conditions generated by these floating point instructions.

• We now illustrate the floating point representation in base 10. Any
decimal number x can be uniquely written as:

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 17

x = s ·m · 10e

s +1 or -1 sign
m 1 ≤ m < 10 mantissa
e integer exponent

For example
107.625 = +1 · 1.07625 · 102 .

• If we did not impose the normalization condition 1 ≤ m < 10 we
could have represented the number in various different ways, for ex-
ample

(+1) · 0.107625 · 103 or (+1) · 0.00107625 · 105 .

• When the condition 1 ≤ m < 10 is satisfied, we say that the mantissa
is normalized. Normalization guarantees that

1. the floating point representation is unique,

2. since m < 10 there is exactly one digit before the decimal point,
and

3. since m ≥ 1 the first digit in the mantissa is nonzero. Thus,
none of the available digits is wasted by storing leading zeros.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 18

3.2 Floating-point: representation of real numbers
on finite real estate

• The amount of space used to represent each number in a machine is
finite.

• Suppose our storage space is limited to 6 decimal digits per floating
point number. We allocate 1 decimal digit for the sign, 3 decimal
digits for the mantissa and 2 decimal digits for the exponent. If the
mantissa is longer we will chop it to the most significant 3 digits
(another possibility is rounding, which we will talk about shortly).

S MMM EE

• Our example number can be then represented as

+1︸ ︷︷ ︸ 107︸ ︷︷ ︸ +2︸ ︷︷ ︸
s m e

• A floating point number is represented as (sign,mantissa, exponent)
with a limited number of digits for the mantissa and the exponent.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 19

• The parameters of the floating point system are β = 10 (the basis),
dm = 3 (the number of digits in the mantissa) and de = 2 (the number
of digits for the exponent).

3.3 Roundoff (approximation) errors

• Most real numbers cannot be exactly represented as floating point
numbers and an approximation is needed.

• For example, numbers with an infinite representation, like π = 3.141592 . . .,
will need to be “approximated” by a finite-length floating point num-
ber. In our floating point system, π will be represented as:

π = 3.141592 . . . ≈ f`(π) = + 314 00

Note that the finite representation in binary is different than finite
representation in decimal; for example, (0.1)10 has an infinite binary
representation.

• In general, the floating point representation f`(x) is just an approx-
imation of the real number x.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 20

• The roundoff error is the relative error is the difference between the
two numbers, divided by the real number

δ =
f`(x)− x

x
⇐⇒ f`(x) = x · (1 + δ) .

• For example, if x = 107.625, and f`(x) = 1.07 × 102 is its represen-
tation in our floating point system, then the relative error is:

δ =
1.07× 102 − 107.625

107.625
≈ −5.8× 10−3

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 21

3.4 Details of the floating point representation

• With normalized mantissas, the three digits m1m2m3 always read
m1.m2m3, i.e. the decimal point has fixed position inside the man-
tissa. For the original number, the decimal point can be floated to
any position in the bit-string we like by changing the exponent.

• We see now the origin of the term floating point: the decimal point
can be floated to any position in the bit-string we like by changing
the exponent.

• With 3 decimal digits, our mantissas range between 1.00, . . . , 9.99.
For exponents, two digits will provide the range 00, . . . , 99.

• Consider the number 0.000123. When we represent it in our floating
point system, we lose all the significant information:

+1︸ ︷︷ ︸ 000︸ ︷︷ ︸ 00︸︷︷︸
s m e

In order to overcome this problem, we need to allow for negative
exponents also.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 22

• We will use a biased representation for exponents: if the bits e1e2 are
stored in the exponent field, the actual exponent is e1e2 − 49 (49 is
called the exponent bias). This implies that, instead of going from
00 to 99, our exponents will actually range from −49 to +50. The
number

0.000123 = +1 · 1.23 · 10−4

is then represented, with the biased exponent convention, as

+1︸ ︷︷ ︸ 123︸ ︷︷ ︸ 45︸︷︷︸
s m e

• Note that for the exponent bias we have chosen 49 and not 50. The
reason for this is self-consistency: the inverse of the smallest normal
number does not overflow

xmin = 1.00× 10−49 ,
1

xmin

= 10+49 < 9.99× 1050 = xmax .

(with a bias of 50 we would have had 1/xmin = 1050 > 9.99 × 10+49

= xmax).

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 23

• What is the maximum number allowed by our toy floating point
system? If m = 9.99 and e = +99, we obtain

x = 9.99 · 1050 .

If m = 000 and e = 00 we obtain a representation of ZERO. Depend-
ing on S, it can be +0 or −0. Both numbers are valid, and we will
consider them equal.

• What is the minimum positive number that can be represented in our
toy floating point system? The smallest mantissa value that satisfies
the normalization requirement is m = 1.00; together with e = 00 this
gives the number 10−49.

• If we drop the normalization requirement, we can represent smaller
numbers also. For example, m = 0.10 and e = 00 give 10−50, while
m = 0.01 and e = 00 give 10−51.

The floating point numbers with exponent equal to ZERO and the
first digit in the mantissa also equal to ZERO are called subnormal
numbers.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 24

Allowing subnormal numbers improves the resolution of the floating
point system near 0. Non-normalized mantissas will be permitted
only when e = 00, to represent ZERO or subnormal numbers, or
when e = 99 to represent special numbers.

• Example (D. Goldberg, p. 185, adapted): Suppose we work with our
toy floating point system and do not allow for subnormal numbers.
Consider the fragment of code

IF (x 6= y) THEN z = 1.0/(x− y)

designed to ”guard” against division by 0. Let x = 1.02× 10−49 and
y = 1.01× 10−49. Clearly x 6= y but, (since we do not use subnormal
numbers) x	 y = 0. In spite of all the trouble we are dividing by 0!
If we allow subnormal numbers, x 	 y = 0.01 × 10−49 and the code
behaves correctly.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 25

3.5 Binary floating point numbers

• Similar to the decimal case, any binary number x can be represented
as:

x = s ·m · 2e

s +1 or -1 sign
m 1 ≤ m < 2 mantissa
e integer exponent

• For example,

1101011.101 = +1 · 1.101011101 · 26 . (1)

With 6 binary digits available for the mantissa and 4 binary digits
available for the exponent, the floating point representation is

+1︸ ︷︷ ︸ 110101︸ ︷︷ ︸ 0110︸ ︷︷ ︸
s m e

(2)

• When we use normalized mantissas, the first digit is always nonzero.
With binary floating point representation, a nonzero digit is (of course)

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 26

1, hence the first digit in the normalized binary mantissa is always 1.

1 ≤ x < 2 → (x)2 = 1.m1m2m3 . . .

As a consequence, it is not necessary to store it; we can store the
mantissa starting with the second digit, and store an extra, least
significant bit, in the space we saved. This is called the hidden bit
technique.

• For our binary example (2) the leftmost bit (equal to 1, of course,
showed in bold) is redundant. If we do not store it any longer, we
obtain the hidden bit representation:

+1︸ ︷︷ ︸ 101011︸ ︷︷ ︸ 0110︸ ︷︷ ︸
s m e

(3)

• Hidden bit allows to pack more information in the same space: the
rightmost bit of the mantissa holds now the 7th bit of the number (1)
(equal to 1, showed in bold). This 7th bit was simply omitted in the
standard form (2).

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 27

4 The IEEE standard

• The IEEE standard regulates the representation of binary floating
point numbers in a computer, how to perform consistently arithmetic
operations and how to handle exceptions, etc. Developed in 1980’s,
is now followed by virtually all microprocessor manufacturers.

• Supporting IEEE standard greatly enhances programs portability.
When a piece of code is moved from one IEEE-standard-supporting
machine to another IEEE-standard-supporting machine, the results
of the basic arithmetic operations (+,-,*,/) will be identical.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 28

4.1 Floating Point Types

The standard defines the following floating point types:

• Single Precision. (4 consecutive bytes/ number).

± | e1e2e3 · · · e8 | m1m2m3 · · ·m23

Useful for most short calculations.

• Double Precision. (8 consecutive bytes/number)

± | e1e2e3 · · · e11 | m1m2m3 · · ·m52

Most often used with scientific and engineering numerical computa-
tions.

• Extended Precision. (10 consecutive bytes/number).

±|e1e2e3 · · · e15 | m1m2m3 · · ·m64

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 29

Useful for temporary storage of intermediate results in long calcula-
tions. (e.g. compute a long inner product in extended precision then
convert the result back to double)

• There is a single-extended format also. The standard suggests that
implementations should support the extended format corresponding
to the widest basic format supported (since all processors today allow
for double precision, the double-extended format is the only one we
discuss here).

• Extended precision enables libraries to efficiently compute quantities
within 0.5 ulp. For example, the result of x*y is correct within 0.5
ulp, and so is the result of log(x). Clearly, computing the logarithm
is a more involved operation than multiplication; the log library func-
tion performs all the intermediate computations in extended preci-
sion, then rounds the result to single or double precision, thus avoid-
ing the corruption of more digits and achieving a 0.5 ulp accuracy.
From the user point of view this is transparent, the log function re-
turns a result correct within 0.5 ulp, the same accuracy as simple
multiplication has.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 30

4.2 Detailed IEEE representation

• Single precision standard (double precision is similar)

±|e1e2e3 · · · e8|m1m2m3 · · ·m23

• Signum. “±” bit = 0 (positive) or 1 (negative).

• Exponent. Biased representation, with an exponent bias of (127)10.

• Mantissa. Hidden bit technique.

• Detailed format is shown in Table 1.

4.3 Number range

The range of numbers represented in different IEEE formats is summarized
in Table 2.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 31

e1e2e3 · · · e8 Represented value
(00000000)2 = (0)10 ±(0.m1 . . .m23)2 × 2−126

(ZERO or subnormal)
(00000001)2 = (1)10 ±(1.m1 . . .m23)2 × 2−126

· · · · · ·
(01111111)2 = (127)10 ±(1.m1 . . .m23)2 × 20

(10000000)2 = (128)10 ±(1.m1 . . .m23)2 × 21

· · · · · ·
(11111110)2 = (254)10 ±(1.m1 . . .m23)2 × 2+127

(11111111)2 = (255)10 ±∞ if m1 . . .m23 = 0
NaN otherwise

Table 1: Details on single precision IEEE floating point format. Note that
−emin < emax, which implies that 1/xmin does not overflow.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 32

IEEE Format Emin Emax

Single Precision -126 +127
Double Precision -1,022 +1,023
Extended Precision -16,383 +16,383

Table 2: IEEE floating point number exponent ranges

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 33

4.4 Precision

• The precision of the floating point system (the “machine
precision”) is the smallest number ε for which

1⊕ ε > 1 (meaning 1⊕ ε 6= 1).

• To understand the precision of the floating point system, let us go
back to our toy floating point representation (2 decimal digits for the
exponent and 3 for the mantissa).

We want to add two numbers, e.g.

1 = 1.00× 100 and 0.01 = 1.00× 10−2 .

In order to perform the addition, we bring the smaller number to the
same exponent as the larger number by shifting right the mantissa.
For our example,

1.00× 10−2 = 0.01× 100 .

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 34

Next, we add the mantissas and normalize the result if necessary. In
our case

1.00× 100 + 0.01× 100 = 1.01× 100 .

Suppose now we want to add

1 = 1.00× 100 and 0.001 = 1.00× 10−3 .

For bringing them to the same exponent, we need to shift right the
mantissa 3 positions, and, due to our limited space (3 digits) we lose
all the significant information. Thus

1.00× 100 + 0.00[1]× 100 = 1.00× 100 .

We can see now that this is a limitation of the floating point system
due to the storage of only a finite number of digits.

• For our toy floating point system, it is clear from the previous dis-
cussion that ε = 0.01.

• If the relative error in a computation is pε, then the number of cor-
rupted decimal digits is log10 p.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 35

• In binary IEEE arithmetic:

– The first single precision number larger than 1 is 1 + 2−23;

– The first double precision number larger than 1 is 1 + 2−52;

– For extended precision there is no hidden bit, so the first such
number is 1 + 2−63.

You should be able to justify these yourselves. The machine precision
for different floating point formats is described in Table 4.4. Note
that Matlab offers a predefined variable eps that equals the machine
precision of the double precision format.

• If the relative error in a computation is pε, then the number of cor-
rupted binary digits is log2 p.

Remark 1 We can now answer the following question. Signed integers
are represented in two’s complement. Signed mantissas are represented us-
ing the sign-magnitude convention. For signed exponents the standard uses
a biased representation. Why not represent the exponents in two’s comple-
ment, as we do for the signed integers? When we compare two floating

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 36

IEEE Format Machine precision (ε) No. Decimal Digits
Single Precision 2−23 ≈ 1.2× 10−7 7
Double Precision 2−52 ≈ 1.1× 10−16 16

Extended Precision 2−63 ≈ 1.1× 10−19 19

Table 3: Precision of different IEEE representations

point numbers (both positive, for now) the exponents are looked at first;
only if they are equal we proceed with the mantissas. The biased exponent
is a much more convenient representation for the purpose of comparison.
We compare two signed integers in greater than/less than/ equal to expres-
sions; such expressions appear infrequently enough in a program, so we can
live with the two’s complement formulation, which has other benefits. On
the other hand, any time we perform a floating point addition/subtraction
we need to compare the exponents and align the operands. Exponent com-
parisons are therefore quite frequent, and being able to do them efficiently
is very important. This is the argument for preferring the biased exponent
representation.

Homework 4 Consider the real number (0.1)10. Write its single preci-

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 37

sion, floating point representation. Does the hidden bit technique result in
a more accurate representation?

Homework 5 What is the gap between 1024 and the first IEEE single
precision number larger than 1024?

Homework 6 Let x = m × 2e be a normalized single precision number,
with 1 ≤ m < 2. Show that the gap between x and the next largest single
precision number is

ε× 2e .

Homework 7 The following program adds 1 + 2−p, then subtracts 1. If
2−p < ε the final result will be zero. By providing different values for
the exponent, you can find the machine precision for single and double
precision. Note the declaration for the simple precision variables (“real”)
and the declaration for double precision variables (“double precision”). The
command 2.0 ∗ ∗p calculates 2p (∗∗ is the power operator). Also note the
form of the constants in single precision (2.e0) vs. double precision (2.d0).
Fortran version:
program test_precision

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 38

real :: a

double precision :: b

integer :: p

print*, ’Please provide exponent’

read*, p

a = 1.e0 + 2.e0**(-p)

print*, a-1.e0

b = 1.d0 + 2.d0**(-p)

print*, b-1.d0

end

Matlab version:
function test_precision(p)

% p = number of matissa bits

a = single(1.0 + 2.0^(-p));

fprintf(’Single precision: a - 1 = %e\n’,a-1);

b = double(1.0 + 2.0^(-p));

fprintf(’Double precision: b - 1 = %e\n’,b-1);

fprintf(’Matlab’’s predefined epsilon machine: eps = %e\n’,eps);

end

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 39

Run the program for values different of p ranging from 20 to 60. Find
experimentally the values of ε for single and for double precision.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 40

5 The Set of Floating Point Numbers

• The set of all floating point numbers consists of:

floating point = { ±0 , all normal , all subnormal , ±∞ }.

• Because of the limited number of digits, the floating point numbers
are a finite set. For example, in our toy floating point system, we
have approximately 2 · 105 floating point numbers altogether.

• The floating point numbers are not uniformly spread between min
and max values; they have a high density near zero, but get sparser
as we move away from zero.

...................
...............
....................
...................

.................
....................
...............
...............
...........

l
ll�
�
HH

HH�
��
� XXXXXXX��

���
���

0 1 100 100010
lower densityhigher density

100fpts 100fpts 100fpts
1 apart.1 apart.01 apart

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 41

For example, in our floating point system, there are 90 points between
1 and 10 (hence, the gap between 2 successive numbers is 0.01).
Between 10 and 100 there are again 90 floating point numbers, now
with a gap of 0.1. The interval 100 to 1000 is “covered” by another 90
floating point values, the difference between 2 successive ones being
1.0.

• In general, if m × 10e is a normalized floating point number, with
mantissa 1.00 ≤ m < 9.98, the very next floating point number rep-
resentable is (m + ε) × 10e (please give a moment’s thought about
why this is so). In consequence, the gap between m × 10e and the
next floating point number is ε × 10e. The larger the floating point
numbers, the larger the gap between them will be (the machine pre-
cision ε is a fixed number, while the exponent e increases with the
number).

• In binary format, similar expressions hold. Namely, the gap between
m× 2e and its successor is ε× 2e.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 42

6 Rounding

It is often the case that we have a real number X that is not exactly
a floating point number: X falls between two consecutive floating point
numbers X− and X+.

i f
��BB

X

X X- +

In order to represent a real number X in the computer we need to
approximate it by a floating point number.

6.1 Rounding up or down

• If we choose X− we say that we rounded X down; if we choose X+

we say that we rounded X up. We can choose a different floating
point number also, but this makes little sense, as the approximation
error will be larger than with X±.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 43

For example, π = 3.141592 . . . is in between π− = 3.14 and π+ = 3.15.
π− and π+ are successive floating point numbers in our toy system.

• We will denote f`(X) the floating point number that approximates
X. Then

f`(X) =

{
X− , if rounding down,
X+ , if rounding up.

• When rounding up or down we make a certain representation error;
we call it the roundoff (rounding) error.

The relative roundoff error, δ, is defined as

δ =
f`(X)−X

X
.

This does not work for X = 0, so we will prefer the equivalent for-
mulation

f`(X) = X · (1 + δ) .

• What is the largest error that we can make when rounding (up or
down)? The two floating point candidates can be represented as

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 44

X− = m × 2e and X+ = (m + ε) × 2e (this is correct since they are
successive floating point numbers). For now suppose both numbers
are positive (if negative, a similar reasoning applies). Since

|f`(X)−X| ≤ |X+ −X−|, and X ≥ X− ,

we have

|δ| ≤ |X
+ −X−|
X− =

ε× 2e

m× 2e
≤ ε.

Homework 8 Find an example of X such that, in our toy floating point
system, rounding down produces a roundoff error δ = ε. This shows that,
in the worst case, the upper bound ε can actually be attained.

Now, we need to choose which one of X+, X− ‘better” approximates
X. There are two possible approaches.

6.2 Rounding to zero (“chopping”)

• Suppose X = 107.625. We can represent it as +1 107 +2 by sim-
ply discarding (“chopping”) the digits which do not fit the mantissa

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 45

format (here the remaining digits are 625). We see that the floating
point representation is precisely X−, and we have 0 ≤ X− < X.
Now, if X was negative, X = −107.625, the chopped representa-
tion would be -1 107 +2 , but now this is X+. Note that in this
situation X < X+ ≤ 0.

• In consequence, with chopping, we choose X− if X > 0 and X+ is
X < 0. In both situations the floating point number is closer to 0
than the real number X, so chopping is also called rounding toward
0.

��AA AA ��

-107.625

-107

0 107.625

107

• Chopping has the advantage of being very simple to implement in

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 46

hardware. The roundoff error for chopping satisfies

−ε < δchopping ≤ 0 .

For example:

X = 1.00999999 . . .⇒ f`(X)chop = 1.00

and

δ =
f`(X)−X

X
=
−0.0099...

1.00999...
= −0.0099 ≈ −0.01 = ε .

6.3 Rounding to nearest

• This approximation mode is used by most processors, and is called,
in short ”rounding”.

• The idea is to choose the floating point number (X− or X+) which
offers the best approximation of X:

f`(X) =

{
X− , if X− ≤ X < X++X−

2
,

X+ , if X++X−

2
< X ≤ X+.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 47

#
#
c
c �

�
bb

X
- +(X+X+)/2 X

-

• The roundoff for the “round to nearest” approximation mode satisfies

− ε
2
≤ δrounding ≤

ε

2
.

The worst possible error is here half (in absolute magnitude) the
worst-case error of chopping.

• In addition, the errors in the “round to nearest” approximation have
both positive and negative signs. Thus, when performing long com-
putations, it is likely that positive and negative errors will cancel
each other out, giving a better numerical performance with “round-
ing” than with “chopping”.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 48

• There is a fine point to be made regarding “round to nearest” ap-
proximation. What happens if there is a tie, i.e. if X is precisely
(X+ + X−)/2? For example, with 6 digits mantissa, the binary
number X = 1.0000001 can be rounded to X− = 1.000000 or to
X+ = 1.000001. In this case, the IEEE standard requires to choose
the approximation with an even last bit; that is, here choose X−.
This ensures that, when we have ties, half the roundings will be done
up and half down.

The idea of rounding to even can be applied to decimal numbers
also (and, in general, to any basis). To see why rounding to even
works better, consider the following example. Let x = 5 × 10−2

and compute ((((1 ⊕ x) 	 x) ⊕ x) 	 x) with correct rounding. All
operations produce exact intermediate results with the fourth digit
equal to 5; when rounding this exact result, we can go to the nearest
even number, or we can round up, as is customary in mathematics.
Rounding to nearest even produces the correct result (1.00), while
rounding up produces 1.02.

• An alternative to rounding is interval arithmetic. The output of an
operation is an interval that contains the correct result. For example

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 49

x⊕ y ∈ [z, z̄], where the limits of the interval are obtain by rounding
down and up respectively. The final result with interval arithmetic is
an interval that contains the true solution; if the interval is too large
to be meaningful we should repeat the calculations with a higher
precision.

Homework 9 In IEEE single precision, what are the rounded values for
4 + 2−20, 8 + 2−20,16 + 2−20,32 + 2−20,64 + 2−20. (Here and from now
“rounded” means “rounded to nearest”.)

6.4 Summary of rounding modes

In conclusion, real numbers are approximated and represented in the float-
ing point format. The IEEE standard recognizes four approximation modes:

1. Round Up;

2. Round Down;

3. Round Toward Zero;

4. Round to Nearest (Even).

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 50

Virtually all processors implement the (“round to nearest”) approximation.
From now on, we will call it, by default, “rounding”. Computer numbers
are therefore accurate only within a factor of (1± ε/2). In single precision,
this gives 1±10−7, or about 7 accurate decimal places. In double precision,
this gives 1± 10−16, or about 16 accurate decimal digits.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 51

7 Arithmetic Operations

• To perform arithmetic operations, the values of the operands are
loaded into registers; the Arithmetic and Logic Unit (ALU) performs
the operation, and puts the result in a third register; the value is
then stored back in memory.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 52

L
LL�
�� �

�
�
�
�
�
��L

L
L
L
L
L
LL

JJ

JJ

A
A

JJ

!!
!

aaa

A
A
�
�

ALU

REG 3

OP 1

OP 2

Result

REG 1 REG 2

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 53

• The two operands are obviously floating point numbers. The result of
the operation stored in memory must also be a floating point number.

• Is there any problem here? Yes! Even if the operands are floating
point numbers, the result of an arithmetic operation may not be a
floating point number.

To understand this, let us add two floating point numbers, a= 9.72 01

(97.2) and b= 6.43 00 (6.43), using our toy floating point system.
To perform the summation we need to align the numbers by shifting
the smaller one (6.43) to the right.

9. 7 2 01
0. 6 4 3 01

10. 3 6 3 01

The result (103.63) is not a floating number. We can round the result
to obtain 1.04 02 (104).

• From this example we draw a first useful conclusion: the result of
any arithmetic operation is, in general, corrupted by roundoff errors.
Thus, the arithmetic result is different from the mathematical result.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 54

• If a, b are floating point numbers, and a + b is the result of mathe-
matical addition, we will denote by a⊕ b the computed addition.

• The fact that a⊕b 6= a+b has surprising consequences. Let c= 4.99 -1
(0.499). Then

(a⊕ b)︸ ︷︷ ︸
104

⊕ c︸︷︷︸
0.499

= f`(104.499) = 1.04 02 (104),

while
a︸︷︷︸

97.2

⊕ (b⊕ c)︸ ︷︷ ︸
f`(6.529)

= 1.05 02 (105)

(you can readily verify this). Unlike mathematical addition, com-
puted addition is not associative!

Homework 10 Show that computed addition is commutative, i.e. a ⊕
b=b⊕ a.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 55

7.1 IEEE Arithmetic

• The IEEE standard specifies that the result of an arithmetic opera-
tion (+,-,*,/) must be computed exactly and then rounded to nearest.
In other words,

a⊕ b = f`(a+ b)

a	 b = f`(a− b)
a⊗ b = f`(a× b)
a� b = f`(a/b) .

The same requirement holds for square root, remainder, and conver-
sions between integer and floating point formats: compute the result
exactly, then round.

• This IEEE convention completely specifies the result of arithmetic
operations; operations performed in this manner are called exactly,
or correctly rounded. It is easy to move a program from one machine
that supports IEEE arithmetic to another. Since the results of arith-
metic operations are completely specified, all the intermediate results

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 56

should coincide to the last bit (if this does not happen, we should
look for software errors!).

• Note that it would be nice to have the results of transcendental func-
tions like exp(x) computed exactly, then rounded to the desired pre-
cision; this is however impractical, and the standard does NOT re-
quire correctly rounded results in this situation.

• Performing only correctly rounded operations seems like a natural
requirement, but it is often difficult to implement it in hardware.
The reason is that if we are to find first the exact result we may need
additional resources. Sometimes it is not at all possible to have the
exact result in hand - for example, if the exact result is a periodic
number (in our toy system, 2.0/3.0 = 0.666...).

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 57

8 Pitfalls with Floating Point Arithmetic

8.1 Binary versus decimal

Homework 11 Run the following code fragment.
Fortran version:
program test_conversion_1

real x

data x /1.0E-4/

print*, x

end program test

Matlab version:
x = single(1.e-4);

format long

disp(x)

We expect the answer to be 1.0E − 4, but in fact the program prints
9.9999997E − 05. Note that we did nothing but store and print! The
“anomaly” comes from the fact that 0.0001 is converted (inexactly) to bi-
nary, then the stored binary value is converted back to decimal for printing.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 58

8.2 Floating point comparisons

Because of the inexact results it is best to avoid strict equality when com-
paring floating point numbers.

Homework 12 (Fp comparison) Consider the following code.
Fortran version:
x = 1.0e-4

if (1.0e+8 * x**2 == 1.0) then

print*, ’Correct’

else

print*, ’Bizarre’

end if

Matlab version:
x = single(1.e-4);

if (1.0e+8 * x^2 == 1.0)

disp(’Correct’)

else

disp(’Bizarre’)

end

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 59

should print ‘‘Correct’’, but does not, since the left expression is cor-
rupted by roundoff.

The right way to do floating point comparisons is to define the epsilon
machine, eps, and check that the magnitude of the difference is less than
half epsilon times the sum of the operands.
Fortran version:
epsilon = 1.192093e-07

w = 1.0e+8 * x**2

if (abs(w-1.0) <= 0.5*epsilon*(abs(w)+abs(1.0))) then

print*, ’Correct’

else

print*, ’Bizarre’

end if

Matlab version:
x = single(1.0e-4);

epsilon = 1.192093e-07;

w = 1.0e+8 * x^2;

if (abs(w-1.0) <= 0.5*epsilon*(abs(w)+abs(1.0)))

disp(’Correct’)

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 60

else

disp(’Bizarre’)

end

This time we allow small roundoff’s to appear, and the program takes the
right branch.

8.3 Funny conversions

Sometimes the inexactness in floating point is uncovered by real to integer
conversion, which by Fortran default is done using truncation. For example
the code

program test_conversion_1

real x

integer i

data x /0.0001/

i = 10000*x

print *, i

end program test

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 61

produces a stunning result: the value of i is 0, not 1!
Matlab shields us from these effects:

x = single(1.e-4);

t = single(10000);

i = int32(t*x);

disp(i)

j = floor(t*x);

disp(j)

k = ceil(t*x);

disp(k)

Another problem appears when a single precision number is converted
to double precision. This does not increase the accuracy of the number.

Homework 13 (test conversion 2) Run the following code.
Fortran version:
program test_conversion_2

real x

double precision y

data x /1.234567/

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 62

y = x

print *, ’X =’,x,’ Y =’,y

end program test

Matlab version:
x = single(1.234567);

y = double(x);

format long

disp(x);

disp(y);

The code produces the output

X= 1.234567 Y= 1.23456704616547

The explanation is that, when converting single to double precision, register
entries are padded with zeros in the binary representation. The double
precision number is printed with 15 positions and the inexactity shows up.
(if we use a formatted print for x with 15 decimal places we obtain the
same result). In conclusion, we should only print the number of digits that
are significant to the problem.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 63

8.4 Memory versus register operands

The code

data a /3.0/, b /10.0/

data x /3.0/, y /10.0/

z = (y/x)-(b/a)

call ratio(x,y,a1)

call ratio(a,b,a2)

call sub(a2,a1,c)

print*, z-c

may produce a nonzero result. This is so because z is computed with
register operands (and floating point registers for Intel are in extended
precision, 80 bits) while for c the operands a and b are stored in the
memory.

8.5 Cancellation (“Loss-of Significance”) Errors

When subtracting numbers that are nearly equal, the most significant digits
in the operands match and cancel each other. This is no problem if the

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 64

operands are exact, but in real life the operands are corrupted by errors.
In this case the cancellations may prove catastrophic.

For example, we want to solve the quadratic equation

a x2 + b x+ c = 0 ,

where all the coefficients are floating point numbers

a = 1.00× 10−3, b = 1.00× 100, c = 9.99× 10−1 ,

using our toy decimal floating point system and the quadratic formula

r1,2 =
−b±

√
b2 − 4ac

2a
.

The true solutions are r1 = −999, r2 = −1. In our floating point system
b2 = 1.00, 4ac = 3.99 × 10−3, and b2 − 4ac = 1.00. It is here where
the cancellation occurs! Then r1 = (−1 − 1)/(2 × 10−3) = −1000 and
r2 = (−1 + 1)/(2× 10−3) = 0. If the error in r1 is acceptable, the error in
r2 is 100%!

To overcome this, we might use the pair of mathematically equivalent
formulas

r1,2 =
2c

−b∓
√
b2 − 4ac

.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 65

With this formula, r2 = (2c)/(−2) = −9.99× 10−1, a much better approx-
imation.

Homework 14 (quadratic equation) Run the following Matlab code:

a = single(1.0);

b = single(-1e8);

c = single(9.999999e7);

four = single(4.0);

two = single(2.0);

d = sqrt(b^2 - four*a*c);

r1 = (-b+d)/(two*a);

r2 = (-b-d)/(two*a);

format long

disp(r1);

disp(r2);

The computed roots in single precision are 100000000 and 0. The computed
roots in double precision are 9.999999900000009e+07 and 0.999999910593033.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 66

8.6 Insignificant Digits

Homework 15 (insignificant digits) Run the Fortran code

program test_insignificant_digits

real :: x=100000.0, y=100000.1, z

z = y-x

print*, ’Z=’,z

end program test_insignificant_digits

or its Matlab version

x = single(123456.7);

y = single(123456.8);

z = y-x;

fprintf(’z = %f\n’, z);

We would expect the output

Z = 0.1000000

but in fact the program prints (on Alpha ...)

Z = 0.1015625

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 67

Since single precision handles about 7 decimal digits, and the subtraction
z = y − x cancels the most significant 6, the result contains only one
significant digit. The appended garbage 15625 are insignificant digits,
coming from the inexact binary representation of x and y. Beware of
convincing-looking results!

8.7 Order matters

Mathematically equivalent expressions may give different values in floating
point, depending on the order of evaluation.

Homework 16 (operation order) Run the Fortran code

program test_operation_order

real :: x=12345.6, y=45678.9, z=98765432.1

real :: w1, w2

w1 = x*y/z

w2 = 1/z; w2 = x*w2; w2 = y*w2

print*, w1-w2

end program test_operation_order

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 68

or its Matlab version

x = single(12345.6);

y = single(45678.9);

z = single(98765432.1);

one = single(1.0);

w1 = x*y/z;

w2 = y*(x*(one/z));

format long

disp(w1-w2);

Mathematically, the difference between w1 and w2 should be zero, but ... it
is about −4.e− 7.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 69

9 Integer Multiplication

• As another example, consider the multiplication of two single-precision,
floating point numbers.

(m1 × 2e1) · (m2 × 2e2) = (m1 ·m2)× 2e1+e2 .

• In general, the multiplication of two 24-bit binary numbers (m1 ·m2)
gives a 48-bit result. This can be easily achieved if we do the mul-
tiplication in double precision (where the mantissa has 53 available
bits), then round the result back to single precision.

• However, if the two numbers to be multiplied are double-precision,
the exact result needs a 106-bit long mantissa; this is more than
even extended precision can provide. Usually, multiplications and
divisions are performed by specialized hardware, able to handle this
kind of problems.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 70

10 Special Arithmetic Operations

10.1 Signed zeros

• Recall that the binary representation 0 has all mantissa and exponent
bits zero. Depending on the sign bit, we may have +0 or −0. Both
are legal, and they are distinct; however, if x = +0 and y = −0 then
the comparison (x.EQ.y) returns .TRUE. for consistency.

• The main reason for allowing signed zeros is to maintain consistency
with the two types of infinity, +∞ and −∞. In IEEE arithmetic,
1/(+0) = +∞ and 1/(−0) = −∞. If we had a single, unsigned 0,
with 1/0 = +∞, then 1/(1/ − ∞) = 1/0 = +∞, and not −∞ as
expected.

• There are other good arguments in favor of signed zeros. For example,
consider the function tan(π/2 − x), discontinuous at x = 0; we can
consistently define the result to be ∓∞ based on the signum of x =
±0.

• Signed zeros have disadvantages also; for example, with x = +0 and

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 71

y = −0 we have that x = y but 1/x 6= 1/y!

10.2 Operations with ∞
The following operations with infinity are possible:

a/(+∞) =

{
0, a finite
NaN, a =∞

a ∗ (+∞) =

+∞ , a > 0 ,
−∞ , a < 0 ,
NaN, a = 0 .

+∞+ a =

{
∞ , a finite ,
NaN, a = −∞ .

10.3 Operations with NaN

• Any operation involving NaN as (one of) the operand(s) produces
NaN.

• In addition, the following operations “produce” NaN: ∞ + (−∞),

0 ∗∞, 0/0, ∞/∞,
√
−|x|, x modulo 0, ∞ modulo x.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 72

10.4 Comparisons

The IEEE results to comparisons are summarized below:
(a < b).OR.(a = b).OR.(a > b) True, if a, b floating point numbers

False, if one of them NaN
+0 = −0 True
+∞ = −∞ False

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 73

11 Arithmetic Exceptions

One of the most difficult things in programming is to treat exceptional
situations. It is desirable that a program handles exceptional data in a
manner consistent with the handling of normal data. The results will
then provide the user with the information needed to debug the code, if
an exception occurred. The extra floating point numbers allowed by the
IEEE standard are meant to help handling such situations.

The IEEE standard defines 5 exception types: division by 0, overflow,
underflow, invalid operation and inexact operation.

11.1 Division by 0

If a is a floating point number, then IEEE standard requires that

a

0.0
=

+∞ , if a > 0 ,
−∞ , if a < 0 ,

NaN , if a = 0.

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 74

If a > 0 or a < 0 the ∞ definitions make mathematical sense. Recall that
±∞ have special binary representations, with all exponent bits equal to 1
and all mantissa bits equal to 0.

If a = 0, then the operation is 0/0, which makes no mathematical sense.
What we obtain is therefore invalid information. The result is the “Not
a Number”, in short NaN. Recall that NaN also have a special binary
representation. NaN is a red flag, which tells the user that something
wrong happened with the program. ∞ may or may not be the result of a
bug, depending on the context.

11.2 Overflow

Occurs when the result of an arithmetic operation is finite, but larger in
magnitude than the largest floating point number representable using the
given precision. The standard IEEE response is to set the result to ±∞
(round to nearest) or to the largest representable floating point number
(round toward 0). Some compilers will trap the overflow and abort execu-
tion with an error message.

Example (Demmel 1984, from D. Goldberg, p. 187, adapted): In our

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 75

toy floating point system let’s compute

2× 1023 + 1023 i

2× 1025 + 1025 i

whose result is 1.00 × 10−2, a ”normal” floating point number. A direct
use of the formula

a+ b i

c+ d i
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

returns the result equal to 0, since the denominators overflow. Using the
scaled formulation

ξ =
d

c
;

a+ b i

c+ d i
=
a+ bξ

c+ dξ
+
b− aξ
c+ dξ

i

we have ξ = 0.5, (a + bξ)/(c + dξ) = (2.5 × 1023)/(2.5 × 1025) = 0.01 and
b− aξ = 0.

Sometimes overflow and infinity arithmetic may lead to curious results.
For example, let x = 3.16× 1025 and compute

x2

(x+ 1.0× 1023)2
= 9.93× 10−1

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 76

Since the denominator overflows it is set to infinity; the numerator does
not overflow, therefore the result is 0!. If we compute the same quantity as(

x

x+ 1× 1023

)
=
(

3.16

3.17

)
= 0.99

we obtain a result closer to the mathematical value.

11.3 Underflow

Occurs when the result of an arithmetic operation is smaller than the
smallest normalized floating point number which can be stored. In IEEE
standard the result is a subnormal number (”gradual” underflow) or 0, if
the result is small enough. Note that subnormal numbers have fewer bits
of precision than normalized ones, so using them may lead to a loss of
accuracy. For example, let

x = 1.99× 10−40 , y = 1.00× 10−11 , z = 1.00× 10+11 ,

and compute t = (x⊗ y)⊗ z. The mathematical result is t = 1.99× 10−40.
According to our roundoff error analysis, we expect the calculated t to

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 77

satisfy
t̂expected = (1 + δ)texact , |δ| ≈ ε ,

where the bound on delta comes from the fact that we have two floating
point multiplications, and (with exact rounding) each of them can intro-
duce a roundoff error as large as the half the machine precision |δ⊗| ≤ ε/2:

x⊗ y = (1 + δ1⊗)(x× y)

(x⊗ y)⊗ z = (1 + δ2⊗) [(x⊗ y)× z]

= (1 + δ2⊗)(1 + δ1⊗) [x× y × z]

≈ (1 + δ1⊗ + δ2⊗) [x× y × z]

≤ (1 + ε) [x× y × z]

Since in our toy system ε = 0.01, we expect the computed result to be in
the range

t̂expected ∈ [(1− 2ε)texact, (1 + 2ε)texact] = [1.98× 10−40, 2.00× 10−40] .

However, the product x ⊗ y = 1.99 × 10−51 underflows, and has to be
represented by the subnormal number 0.01× 10−49; when multiplied by z

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 78

this gives t̂ = 1.00 × 10−40, which means that the relative error is almost
100 times larger than expected

t̂ = 1.00× 10−40 = (1 + δ̂)texact , δ̂ = 0.99 = 99ε !

11.4 Inexact

Occurs when the result of an arithmetic operation is inexact. This situation
occurs quite often!

11.5 Summary

The IEEE standard response to exceptions is summarized in Table 11.5.

11.6 Example: messy mathematical operations

Homework 17 (test exceptions) The following program performs some
messy calculations, like division by 0, etc. Run the
Fortran version:
program test_exceptions

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 79

IEEE Exception Operation Result
Invalid Operation NaN
Division by 0 ±∞
Overflow ±∞ (or floating point max)
Underflow 0 or subnormal
Precision rounded value

Table 4: The IEEE Standard Response to Exceptions

real :: a, b, c, d

c = 0.0

d = -0.0

print*, ’c=’,c,’ d=’,d

a = 1.0/c

print*, a

b = 1.0/d

print*, ’a=’,a,’ b=’,b

print*, ’a+b=’,a+b

print*, ’a-b=’,a-b

print*, ’a/b=’,a/b

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 80

end program test_exceptions

or the
Matlab version:
function test_exceptions()

c = single(0.0);

d = single(-0.0);

one = single(1.0);

fprintf(’c = %f, d = %f\n’, c, d);

a = one/c;

b = one/d;

fprintf(’a = %f, b = %f \n’, a, b);

fprintf(’a + b = %f\n’, a+b);

fprintf(’a - b = %f\n’, a-b);

fprintf(’a / b = %f\n’, a/b);

end

11.7 Example: overflow

Homework 18 The following program computes a very large floating point
number b in double precision. This is converted to single precision number

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 81

a, and this may result in overflow. Run the program for p = 0, 0.1, 0.01.
For which value the single precision overflow occurs? Note that, if you
do not see Normal End Here ! and STOP the program did not finish nor-
mally; trapping was used for the floating point exception. If you see them,
masking was used for the exception and the program terminated normally.
Fortran version:
program test_overflow

real :: a, p

double precision :: b

print*, ’Please provide p:’

read*, p

b = (1.99d0+p)*(2.d0**127)

print*, b

a = b

print*, a

end program test_overflow

Matlab version:
function test_overflow(p)

b = double((1.99 + p)*(2^127));

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 82

fprintf(’Double precision value = %f \n’, b);

a = single(b);

fprintf(’Single precision value = %f \n’, a);

end

11.8 Example: underflow

Homework 19 The following program computes a small floating point
number (2−p) in single and in double precision. Then, this number is mul-
tiplied by 2p. The theoretical result of this computation is 1. Run the code
for p = 120 and for p = 150. What do you see? Does the Fortran90 com-
piler obey the IEEE standard? Repeat the compilation with the Fortran77
compiler, and run again. Any differences?
Fortran version:
program test_underflow

real :: a,b

double precision :: c,d

integer :: p

print*, ’Please provide p’

read*, p

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 83

c = 2.d0**(-p)

d = (2.d0**p)*c

print*, ’Double Precision: ’, d

a = 2.e0**(-p)

b = (2.d0**p)*a

print*, ’Single Precision: ’, b

end program test_underflow

Matlab version:
function test_underflow(p)

c = 2^(-p);

d = (2^p)*c;

fprintf(’Double precision: %f\n’, d);

a = single(2^(-p));

b = 2^p*a;

fprintf(’Single Precision: %f\n’, b);

end

c©A. Sandu, 1998-2019. Distribution outside classroom not permitted. 84

12 Long Summations

Long summations have a problem: since each individual summation brings
an error of 0.5 ulp in the partial result, the total result can be quite inac-
curate. Fixes:

• compute the partial sums in a higher precision;

• sort the terms first;

• use Kahan’s formula.

