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Abstract

Models for reacting flow are typically based on advection–diffusion–reaction (A–D–R) partial differential equations.

Many practical cases correspond to situations where the relevant time scales associated with each of the three sub-

processes can be widely different, leading to disparate time-step requirements for robust and accurate time-integration.

In particular, interesting regimes in combustion correspond to systems in which diffusion and reaction are much faster

processes than advection. The numerical strategy introduced in this paper is a general procedure to account for this

time-scale disparity. The proposed methods are high-order multi-implicit generalizations of spectral deferred correction

methods (MISDC methods), constructed for the temporal integration of A–D–R equations. Spectral deferred cor-

rection methods compute a high-order approximation to the solution of a differential equation by using a simple, low-

order numerical method to solve a series of correction equations, each of which increases the order of accuracy of the

approximation. The key feature of MISDC methods is their flexibility in handling several sub-processes implicitly but

independently, while avoiding the splitting errors present in traditional operator-splitting methods and also allowing for

different time steps for each process. The stability, accuracy, and efficiency of MISDC methods are first analyzed using a

linear model problem and the results are compared to semi-implicit spectral deferred correction methods. Furthermore,

numerical tests on simplified reacting flows demonstrate the expected convergence rates for MISDC methods of orders

three, four, and five. The gain in efficiency by independently controlling the sub-process time steps is illustrated for

nonlinear problems, where reaction and diffusion are much stiffer than advection. Although the paper focuses on this

specific time-scales ordering, the generalization to any ordering combination is straightforward.
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1. Introduction

Many physical systems with dynamics that involve two or more processes with widely differing

characteristic time scales are of interest to researchers in the physical and biological sciences. Well-known

examples include combustion [4,20], the transport of air pollutants [15,24,26], and the movement of

contaminants or microorganisms in ground water systems [18,27]. In each of these examples, the

mathematical models used to describe the dynamics consist of systems of partial differential equations

(PDEs), which specify the advection, diffusion, and reaction of chemical species within a moving medium.
When the time scales associated with these physical processes vary significantly, standard numerical

methods are often inefficient. Hence, the construction of accurate, stable, and efficient numerical methods

for the solution of advection–diffusion–reaction (A–D–R) equations is a topic of significant current

interest.

To illustrate the phenomenon of multiple time scales, consider the test problem studied in Section 5 of an

idealized one-dimensional flame. The model equations consist of two coupled A–D–R equations for the

scalars u and v that represent the fuel and oxidizer mass fractions, respectively:
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Here, the advection velocity is given by wðx; tÞ, m is the diffusivity of both scalars (assumed to be equal), and

gðu; vÞ is the function that represents the reaction of the fuel and oxidizer. One physically relevant choice of

parameters and initial conditions results from the study of unsteady non-premixed flames, in which the
initial data correspond roughly to pure fuel in one portion of the domain and pure oxidizer in the other. A

simple reaction model given by gðu; vÞ ¼ �Duv, where D is the reaction rate constant, is used. In the case

that the diffusivity m is small, the reaction rate D is large, and the advection velocity w is a time-modulated

function, the dynamics of the resulting system are concentrated in a thin, non-steady reaction zone or

flamelet.

In the flamelet example, the largest time scale corresponds to the time dependence of the advection term.

Despite a small viscosity, if the thin reaction zone (in which sharp spatial variations occur) is fully resolved,

the diffusive time scale in this zone will be much smaller than the advective time scale. Furthermore, since
the reaction parameter D is chosen to be large, the reaction time scale is small as well. A detailed time-scale

analysis is presented in Section 5 for the specific parameters considered there. The pertinent point is that in

order to accurately predict the long-time dynamics of this system through numerical simulation, it is

necessary to resolve all three of the physical processes on their respective time scales.

A popular approach for constructing higher-order numerical methods for PDEs is the method of lines

approach (MOL), in which the equations are first discretized spatially, resulting in a large coupled system

of ordinary differential equations (ODEs). For A–D–R equations, the disparity in time scales renders the

ODE system stiff. Therefore for stability considerations, implicit methods may be used to avoid a
prohibitively small time step. When the characteristic time scale of diffusion and reaction also differ

widely, accuracy considerations may require that a smaller time step be used for the fastest process as

well. This paper presents a strategy for constructing arbitrarily high-order accurate methods for ODEs

for use in the MOL context an implicit yet uncoupled treatment of multiple stiff terms, as motivated by

stability, and allow the use of different time steps for each of those terms, as motivated by accuracy

issues.

Many well-established numerical methods for stiff ODEs exist and have been extensively studied (see,

e.g. [2,12]). When applied to a MOL approximation of A–D–R equations, popular methods such as implicit

Runge–Kutta or Backward Difference Formula methods are fully implicit in nature, i.e., every term in the



A. Bourlioux et al. / Journal of Computational Physics 189 (2003) 651–675 653
A–D–R equation is treated implicitly. Such an implementation requires the solution of implicit equations

that couple each term in the system. The computational cost in terms of operations and memory of solving

these (typically nonlinear) coupled equations in a fully implicit method can be significant, especially when

the number of chemical species is large. (For example, the methane–air combustible mixture considered in

[25] involves 49 species and 260 reactions.)

Several strategies exist to avoid the solution of the completely coupled implicit equation that arise in

fully implicit methods. One possibility is to use a semi-implicit (hereafter SI) approach, in which advection is

handled explicitly, whereas diffusion and reaction are integrated implicitly (see, e.g. [3,14,26]). The implicit
equations in the SI approach can be considerably less expensive to solve in terms of computational cost

than those arising in fully implicit methods, especially when the advection term is nonlinear. Operator

splitting (OS) is another strategy that leads to a more affordable numerical solution [16,28]. In the OS

approach, processes are decoupled and integrated sequentially. The resulting implicit equations in the OS

approach are generally even easier to solve than those in the SI approach, since the reaction usually gives

rise to a spatially local equation. Moreover, the OS approach allows different time steps to be used for the

advection, diffusion, and reaction terms. By integrating slower processes using larger time steps, one can

usually reduce the overall computational cost with little loss in accuracy. However, in addition to the
numerical errors arising in the integration of each term, the OS approach also introduces splitting errors,

which reduce the accuracy of the approximation [16,23]. A popular classical approach to achieve second-

order temporal accuracy in a scheme with OS is Strang�s splitting [23], which describes the precise ordering

in which to combine second-order accurate solvers for each of the split terms in order to achieve overall

second-order accuracy. The main limitation of Strang�s splitting is that the generalization to higher-order in

time is not straightforward. Thus, any gain in efficiency with an OS approach must be considered relative to

the potential loss in accuracy [16,23].

In [24] Sun proposes a pseudo-non-time-splitting (PNTS) method, which is similar to the SI method in
that advection is treated explicitly and diffusion and reaction are integrated implicitly. In addition, the

PNTS method integrates the three terms using different time steps; thus, in this respect it is similar to the OS

approach. However, the PNTS method reduces splitting errors by weakly coupling the the different terms

during each time step. Specifically, temporally constant approximations of terms that would normally be

neglected in each step of an OS approach are included. Sun shows that the PNTS method generates results

comparable to those obtained using a standard OS method with less computational time [24]. A similar

strategy for reducing splitting errors is to iteratively solve a series of weakly coupled operator-split equa-

tions during each time step. Such iterative OS methods include approximations to the neglected terms in the
OS equations, which are iteratively improved during each time step [15,27]. Again, the benefit of reducing

the splitting error in iterative OS methods must be weighed against the increased computational cost of the

iterative procedure [29].

In this study, high-order multi-implicit spectral deferred correction (MISDC) methods are presented for

solving A–D–R equations. MISDC methods are similar to PNTS or OS methods in that these methods

allow terms to be solved in a decoupled manner using different time steps. In theory, however, the temporal

order of accuracy of MISDC methods can be arbitrarily high because both the integration and splitting

errors are eliminated during the deferred correction process. MISDC methods, which are a generalization
of SI spectral deferred correction (SDC) methods introduced in [19] (which are in turn modifications of the

explicit and implicit SDC methods appearing in [11]), use a low-order numerical method to compute a high-

order approximation. This is achieved by using the low-order numerical method to solve a series of cor-

rection equations, each of which increases the order of accuracy of the approximation. The accuracy and

stability of MISDC methods for A–D–R equations and its efficiency relative to SI methods are investigated

in this study.

The outline of this paper is as follows. In Section 2, a review of SISDC methods is presented in the
context of a MOL discretization of the A–D–R equations. In Section 3, standard OS methods and the new
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MISDC methods are presented and discussed. In Section 4, the stability and accuracy of MISDC methods

are studied using a linear model problem and comparison to SISDC methods are made. In Section 5,

numerical results are presented to demonstrate the convergence and accuracy properties of the methods.

Numerical experiments for the motivating example (1) are used to illustrate the improvement in efficiency

by selectively reducing only the reaction time step. The numerical results also identify cases for which
MISDC methods compare favorably with SI Runge–Kutta methods.
2. SISDC methods

This section presents a short description of SISDC methods introduced in [19] in the context of a

MOL discretization of A–D–R equations. SISDC methods are similar to MISDC methods in that some
of the terms in the equation are treated explicitly and some implicitly. However, unlike MISDC methods,

each term in SISDC methods is integrated with the same time step, and all implicit terms are integrated

together.

Because this work focuses on the time discretization accuracy only, the A–D–R problem is presented

in one space dimension for simplicity without loss of generality; extension to more space dimensions is

discussed in Section 6. Let uðx; tÞ be a (possibly vector-valued) function that satisfies the A–D–R

equation

ut ¼ fAux þ muxx þ fR: ð2Þ

Here fAðx; t; uðx; tÞÞux is the (possibly nonlinear) advection term, m is the diffusivity, and fRðx; t; uðx; tÞÞ is the
reaction term. In general, the diffusion term is given by ðmðx; tÞuxðx; tÞÞx, but for simplicity, m is assumed to be

constant. The extension to the more general diffusion term is straightforward. Boundary conditions and

initial conditions must be given to complete the specification of the problem.

A popular method for approximating the solution to (2) is the MOL, in which the equation is first

discretized spatially, resulting in a system of ODEs:

0
u ðtÞ ¼ FAðt; uðtÞÞ þ FDðt; uðtÞÞ þ FRðt; uðtÞÞ; ð3Þ
uðaÞ ¼ u0 ð4Þ

for t 2 ½a; b	. The terms FA, FD, and FR are obtained from the spatial discretization of fAux, muxx, and fR,
respectively, and hence do not depend on the spatial derivatives of u. Therefore, FD is simply a linear

operator, as is FA in the linear case where fA does not depend on u. Eqs. (3) and (4) can be integrated using

SISDC methods, in which the non-stiff advection term FA is treated explicitly and the stiff diffusion and

reaction terms FD and FR are integrated implicitly.

The integral form of the solution to (3) and (4) is given by

uðtÞ ¼ u0 þ
Z t

a
FAðs; uðsÞÞð þ FDðs; uðsÞÞ þ FRðs; uðsÞÞÞds: ð5Þ

Let ~uuðtÞ be an approximation to uðtÞ. SDC methods generate high-order numerical solutions by approxi-
mating the correction dðtÞ 
 uðtÞ � ~uuðtÞ, which is then used to improve the accuracy of ~uuðtÞ.

The procedures with which dðtÞ is computed using the approximate solution ~uuðtÞ are now described. To

this end, define the residual function

Eðt; ~uuðtÞÞ ¼ u0 þ
Z t

FAðs; ~uuðsÞÞ
�

þ FDðs; ~uuðsÞÞ þ FRðs; ~uuðsÞÞ
�
ds � ~uuðtÞ: ð6Þ
a
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The definition of dðtÞ and the integral equation (5) can be combined to give

~uuðtÞ þ dðtÞ ¼ u0 þ
Z t

a
FAðs; ~uuðsÞ

�
þ dðsÞÞ þ FDðs; ~uuðsÞ þ dðsÞÞ þ FRðs; ~uuðsÞ þ dðsÞÞ

�
ds: ð7Þ

From (6) and (7), one obtains the correction equation

dðtÞ ¼
Z t

a
FAðs; ~uuðsÞ

�
þ dðsÞÞ � FAðs; ~uuðsÞÞ þ FDðs; ~uuðsÞ þ dðsÞÞ � FDðs; ~uuðsÞÞ þ FRðs; ~uuðsÞ þ dðsÞÞ

� FRðs; ~uuðsÞÞ
�
ds þ Eðt; ~uuðtÞÞ: ð8Þ

In the numerical discretization, let Dt > 0 be the time step and tn ¼ nDt, for n ¼ 0; 1; 2; . . . ; be the nth
time-level. Given a sth order approximate solution ~uu (i.e., ku� ~uuk ¼ OðDtsþ1Þ) on the time interval

½tn; tnþ1	, a (sþ 1)th order approximation can be computed by estimating the correction dðtÞ in (8) to

(sþ 1)th order. If FA, FD, and FR are Lipschitz continuous in u, then (8) implies that kdðtÞ � Eðt; ~uuÞk ¼
OðDtsþ1Þ. Therefore, a (sþ 1)th order approximation for dðtÞ can be computed from a (sþ 1)th order

approximation for Eðt; ~uuÞ and a simple first-order rectangle rule approximation to the integral on the

right-hand side of (8). In fact, ignoring the integral term completely gives the standard Picard iteration

procedure which also converges assuming Lipschitz continuity, albeit slowly if the Lipschitz constant is

large.

In a MOL discretization, the situation is more subtle in that the operators FA and FD approximate

differential operators, which are not Lipschitz continuous. Therefore, some higher spatial derivative of ~uu
must be bounded for the above arguments to hold. This subtle interaction between temporal and spatial
error is problem dependent and is particularly important in the discussion of spatial and temporal ap-

proximation of boundary conditions [1,10,21].

To advance the solution by one time step, SISDC methods described in [19] use an SI method, based on

the first-order forward and backward Euler methods, to compute a provisional solution on ½tn; tnþ1	. Then
the accuracy of the solution is improved by iteratively solving the correction equation (8). A summary of

the method is given below.

In the integration of the solution from tn to tnþ1, the time interval ½tn; tnþ1	 is divided into NA subintervals

by choosing points tn;m for m ¼ 0; 1; . . . ;NA such that tn ¼ tn;0 < tn;1 < � � � < tn;m < � � � < tn;NA
¼ tnþ1. For

notational simplicity, the subscript n in tn;m is omitted and tn;m is written as tm. Let Dtm 
 tmþ1 � tm; the
interval ½tm; tmþ1	 is referred to as a substep.

For an arbitrary function wðtÞ, let wk
m denote a numerical approximation to wðtmÞ after k deferred

correction iterations. Furthermore, for an arbitrary operator F ðt; uðtÞÞ, let the numerical approximation

F ðtm; ukmÞ be written as FmðukmÞ. An approximate solution ~uu 
 u0m, for m ¼ 0; 1; . . . ;NA, is computed by means

of the SI method as follows:

u0mþ1 ¼ u0m þ Dtm FAmðu0mÞ
�

þ FDmþ1
ðu0mþ1Þ þ FRmþ1

ðu0mþ1Þ
�
: ð9Þ

The accuracy of u0m is improved by iteratively solving a similar SI discretization of the correction equation
(8) for dk, k ¼ 0; 1; 2; . . . ; and setting ukþ1 ¼ uk þ dk. Specifically,

dk
mþ1 ¼ dk

m þ Dtm FAmðukm
�

þ dk
mÞ � FAmðukmÞ þ FDmþ1

ðukmþ1 þ dk
mþ1Þ � FDmþ1

ðukmþ1Þ
þ FRmþ1

ðukmþ1 þ dk
mþ1Þ � FRmþ1

ðukmþ1Þ
�
þ Emþ1ðukÞ � EmðukÞ: ð10Þ

The solution of both (9) and (10) requires the solution of an implicit equation that couples FD and FR.
From (10), a direct update equation for ukþ1 can be derived. Let Imþ1

m ðFAðukÞ þ FDðukÞ þ FRðukÞÞ denote

the numerical quadrature approximation to
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Z tmþ1

tm

FAðs; ukðsÞÞ
�

þ FDðs; ukðsÞÞ þ FRðs; ukðsÞÞ
�
ds: ð11Þ

To obtain a (k þ 1)th order approximation for ukþ1, the residual function EðukÞ, and hence the quadrature
(11), must be approximated with (k þ 1)th order accuracy. In [19], the points tm are chosen to be the Gauss–

Lobatto nodes of the interval ½tn; tnþ1	 and the quadrature (11) is computed, with OðDtkþ2Þ error, as the

integral of an interpolating polynomial over the subinterval ½tm; tmþ1	.
From (6), one obtains the following expression for Emþ1ðukÞ � EmðukÞ:

Emþ1ðukÞ � EmðukÞ ¼ Imþ1
m ðFAðukÞ þ FDðukÞ þ FRðukÞÞ � ukmþ1 þ ukm: ð12Þ

From (10) and (12), one obtains the following update equation for ukþ1:

ukþ1
mþ1 ¼ ukþ1

m þ Dtm FAmðukþ1
m Þ

�
� FAmðukmÞ þ FDmþ1

ðukþ1
mþ1Þ � FDmþ1

ðukmþ1Þ þ FRmþ1
ðukþ1

mþ1Þ
� FRmþ1

ðukmþ1Þ
�
þ Imþ1

m FAðukÞ
�

þ FDðukÞ þ FRðukÞ
�
: ð13Þ

By explicitly integrating the advection term, which is usually nonlinear, the SI approach can be computa-

tionally less expensive than a fully implicit approach. Nonetheless, a more efficient methodmay be developed

by further splitting the integration within the implicit step into a diffusion step and a reaction step.Moreover,

the integration could proceed with different time steps for different processes, an important feature inmultiple
time-scale problems. The design of high-order methods along these lines is described in the next section.
3. High-order MISDC methods

This section presents MISDC methods, in which the different processes in A–D–R equations can be

integrated separately while simultaneously controlling splitting errors. It is assumed that the reactive time

scale in the A–D–R system is significantly shorter than the corresponding diffusive time scale, which is yet

shorter than the advective time scale. (As will be explained below, MISDC methods can be extended to
solve systems with a different ordering of time scales.) Before MISDC methods are introduced, a review of

standard OS methods and splitting errors in the context of A–D–R equations is presented.

A popular approach used in the numerical solution of problems involving processes with widely varying

time scales is the OS approach (e.g. [16,28]), in which processes are decoupled and integrated sequentially.

In the present context, an OS method advances the solution one time step by approximating the following

equations sequentially:

uAðt þ DtÞ ¼ uðtÞ þ
Z tþDt

FAðs; uAðsÞÞ ds; ð14Þ

t

uDðt þ DtÞ ¼ uAðt þ DtÞ þ
Z tþDt

FDðs; uDðsÞÞ ds; ð15Þ

t

uðt þ DtÞ ¼ uDðt þ DtÞ þ
Z tþDt

t
FRðs; uðsÞÞ ds: ð16Þ

A numerical solution obtained by numerically integrating (14)–(16) has two types of numerical errors:
integration errors, introduced by approximating the integrals on the right-hand side of (14)–(16), and

splitting errors, introduced by separating the solution given by equation (5) into sequential steps. Unless the
operators associated with FA, FD, and FR commute, the approximation given by (14)–(16) is no more
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accurate than OðDt2Þ locally and OðDtÞ globally, regardless of the order of the integration errors [23]. To

achieve high-order accuracy, both splitting and integration errors must be reduced.

MISDC methods achieve higher-order accuracy by simultaneously reducing splitting and integration

errors during the deferred correction iterations. This is achieved, in part, via the coupling of the inter-

mediate solutions of (14)–(16). To illustrate, (14)–(16) are rewritten as

uAðt þ DtÞ ¼ uðtÞ þ
Z tþDt

FAðs; uðsÞÞ ds; ð17Þ

t

uDðt þ DtÞ ¼ uðtÞ þ
Z tþDt

FAðs; uðsÞÞð þ FDðs; uðsÞÞÞds; ð18Þ

t

uðt þ DtÞ ¼ uðtÞ þ
Z tþDt

t
FAðs; uðsÞÞð þ FDðs; uðsÞÞ þ FRðs; uðsÞÞÞds: ð19Þ

Note that in the integrals of (17)–(19), the entire target solution u appears, as opposed to (14)–(16), in which

intermediate solutions are used. However, in practice FD is non-local and FR is nonlinear, so a numerical

approximation to the coupled equations (17)–(19) requires the solution of a system of coupled nonlinear
equations, which may be computationally expensive. Thus, the following weakly coupled equations are

sequentially approximated instead:

uAðt þ DtÞ ¼ uðtÞ þ
Z tþDt

FAðs; uAðsÞÞ ds; ð20Þ

t

uDðt þ DtÞ ¼ uðtÞ þ
Z tþDt

FAðs; uAðsÞÞð þ FDðs; uDðsÞÞÞds; ð21Þ

t

uðt þ DtÞ ¼ uðtÞ þ
Z tþDt

t
FAðs; uAðsÞÞð þ FDðs; uDðsÞÞ þ FRðs; uðsÞÞÞds: ð22Þ

One may notice that (14)–(16) and (20)–(22) are equivalent analytically. However, when discretized, and in

particular if different time steps are used to integrate different processes, then (20)–(22) result in smaller

splitting errors, as explained below. Suppose Dtm, Dtp, and Dtq are used to advance uA, uD, and u, respec-
tively. Then, as are uD and u, FA in (21) and FA þ FD in (22) are integrated for Dtp and Dtq, respectively. In
(14)–(16), however, the integration of FA is done in (14) for Dtm and FD in (15) for Dtp, giving rise to larger

splitting errors. How MISDC methods further reduce splitting errors is discussed below.
Given some interval ½tn; tnþ1	 on which the solution is sought and an approximation ~uuðtÞ to uðtÞ,

t 2 ½tn; tnþ1	, MISDC methods improve the accuracy of ~uuðtÞ by computing the correction term

dðtÞ 
 uðtÞ � ~uuðtÞ. To this end, let Eðt; ~uuÞ be the residual function associated with ~uuðtÞ:

Eðt; ~uuÞ ¼ uðtnÞ þ
Z t

tn

FAðs; ~uuðsÞÞ
�

þ FDðs; ~uuðsÞÞ þ FRðs; ~uuðsÞÞ
�
ds � ~uuðtÞ: ð23Þ

Following [19], the correction equation that arises from (19) and (23) is

dðtÞ ¼
Z t

tn

FAðs; ~uuðsÞ
�

þ dðsÞÞ � FAðs; ~uuðsÞÞ þ FDðs; ~uuðsÞ þ dðsÞÞ
�

� FDðs; ~uuðsÞÞ þ FRðs; ~uuðsÞ þ dðsÞÞ � FRðs; ~uuðsÞÞ ds þ Eðt; ~uuðsÞÞ: ð24Þ
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As in (17)–(19), (24) can be decoupled and approximated by dA and dD, the definitions of which are

analogous to (20) and (21), respectively. That is, dA is an approximation to d that preserves the advection

terms inside the integral and dD is a more accurate approximation that preserves both the advection and

diffusion terms:

dAðtÞ ¼
Z t

FAðs; ~uuðsÞ
�

þ dðsÞÞ � FAðs; ~uuðsÞÞ
�
ds þ Eðt; ~uuðsÞÞ; ð25Þ
tn
dDðtÞ ¼ dAðtÞ þ
Z t

tn

FDðs; ~uuðsÞ
�

þ dðsÞÞ � FDðs; ~uuðsÞÞ
�
ds: ð26Þ

Thus,

dðtÞ ¼ dDðtÞ þ
Z t

tn

FRðs; ~uuðsÞ
�

þ dðsÞÞ � FRðs; ~uuðsÞÞ
�
ds: ð27Þ

If the correction equations (25)–(27) were to be solved simultaneously, MISDC methods would generate

approximations with no splitting errors. However, as is with (17)–(19), a numerical approximation to (25)–

(27) requires the computationally expensive approximation of a system of coupled nonlinear equations.

Because, as mentioned in the previous section, the integral terms in the correction equation need only
be approximated with a low-order method, a weakly coupled set of correction equations analogous to

(20)–(22) are approximated sequentially instead:

dAðtÞ ¼
Z t

FAðs; ~uuðsÞ
�

þ dAðsÞÞ � FAðs; ~uuðsÞÞ
�
ds þ Eðt; ~uuðsÞÞ; ð28Þ
tn
dDðtÞ ¼
Z t

tn

FAðs; ~uuðsÞ
�

þ dAðsÞÞ � FAðs; ~uuðsÞÞ þ FDðs; ~uuðsÞ þ dDðsÞÞ � FDðs; ~uuðsÞÞ
�
ds þ Eðt; ~uuðsÞÞ;
ð29Þ
dðtÞ ¼
Z t

tn

FAðs; ~uuðsÞ
�

þ dAðsÞÞ � FAðs; ~uuðsÞÞ þ FDðs; ~uuðsÞ þ dDðsÞÞ � FDðs; ~uuðsÞÞ

þ FRðs; ~uuðsÞ þ dðsÞÞ � FRðs; ~uuðsÞÞ
�
ds þ Eðt; ~uuðsÞÞ: ð30Þ

For standard advection, diffusion, and reaction discrete operators, the system (28)–(30) is easier to solve
than (25)–(27) because typically the advection correction equation (28) is integrated explicitly; the dif-

fusion correction equation (29) is non-local but linear, so efficient direct or iterative solvers for large

linear systems of algebraic equations can be used; the reaction correction equation (30) is nonlinear but

local, resulting in a system of uncoupled ODEs, for which efficient and highly parallelizable solvers are

available. However, splitting errors are introduced into (28)–(30) because the first FA and FD terms inside

the integrals on the right-hand side of (28) and (29) are not evaluated at ~uuþ d but at ~uuþ dA and ~uuþ dD,

respectively. When FA and FD are Lipschitz continuous, this splitting error is one order smaller than d
itself; thus, as the order of accuracy of ~uu is improved during the deferred correction iterations, the
splitting error converges to zero.

In addition to splitting errors, solutions computed by both OS and MISDC methods contain integration

errors that arise from numerical quadrature approximation of the integrals. The integration errors asso-
ciated with the diffusion and reaction terms may be large because of their stiffness. Owing to the decoupling
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of the processes in both OS and MISDC methods, it is possible to selectively reduce integration errors by

using smaller time steps for fast-scale processes.

To use smaller time steps for the diffusion process and yet smaller ones for the reaction process, the sub-

interval ½tm; tmþ1	 is subdivided into ND subintervals by choosing points tm;p for p ¼ 0; 1; . . . ;ND such that

tm ¼ tm;0 < tm;1 < � � � < tm;p < � � � < tm;ND
¼ tmþ1. Then ½tm;p; tm;pþ1	 is further subdivided intoNR subintervals by

choosing points tm;p;q for q ¼ 0; 1; . . . ;NR such that tm;p ¼ tm;p;0 < tm;p;1 < � � � < tm;p;q < � � � < tm;p;NR
¼ tm;pþ1.

Where there is no ambiguity, the subscript m is omitted in tm;p, and m and p omitted in tm;p;q for notational
simplicity; i.e., tm;p and tm;p;q are written as tp and tq, respectively. Let Dtp 
 tpþ1 � tp and Dtq 
 tqþ1 � tq. Fig. 1
shows an example of time-step subdivision. In this implementation, tm, tp, and tq are Gauss–Lobatto nodes of

the intervals ½tn; tnþ1	, ½tm; tmþ1	, and ½tp; tpþ1	, respectively.
An implementation of high-order MISDC methods is described in the remainder of this section. As in

the previous section, for an arbitrary function wðtÞ, let wk
m, w

k
p, and wk

q denote the numerical approximations

to wðtmÞ, wðtpÞ, and wðtqÞ, respectively, after k deferred correction iterations; an analogous convention is

also adopted for Fpðwk
pÞ and Fqðwk

qÞ. To compute the provisional solution, the following equations are

solved:

For m ¼ 0; . . . ;NA � 1

u0Amþ1
¼ u0m þ DtmFAmðu0mÞ; ð31Þ

For p ¼ 0; . . . ;ND � 1

u0Dpþ1
¼ u0p þ Dtp FAmðu0mÞ

�
þ FDpþ1

ðu0Dpþ1
Þ
�
; ð32Þ

Compute FDpþ1
ðu0Dpþ1

Þ;
For q ¼ 0; . . . ;NR � 1

u0qþ1 ¼ u0q þ Dtq FAmðu0mÞ
�

þ FDpþ1
ðu0Dpþ1

Þ þ FRqþ1
ðu0qþ1Þ

�
; ð33Þ

End

End

Compute FAmþ1
ðu0mþ1Þ; ð34Þ

End

In (31) u0m ¼ uðtnÞ for m ¼ 0 and u0m ¼ u0m�1;ND�1;NR
for m > 0; in (32) u0p ¼ u0m for p ¼ 0 and u0p ¼ u0m;p�1;NR

for

p > 0; and in (33) u0q ¼ u0m;p�1;NR
for q ¼ 0 and p > 0, and u0q ¼ uðtnÞ for q ¼ 0 and p ¼ 0. (These definitions

are different from the OS methods described earlier.) Since FA is treated explicitly, u0Amþ1
is not used; thus, in

practice (31) is superfluous. Moreover, FAm is evaluated at the full provisional solution u0m in (34) rather than

at u0Am
. With the coupling among processes preserved, the solution obtained by solving (31)–(34) is more

accurate than the solution obtained from the analogous approximation to (14)–(16) using the same time
steps Dtm, Dtp, and Dtq [24].

A MI discretization of the correction equations (28)–(30) is given by

k k kþ1
�

k
�

k k
dAmþ1
¼ dAm

þ Dtm FAmðum Þ � FAmðumÞ þ Emþ1ðu Þ � Emðu Þ; ð35Þ

Fig. 1. Illustration of three levels of time-step subdivision: ½tn; tnþ1	 into ½tm; tmþ1	, ½tm; tmþ1	 into ½tp; tpþ1	, and ½tp; tpþ1	 into ½tq; tqþ1	. In this

example, NA ¼ 3, ND ¼ 4, NR ¼ 3, m ¼ 1, p ¼ 2, and q ¼ 1.
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k k kþ1
�

k k k k
�

k k
dDpþ1
¼ dDp

þ Dtp FAmðum Þ � FAmðumÞ þ FDpþ1
ðupþ1 þ dDpþ1

Þ � FDpþ1
ðupþ1Þ þ Epþ1ðu Þ � Epðu Þ; ð36Þ
dk
qþ1 ¼ dk

q þ Dtq FAmðukþ1
m Þ

�
� FAmðukmÞ þ FDpþ1

ðukpþ1 þ dk
Dpþ1

Þ � FDpþ1
ðukpþ1Þ þ FRqþ1

ðukqþ1 þ dk
qþ1Þ

� FRqþ1
ðukqþ1Þ

�
þ Eqþ1ðukÞ � EqðukÞ: ð37Þ

As in [19], the discretized correction equations (35)–(37) are rewritten in terms of updated values of the

target function. To this end, the definition of the numerical quadrature approximation Imþ1
m ðwkÞ is extended

to Ipþ1
p ðwkÞ 


R tpþ1

tp
wkðsÞ ds and Iqþ1

q ðwkÞ 

R tqþ1

tq
wkðsÞ ds. The correction terms dA, dD, and d are used to

obtain uA, uD, and u, respectively, from ~uu. That is, uA is set to ~uuþ dA, uD to ~uuþ dD, and u to ~uuþ d.
Combining these update relations with (36) and and (37), one arrives at the following update equations for

the diffusion and reaction processes:

ukþ1
Dpþ1

¼ ukþ1
Dp

þ Dtp FAmðukþ1
Am

Þ
�

� FAmðukmÞ þ FDpþ1
ðukþ1

Dpþ1
Þ � FDpþ1

ðukpþ1Þ
�

pþ1 k
�

k k
�

þ Ip FAðu Þ þ FDðu Þ þ FRðu Þ ; ð38Þ
ukþ1
qþ1 ¼ ukþ1

q þ Dtq FAmðukþ1
Am

Þ
�

� FAmðukmÞ þ FDpþ1
ðukþ1

Dpþ1
Þ � FDpþ1

ðukpþ1Þ þ FRqþ1
ðukþ1

qþ1Þ � FRqþ1
ðukqþ1Þ

�

þ Iqþ1
q FAðukÞ

�
þ FDðukÞ þ FRðukÞ

�
: ð39Þ

Because the advection process is treated explicitly, ukA need not be computed; thus, an update equation for

ukA is not needed. In summary, the following steps improve the order of accuracy of uk by one:

For m ¼ 0; . . . ;NA � 1

For p ¼ 0; . . . ;ND � 1

Solve ð38Þ for ukþ1
Dpþ1

; Compute FDpþ1
ðukþ1

Dpþ1
Þ:

For q ¼ 0; . . . ;NR � 1

Solve ð39Þ for ukþ1
qþ1; Compute FRqþ1

ðukþ1
qþ1Þ:

End

Update FDpþ1
ðukþ1

pþ1Þ:
End

Compute FAmþ1
ðukþ1

mþ1Þ:
End

ð40Þ

The above steps are ordered to minimize splitting errors introduced by the MI scheme [22], as explained

below. Although these splitting errors, which are locally OðDtkþ3Þ and globally OðDtkþ2Þ, are smaller than

those in the standard OS approach, they are nonetheless present in (39) because the FD term in (39) is
evaluated not at ukþ1

qþ1 but rather at ukþ1
Dpþ1

. For an arbitrary function F ðt; uðtÞÞ,

F ðt; uðtÞÞ ¼ F ðt; ~uuðtÞÞ þ ðuðtÞ � ~uuðtÞÞ o

ou
F ðt; uðtÞÞ þ OððuðtÞ � ~uuðtÞÞ2Þ: ð41Þ

Note that if F is a linear operator (e.g., when the advection coefficient fA in (2) is independent of u, in which

case FA is a linear operator), then oF =ou is a function of t only (i.e., independent of u) for each ODE that

arises from the MOL spatial discretization of the PDE (2).
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By assumption, the reaction term is stiffer than the diffusion term, which is yet stiffer than the advection

term. It follows that joFR=ouj � joFD=ouj � joFA=ouj. (This is true for the numerical simulations presented

in Section 5.) Thus, to minimize splitting errors, FR, rather than FA or FD, is evaluated at ukþ1
qþ1.

In some A–D–R systems, the diffusion term may be stiffer than the reaction term. To minimize inter-

gration errors in this case, diffusion should be updated using the smallest time step Dtq, reaction updated

using Dtp, and advection updated using Dtm. To minimize splitting errors, the ordering of the diffusion and

reaction steps in (40) should also be reversed, i.e., reaction is updated for every NR diffusion updates, and

advection is updated for every ND reaction updates.
Four parameters must be chosen to specify the MISDC method, two of which determine the order of

accuracy of the method, and two which determine the relative sizes of the three time steps. Following the

notation in [19], let MISDC(K; P ;ND;NR) denote the MISDC method that uses K total iterations (i.e.,

computation of provisional solution and the number of iterations of correction equations) and P Gauss–

Lobatto nodes (or NA ¼ P � 1 advection substeps). Furthermore, recall that ND denotes the number of

subintervals within an advection substep (or, equivalently, the ratio of the advection to diffusion time step

size), and NR denotes the number of subintervals within a diffusion substep (or the ratio of diffusion to

reaction time step size). Therefore, the total number of reaction time steps in one deferred correction it-
eration of the MISDC method is ðP � 1ÞNDNR. The formal order of accuracy of the method is minðK; P Þ.

All four of the above parameters could be adjusted during the solution process to improve the efficiency

of the overall MISDC method. Monitoring the size of the respective correction terms in the MISDC it-

eration provides information on the error for that piece of the equation and can be used to adjust relative
time steps. A more involved examination of time step selection will be presented in a future work.
4. Linear stability and accuracy analysis

In this section, a linear stability and accuracy analysis is performed on MISDC methods using the

standard model problem. Let k be a complex constant, c be a real number with 0 < c � 1, and let
u0ðtÞ ¼ kuðtÞ 
 i ImðkÞuðtÞ þ cReðkÞuðtÞ þ ð1� cÞReðkÞuðtÞ; ð42Þ
uð0Þ ¼ 1: ð43Þ

The imaginary part of the right-hand side of (42) is associated with the advection process and is treated

implicitly; the two real parts are associated with the diffusion and reaction processes, respectively, and are
treated implicitly. The number c determines the relative stiffness of the reaction term compared to the

diffusion term.

4.1. Stability analysis

The stability region for a given method is defined as the set of k such that j~uuðkÞj < 1, where ~uuðkÞ rep-
resents the numerical solution resulting from one time step of the method with Dt ¼ 1. Fig. 2 shows the

stability diagrams for the MISDC(K;K; 2; 2) methods for K ¼ 3; 4; . . . ; 7, computed using (42) and (43) for

c ¼ 0:1. The lines in the figures indicate the k values for which j~uuðkÞj ¼ 1; the methods are stable for smaller

k. The stability diagrams for MISDC methods with different values of ND and NR are similar.

One might notice that the stability diagrams for MISDC and SISDC methods are similar (see [19] for the

SISDC stability diagrams). Indeed, this is to be expected: the time step of a numerical method applied to the
model problem (42) and (43) is limited by the imaginary part, which is treated explicitly in both methods. In

the context of stability analysis, the most significant difference between MISDC and SISDC methods is the
size of the time steps used for the diffusion and reaction terms (i.e., the real part of (42)), which does not



Fig. 2. Stability regions for MISDC(K;K; 2; 2) methods for K ¼ 3; 4; . . . ; 7.
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affect the top boundary of the stability region. Therefore, the two types of SDC methods have similar

stability diagrams.

4.2. Accuracy analysis

An accuracy region for a given error tolerance � is defined as the set of k such that j~uuðkÞ � ekj < �. The
accuracy regions for the MISDC(K;K; 2; 2) method are shown in Fig. 3 for K ¼ 3; 4; . . . ; 7. The lines in the
figures indicate k values for which j~uuðkÞ � ekj ¼ � for � ¼ 10�4. Because accuracy increases with the order of

the method, the size of the accuracy region also increases with the order. Also, the size of the accuracy

regions for MISDC methods increases when ND and NR increase.

For a given spatial resolution, the amount of computational work per time step for a given MIS-

DC(K;NA þ 1;ND;NR) method is OðK � NA � ND � NRÞ. In this study, work is measured by the number of

implicit function evaluations, which arise in the solution of (32), (33), (38), and (39). With this criterion,

work done for each time step is given by KNANDð1þ NRÞ. Since K and NA normally scale with the

order of the method, for fixed ND and NR, the amount of work per time step increases quadratically
with the order. Fig. 4 shows the scaled accuracy diagrams for the MISDC(K;K; 2; 2) methods. In the

scaled accuracy diagrams, Re(k) and Im(k) are divided by the work done per time step. The accuracy

diagrams for the higher-order methods are larger than those of the lower-order methods even after the

scaling. The scaled accuracy diagrams for MISDC methods with different values of ND and NR are

similar.

By taking smaller time steps for the diffusion and reaction processes, MISDC methods can generate
approximations that are more accurate than SISDC methods of the same order. Indeed, by comparing
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Fig. 3 with Fig. 3 in [19], one sees that the accuracy regions of MISDC methods are larger than the

corresponding SISDC methods. However, MISDC methods are also more expensive; thus, it is inter-

esting to compare the efficiency of the two types of SDC methods for different k. Fig. 5 shows the

scaled accuracy regions for the MISDC(K,K,2,2) methods and the SISDC(K;K) methods for K ¼ 4, 5,

and 6, where SISDC(K; P ) denotes a SISDC method that uses K total iterations and P Gauss–Lobatto

nodes. SISDC methods integrate the diffusion and reaction terms simultaneously; thus, K � 1 implicit

function evaluations are required for the computation of the provisional solution and K � 1 for each

deferred correction iteration, or KðK � 1Þ total (compared to KðK � 1ÞNDð1þ NRÞ total implicit func-
tion evaluations per time step required by MISDC methods). However, as noted in Section 1, the

implicit equations arising in SISDC methods are in general more difficult to solve than those of

MISDC methods, although not in special cases such as the linear problem (42) and (43). This motivates

us to count each implicit function evaluation of SISDC methods as two. In practice, these function

evaluations may be more than twice as computationally expensive as those of MISDC methods.

Compared to the scaled accuracy diagrams of SISDC methods, one noticeable feature of the scaled

accuracy regions of MISDC methods is their long ‘‘tails’’ in the negative Re(k) region. This means that,

by using smaller time steps for the diffusion and reaction processes, MISDC methods generate accurate
approximations and are more efficient than SISDC methods when the diffusion and reaction terms of

the equation are stiff (i.e., when Re(k) is large). In contrast, SISDC methods are more efficient for

advection-dominant problems.

The decoupling of the diffusion and reaction integrations in MISDC methods gives rise to implicit

equations that are easier to solve and allows accurate solutions to be computed efficiently for reaction-

dominant problems. However, such decoupling introduces splitting errors. To assess the size of splitting
errors, a comparison is made between a MISDC method and a SISDC method that use the same advection,

Fig. 5. Scaled accuracy regions for MISDC(K;K; 2; 2) and SISDC(K;K) methods for � ¼ 10�4 and K ¼ 4, 5, and 6.
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diffusion, and reaction time steps. Thus, the only difference between the two methods is that, for the SISDC

method, the diffusion and reaction processes are integrated together, whereas for the MISDC method, these

two processes are integrated sequentially, resulting in splitting errors.

Fig. 6 shows the scaled accuracy regions of the MISDC(4; 4; 1; 1) and SISDC(4; 4) methods. As pointed

out before, the advection, diffusion, and reaction time steps used in the MISDC(4; 4; 1; 1) method are the

same as those in the SISDC(4; 4) method, but the approximations computed by these two methods differ

because of the splitting errors introduced by the decoupling of the diffusion and reaction processes in the

MISDC(4; 4; 1; 1) method. For Eq. (42), the operators associated with the advection, diffusion, and reaction
terms commute. Therefore, if the decoupled equations (14)–(16) were to be integrated exactly, the resulting

approximation should contain no splitting error and the accuracy regions for the MISDC(4; 4; 1; 1) and
SISDC(4; 4) methods should coincide. However, these equations are approximated using a first-order SI

method, hence splitting errors persist in the MISDC approximation and the resulting accuracy region is

smaller than that of the SISDC region for most values of k. The accuracy region of the MISDC(4; 4; 1; 1)
does not have a tail like those in Fig. 5 because the time steps used for the diffusion and reaction processes

are not refined, unlike the methods considered in Fig. 5.

To further demonstrate the relationship between accuracy and reaction time step size, accuracy regions
are computed for the MISDC(K;K;ND;NR) methods for fixed K and ND and for different NR�s. Fig. 7 shows
the scaled accuracy regions of the MISDC(4; 4; 2;NR) methods, for NR ¼ 1; 2; . . . ; 5. In the advection-

dominant regime, MISDC methods that use larger reactive time steps (i.e., smaller NR) are more efficient.

Nevertheless, as one moves toward the diffusion–reaction-dominant regime (i.e., larger jReðkÞj), MISDC

methods using smaller reactive time steps (i.e., larger NR) become more efficient. It is noteworthy that for

ReðkÞ � �10, uð1Þ � 10�4, so the error tolerance � ¼ 10�4 in this case is of the same order as the solution.

The efficiency of MISDC methods in this stiff diffusion and/or reaction regime is re-examined in the next
section using nonlinear problems.

Fig. 6. Scaled accuracy regions for MISDC(4; 4; 1; 1) and SISDC(4; 4) methods for � ¼ 10�4.



Fig. 7. Scaled accuracy regions for MISDC(4; 4; 2;NR) methods for � ¼ 10�4 and NR ¼ 1; 2; . . . ; 5.
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5. Numerical examples

In this section, the accuracy, efficiency, and convergence behavior of MISDC methods is studied using

the one-dimensional Burgers� equation, with a reaction term, and a coupled A–D–R system describing a

simple, one-dimensional model of flamelets. In both examples, the equations are approximated using the

MOL approach: first, the equations are discretized in space using sixth-order centered differencing; the

resulting ODEs are then integrated in time using MISDC methods.

5.1. Burgers’ equation with viscosity and reaction

In the first example, the Burgers� equation with reaction is used

ut þ uux ¼
dð1� cÞ

2
uxx þ

2ð2c � 1Þ
d

uðu� 1Þ2; ð44Þ

for x 2 ½�2; 2	 and t 2 ½0; 0:5	, with initial conditions

uðx; 0Þ ¼ 1

2
� 1

2
tanh

x
d

� �
; ð45Þ

and Dirichlet boundary conditions uð�2; tÞ ¼ 1 and uð2; tÞ ¼ 0.

Given initial conditions (45) on the spatial domain x 2 ½�1;1	 and with boundary conditions

uð�1; tÞ ¼ 1 and uð1; tÞ ¼ 0, the analytic solution for (44) is given by

uðx; tÞ ¼ 1� 1
tanh

x� ct� �
: ð46Þ
2 2 d



Fig. 8. Log–log plot of L1 error versus 1/Dt. Solid lines are linear interpolants of numerical results, indicated by open circles; dotted

lines indicate error lines with expected convergence rates.
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Technically speaking, uðx; tÞ ¼ 1 and uðx; tÞ ¼ 0 only as x ! �1 and x ! 1 for finite t. Nevertheless, for

the time interval considered in this example, u is indistinguishable from 1 and 0 at the left and right

boundary points (x ¼ �2 and 2), respectively, within double-precision machine accuracy. Thus, (46) is used

as the reference solution even though the simulations are done using a finite spatial domain. The parameters

c and d are chosen to be 0.75 and 0.05, respectively.
In a spatial discretization of (44) using finite differences, the diffusion term gives rise to a banded matrix.

Thus, the integration of the diffusion process using (32) and (38) requires the solution of a linear system,

which is done in OðNÞ time, where N denotes the number of spatial subintervals. The nonlinear equations

(33) and (39) associated with the reaction term are solved using Newton�s method. In the convergence tests

reported below, a spatial grid of N ¼ 1024 is used. The time steps are chosen to be Dt ¼ rDx, where
r ¼ 8; 7; . . . ; 1. In this example, the diffusion and reaction coefficients are 0.00625 and 20, respectively. The

Courant number, which gives a measure of the stiffness of the advection term, is given by cDt=Dx ¼ 0:75r;
the non-dimensional diffusion coefficient, which gives a measure of the diffusive stiffness, is given by
ðdð1� cÞ=2ÞðDt=Dx2Þ ¼ 0:8r.

Fig. 8 shows L1 errors computed using the MISDC(K;K; 2; 2) methods for K ¼ 3, 4, and 5. The errors

are computed using the reference solution (46). In all cases, the approximations converge at the expected

rate K.

5.2. A simple model of flamelets

The second example focuses on two coupled one-dimensional A–D–R equations, similar in form to those

used in models of flamelets [4]. Let u and v represent the fuel and oxidizer mass fractions, respectively. The
equations that describe the evolution of u and v are given by
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ou ou o2u

ot

þ w
ox

¼ m
ox2

� Duv; ð47Þ
ov
ot

þ w
ov
ox

¼ m
o2v
ox2

� Duv; ð48Þ

where w is the advection rate and D is the reaction coefficient. The reaction terms represent the one-step

irreversible reaction uþ v ! p, where p is the mass fraction of the product. As is done in [4], the passive

scalar z 
 ðu� vÞ=2, which satisfies the simpler advection–diffusion equation

oz
ot

þ w
oz
ox

¼ m
o2z
ox2

ð49Þ

is introduced. Eq. (49) can be integrated in conjunction with the modified equation for the fuel u:

ou
ot

þ w
ou
ox

¼ m
o2u
ox2

� Duðu� 2zÞ: ð50Þ

The convergence behavior of MISDC methods as applied to this model is first studied. Eqs. (49) and (50)

are integrated for x 2 ½�1; 1	 and t 2 ½0; 0:5	. Dirichlet boundary conditions are assumed: zð�1; tÞ ¼ �0:5,
zð1; tÞ ¼ 0:5, uð�1; tÞ ¼ 1, uð1; tÞ ¼ 0, vð�1; tÞ ¼ 0, vð1; tÞ ¼ 1. The advection velocity is set to be

wðx; tÞ ¼ �0:5xð1þ 5 cosð8ptÞÞ, and the diffusion and reaction coefficients m and D are chosen to be 0.01 and

500, respectively. To generate the initial conditions, (49) and (50) are integrated by means of the MIS-

DC(5; 5; 2; 6) method for t 2 ½0; 0:1	 using initial conditions zðx; 0Þ ¼ 0:5erfðx=
ffiffiffiffiffi
2m

p
Þ, uðx; 0Þ ¼ zðx; 0Þþ

jzðx; 0Þj, and vðx; 0Þ ¼ �zðx; 0Þ þ jzðx; 0Þj. (uðx; 0Þ and vðx; 0Þ given by these initial conditions have discon-
tinuous first derivatives at x ¼ 0, which may lead to large spatial errors.) The solution is then used as initial

conditions for all other simulations.

An analysis of the relevant time scales can be performed by focusing first on the steady solution

corresponding to the time-average value waveðx; tÞ ¼ �0:5x. With the specific values for D and m above,

the reaction zone is very thin and concentrated in the mixing region around x ¼ 0, where the maximum

reaction rate occurs. Defining the flame thickness as the layer where 99% of the reaction takes place,

numerical results for the average velocity field with the data above correspond to a flame thickness of

0.131. For the case with the time-modulated velocity field, one expects a slowly modulated correction to
that average response. A spatial resolution of N ¼ 1024 is selected, which corresponds approximately to

50 points across the average reactive layer. Using the corresponding mesh size Dx as a reference length

scale, the following relevant time scales of the problem can be identified (once the relaxation to a periodic

solution is complete):

• the largest time scale corresponds to the forcing period from the advection term: tforcing ¼ 1=4;
• the characteristic diffusion time scale based on Dx is given by tdiff ¼ Dx2=m ¼ 3:82e� 4. A detailed asymp-

totic analysis of the significant processes in the thin reactive layer indicates that this time scale must

roughly correspond to the reaction time scale as well, as diffusion and reaction are the only relevant
mechanisms in the thin layer;

• there is also an intermediate time scale corresponding to the transport by advection on the spatial scale

of the flame thickness tadv ¼ Dx=0:5 ¼ 3:91e� 3.

In the numerical simulation, the time steps are chosen to be 2�rDx, where r ¼ 1; 2; . . . ; 5, as motivated by

the advection time scale. This choice of time step satisfies the stability condition for an explicit advection

time-stepping scheme, but requires the use of implicit schemes for the faster processes, in particular, for

diffusion with the non-dimensional diffusion coefficient given by mDt=Dx2 ¼ 5:12� 2�r.

The nonlinear equations associated with the reaction term are solved using Newton�s method. The re-

action equation for this system is in fact quadratic; therefore, it is possible to solve the reaction equations
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analytically. Nevertheless, a Newton solver is used here to realistically represent the general case in which

analytic solutions are not known. Because the number of reaction substeps, rather than CPU time, is

chosen to be the measure of computational work associated with the reaction integration steps, the use of

an iterative solver does not affect the efficiency measures.

Because no analytic solution is known for the system, the numerical solution computed using the

MISDC(5; 5; 2; 6) method with Dt ¼ 2�6Dx is used as the reference solution. Fig. 9 exhibits the reference

solution u for x 2 ½�0:5; 0:5	 as a function of time; for x 2 ½�1;�0:5Þ, u � 1, and for x 2 ð0:5; 1	, u � 0. Fig.

10 shows the L1 errors for u computed using the MISDC(K;K; 2; 6) methods for K ¼ 3, 4, and 5. These
results indicate that numerical solutions obtained using MISDC methods are converging at the expected

rates. Similar results are also obtained for z and v (not shown).

In the next set of experiments, the efficiency of MISDC methods with varying relative sizes of reaction

time steps is compared. Figs. 11 and 12 show L1 errors for u, computed using the MISDC(3; 3; 2;NR)

methods for NR ¼ 2, 4, and 6, versus total numbers of implicit reaction and diffusion equations solved,

respectively. The three curves in Fig. 11 lie in close proximity to each other, which implies that for the same

number of reaction integration substeps, the three MISDC methods generate solutions of similar accuracy.

In contrast, Fig. 12 shows that for the same number of diffusion substeps, the MISDC(3; 3; 2; 6) method,
which takes the smallest reaction time step, generates the most accurate solutions, whereas the MIS-

DC(3; 3; 2; 2) method generates the least accurate solution. These results suggest that for problems with stiff

reactions, provided that the integration of the diffusion process is expensive compared to the advection and

reaction processes, then MISDC methods that take smaller reaction time steps are more efficient than those

using larger reaction time steps. (Indeed, this model, which gives rise to quadratic reaction equations, meets

this criterion.) On the other hand, if the integration of the reaction process is expensive compared to the

solution of the diffusion equation, then methods with NR ¼ 1 are more efficient. This is further discussed in
the next section.

Fig. 9. Reference solution for u as a function of time.



Fig. 10. Log–log plot of L1 error versus 1=Dx for u. Notations are the same as for Fig. 8.

Fig. 11. Log–log plot of L1 error versus number of Newton solves for u. Notations are the same as for Fig. 8.
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Fig. 12. Log–log plot of L1 error versus number of elliptic solves for u. Notations are the same as for Fig. 8.
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5.3. A comparison with semi-implicit Runge–Kutta methods

In the last set of numerical experiments, the efficiency of MISDC methods is compared to SI Additive

Runge–Kutta (ARK) methods from [14]. Of course, any such comparison very much depends on the se-

lected test cases, because the efficiency of a numerical method for an A–D–R equation depends on the

relative stiffness of the individual terms and the relative cost of the individual implicit or coupled implicit
equations. These costs further depend on the spatial discretization, the dimension of the problem, and the

degree of parallelism in the implementation. Therefore, the purpose of this comparison is only to illustrate

that MISDC methods compare favorably with ARK methods on a model A–D–R equation, and not to

determine which method is more efficient in general.

For this comparison, the flamelet model problem of the previous section is used. The initial conditions

are uðx; 0Þ ¼ 0:5ð1þ cosð2pxÞÞ and vðx; 0Þ ¼ 0:9uðx; 0Þ; the advection velocity is set to be

wðx; tÞ ¼ 0:5þ cosð2pxÞ, and the diffusion and reaction coefficients m and D are chosen to be 0.25 and

10,000, respectively. For the ARK methods, the diffusion and reaction terms are coupled and integrated
with the same time step, while in the MISDC method, all terms are decoupled. It should be noted that in

[14], the ARK methods are applied to reacting flow problems in which the magnitude of the diffusion is

sufficiently small that it can be treated explicitly with the advection. The nonlinear implicit equations for the

ARK methods are solved by means of Newton�s method using the previous stage answer as an initial guess.

The size of the time step is hence set by numerically determining the maximum time step which produces

convergence of the Newton iteration during the initial time step.

Fig. 13 displays the L1 errors of the solutions computed using the MISDC(4; 4; 2; 6), MIS-

DC(5; 5; 2; 5), ARK4(3)6L[2]SA (hereafter ARK4), and ARK5(4)8LSA (hereafter ARK5) methods for
N ¼ 32, 64, 128, 256, and 512. The errors are plotted against total computational cost which is

measured by the number of floating-point operations (flops) using MATLAB. The numerical solution
computed using the ARK5 method with N ¼ 1024 and Dt ¼ 1=40960 is used as the reference solution



Fig. 13. Log–log plot of L1 error versus number of flops for u, computed using the MISDC(4; 4; 2; 6), MISDC(5; 5; 2; 5), ARK4, and

ARK5 methods.

672 A. Bourlioux et al. / Journal of Computational Physics 189 (2003) 651–675
for approximating the errors. The time step for the MISDC methods is set to be Dt ¼ Dx, whereas a

much smaller time step of Dt ¼ Dx=40 is used for the ARK4 and ARK5 methods to ensure convergence

of the Newton iterations. With these choices, the reaction time steps for the four methods are ap-

proximately the same, specifically Dx=36 and Dx=40 for the MISDC(4; 4; 2; 6) and MISDC(5; 5; 2; 5),
respectively, and Dx=40 for the ARK methods.

For the same spatial resolution, the approximations computed using the ARK methods are more ac-

curate than the MISDC methods of the same order. This is not surprising since each term in the A–D–R

equation is evaluated at the reaction time scale. However, in this example, the ARK methods are also more

expensive owing to the fact that the implicit equations for u (but not for z) involve both non-local diffusion

terms and nonlinear reaction terms and are thus made expensive to solve. In contrast, MISDC methods

require the solution of a local implicit reaction equation and a linear implicit diffusion equation (which is

also solved 6 and 5 fewer times than in the ARK method). The numerical results shown in Fig. 13 suggest

that for problems in which both the diffusion and the reaction terms are stiff, MISDC methods can be

constructed which compare favorably with SI Runge–Kutta methods.
6. Discussion

In this report, MISDC methods for the temporal integration of ODEs with multiple time scales have

been presented. When applied to A–D–R equations, MISDC methods integrate the advection term ex-

plicitly, and the diffusion and reaction terms implicitly, independently, and possibly with different time
steps. Unlike standard OS methods, MISDC methods can easily be constructed to generate numerical

solutions with arbitrarily high-order of temporal accuracy. This is achieved by simultaneously reducing
integration and splitting errors in the deferred correction iterations.
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The potential advantage of MISDC methods for real-world problems in the physical and biological

sciences is certainly problem dependent. In general, higher-order methods are only more efficient than

lower-order methods when the solution is sufficiently smooth in time, when a high level of accuracy is

desired, and/or when the temporal integration interval is very long. For A–D–R equations, MISDC

methods offer the most possible benefit for applications in which the stiffness of the diffusion and reaction

operators differs widely and in which the decoupled diffusion and reaction problems is much simpler than

solving the coupled diffusion-reaction equation. For many problems, the reaction term is nonlinear but

spatially local, whereas the implicit diffusion equation is global. In this case, there is a great benefit in
solving the reaction equations independently at each node of the computational grid, especially in terms of

performance on parallel computers.

In some applications, the reaction terms are computed using chemistry packages, which makes solving

coupled diffusion-reaction equations even more difficult. MISDC schemes provide a systematic procedure

to incorporate such black-box solvers into a more complex time integration scheme and to still achieve

high-order accuracy. In such cases, however, it is not clear whether one may significantly improve the

efficiency of a given MISDC method by only reducing reaction time steps due to the relatively high expense

of solving the reaction equation. In fact, because the cost of using such black-box solver at each time step
might be high, MISDC methods with NR ¼ 1 (i.e., equal reaction and diffusion time step size) are likely to

be more efficient for such applications.

In MISDC methods, the correction term associated with each process can be used to dynamically de-

termine the appropriate time-step size for each process to meet certain accuracy requirements. Thus,

MISDC methods are (as are other SDC methods [11]) suitable candidates for adaptive time-marching. An

adaptive formulation of MISDC methods is currently being developed by the authors.

In the derivation of the MISDC methods, it is assumed that the reactive time scale is much smaller than

that of diffusion and advection; thus, the reactive time step is chosen to be the smallest. However, in ap-
plications with large diffusivities or solutions with large spatial variations, or when spatial resolution is

sufficiently high, the diffusive stiffness may exceed that of reaction. For such problems, the diffusive time

step should be the smallest, and the ordering of the diffusion and reaction updates in the algorithm de-

scribed in Section 3 should be reversed. Indeed, since the time scales of the processes may vary over time, an

adaptive formulation of the methods can be developed in which the ordering of the updates is dynamically

determined.

Because the focus of this study is on time discretization accuracy, the A–D–R problems considered are in

one space dimension. Because MISDC methods are constructed in the context of MOL, the extension to
more space dimensions is straightforward when spatial discretization is done using finite differencing—

spatial derivatives are approximated using finite differencing, resulting in a system of ODEs, which can then

be integrated using MISDC methods. If finite-volume methods are used in space (e.g., for applications with

sharp moving fronts in solutions), extension to more space dimensions can be done by means of dimen-

sional-splitting [6,8].

In the current implementation, spatial discretization is done using sixth-order centered differencing,

which assumes that the solution is smooth. In many examples of interest, however, solutions may have

sharp gradients, which may be accurately resolved by centered differencing by adopting a sufficiently refined
spatial grid or adaptive mesh refinement. An alternative approach for capturing the advection term is to

compute cell-averaged solution of the model equations using a conservative method. LeVeque and Yee [9]

compared two approaches for solving a model advection equation with a stiff source term, specifically,

predictor–corrector methods with flux limiters and splitting methods. They found that splitting methods

generally perform better, except for stiff problems, in which a numerical phenomenon of incorrect prop-

agation speeds of discontinuities was observed. A conservative formulation of the MISDC methods, which

incorporates a method developed for hyperbolic conservation laws [5], has been developed [7] and will be
compared to the approaches studied in [9]. To be useful for real-world problems, extensions to problems
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with Arrhenius kinetics [17], which gives rise to more realistic temperature-dependent reaction rates, and
with nonlinear diffusion coefficients [13] will also be developed.
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