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Abstract

In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than

the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, non-

linear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation

of which require the use of specialized spatial discretization procedures. This study presents high-order conservative

methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization

on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-

volume solution. The temporal discretization is based on a multi-implicit generalization of spectral deferred correction

methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but

independently, with the splitting errors reduced via the spectral deferred correction procedure. To reduce computational

cost, different time steps may be used to integrate processes with widely-differing time scales. Numerical results show

that the conservative nature of the methods allows a robust representation of discontinuities and sharp gradients; the

results also demonstrate the expected convergence rates for the methods of orders three, four, and five for smooth

problems.
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1. Introduction

Mathematical models that describe the dynamics of reacting flows consist of systems of partial differ-

ential equations (PDEs), which specify the advection, diffusion, and reaction of chemical species within a
moving medium and which couple the effects of non-reactive hydrodynamics with the effects of heat release
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in the chemical reactions. Computational methods intended for solving equations arising in reactive flow

models must contend with the fact that the characteristic time scales of the chemical reactions are typically

much shorter than the hydrodynamic time scales governed by advection and diffusion. In addition, non-
linear advection or forcing terms may introduce sharp spatial variations into the solutions, the computation

of which requires specialized spatial discretization techniques. Thus, the construction of numerical methods

that can accurately and efficiently approximate equations with highly disparate time scales and sharp

spatial variations in the solution is a difficult and important pursuit.

In this paper, numerical methods are introduced for a particular set of equations that describe reacting

compressible flows. If the diffusion and reaction terms in these equations are ignored, they become the

standard Euler equations of gas dynamics for which many specialized spatial discretization techniques have

been developed. For the Euler equations (as well as other systems of hyperbolic conservation laws), most
grid-based numerical methods are cast in conservation form and techniques like Godunov methods [11],

essentially non-oscillatory (ENO) methods [25], piecewise parabolic method (PPM) [8], total-variation-

diminishing (TVD) methods [23], or wave propagation methods [19] are used to construct conservative flux

values, which allow accurate and robust representation of shocks without introducing non-physical os-

cillations or excessive diffusion into the solution.

When diffusive terms are present, the equations become the compressible Navier–Stokes equations.

Diffusive terms can be included into a conservation form of the equations, even though physical quantities

are no longer conserved. Generally, diffusive terms regularize the equations so that shocks can no longer
form. However, sharp features can still form wherein Oð1Þ changes in the solution occur within a small

spatial region. Therefore the specialized conservative formulations discussed above are still necessary.

The addition of reaction terms to the equations of motion has several ramifications. First, the equations

can typically no longer be put in strict conservation form. Moreover, because of the disparity in time scales,

the equations for reactive gas dynamics are typically stiff, with the reaction terms much stiffer than the

advection and diffusion terms; reaction terms also contribute to the formation of sharp spatial features in

the flow, even in cases where the influence of diffusive terms are comparable to that of advective terms.

The most common approach to incorporating reaction terms into numerical methods for compressible
gas dynamics is an operator-splitting approach [18,27,28], in which advective and diffusive terms are de-

coupled from reaction terms. Reaction terms can then be solved using implicit methods without solving

fully coupled equations. Moreover, by integrating slower processes using larger time steps, the overall

computational cost can be reduced. The drawback of this approach is that temporal accuracy higher than

second order is difficult to achieve.

Higher-order temporal accuracy for PDEs is most often achieved through a method of lines (MOL)

approach. In this approach, the equations are first discretized in space only, resulting in a system of or-

dinary differential equations (ODEs). These equations can then be integrated using standard ODE meth-
ods. In the present context, because of the stiffness of the reaction and diffusion terms, it is advantageous to

handle these terms implicitly so that a prohibitive time step restriction may be avoided. Fully implicit

methods [9,12], which treat every term implicitly, require the solution of implicit equations coupling

nonlinear advection and reaction; thus, these methods are computationally expensive. In contrast, semi-

implicit or implicit–explicit methods can be applied which treat the advection (and possibly diffusion) term

explicitly and the reaction (and possibly diffusion) terms implicitly [2,16]. When diffusion is significant,

treating it explicitly results in a time step restriction, while treating it implicitly and coupling it to the re-

action term requires the solution of a nonlinear and non-local equation, which can be computationally
expensive, particularly when the number of chemical species is large.

In [4], high-order multi-implicit spectral deferred correction (MISDC) methods are presented for the

solution of advection–diffusion–reaction (A–D–R) equations. MISDC methods are a generalization of the

spectral deferred correction (SDC) method proposed by Dutt et al. [10]. MISDC methods are similar to
operator-splitting methods in that they allow reaction and diffusion terms to be integrated separately,
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implicitly, and with different time steps. However, unlike traditional operator-splitting methods, MISDC

methods are easily extended to higher-order temporal accuracy.

In [4], the main focus is on temporal integration; the problems considered all have smooth solutions for
which spatial discretization using standard centered differencing is appropriate. In this study, a method is

developed which incorporates within the MISDC methods a conservative differencing scheme similar to the

PPM developed by Colella and Woodward [8]. The resulting methods – the conservative MISDC methods –

compute higher-order approximations to the cell-averaged or finite-volume solution of the model equa-

tions; the sharp gradients and reaction fronts in the solutions are accurately and robustly represented.

The outline of this paper is as follows. In Section 2, the model equations are described in differential

form and in cell-average or finite-volume form. In Section 3, the conservative MISDC methods are first

presented in the context of a MOL discretization of the A–D–R equations and then extended to the reacting
gas dynamics model. In Section 4, numerical results are presented to demonstrate that the conservative

nature of the methods allows a robust representation of discontinuities and sharp gradients, and to dem-

onstrate the expected temporal convergence rates for the methods of orders three, four, and five for smooth
problems.
2. Model equations

The physical model considered in this study is that of a gaseous mixture in which M chemical species

interact in one reaction. The problem is presented in one space dimension; extension to more space

dimension can be done by means of finite-volume multi-dimensional approaches [6,20]. As in one-

dimensional problems, the MOL approach is used to solve multi-dimensional problems: fluxes are

computed across cell walls rather than cell edges, and the solution is advanced in time using MISDC

methods.

Let q be the density, u be the fluid velocity, E be the total specific energy, p be the pressure, T be the

temperature, and Zi be the mass fraction of species i. With this notation, the compressible Navier–Stokes
equations are given by
qt þ ðquÞx ¼ 0; ð1Þ
2
� �
ðquÞt þ qu þ p
x
¼ luxx; ð2Þ
ðqEÞt þ ðquE þ upÞx ¼ l
u2

� �� �
þ R ðkTxÞx; ð3Þ
2 x x c� 1
ðqZiÞt þ ðquZiÞx ¼ ðDZixÞx þ gi; ð4Þ

where l, k, and D are diffusion coefficients, R is Boltzmann�s gas constant, and c is taken to be 1.4 for air. In

this study, reaction terms are assume to take the form

gi ¼ wiðmpi � mriÞBT ae�To=T
YM
j¼1

ðqZjÞmrj ð5Þ

for i ¼ 1; . . . ;M , where wi is the molecular weight of species i, B > 0 and a > 0 are constants, To is the

ignition temperature for the reaction, and mri and mpi are the stoichiometric coefficients for species i ap-
pearing as a reactant and product, respectively, in the reaction. The model may also be extended to include
expressions for more general reaction terms, see [15].
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The total specific energy E is given by the equation of state

E ¼ p
ðc� 1Þqþ u2

2
þ
XM
j¼1

qjZj; ð6Þ

where qi is the amount of heat released by species i. Assuming the perfect gas law, the temperature and

pressure are related by

T ¼ p
qR

: ð7Þ

Traditional finite difference methods, in which spatial derivatives are approximated by means of finite

differences, may break down near discontinuities or sharp fronts in solutions. Thus, equations such as (1)–
(4) are frequently solved using finite-volume methods, which approximate solutions to the cell-averaged or

finite-volume form of the equations rather than the differential form.

Before presenting the finite-volume form of (1)–(4), some notation must be defined. In the spatial dis-

cretization on the interval x 2 ½a; b�, let Dx denote the spatial grid interval. Let xj denote the center of the jth
cell ½xj�1

2
; xjþ1

2
�, for j ¼ 1; . . . ;N , where xj�1

2
and xjþ1

2
are the left and right edges of the jth cell, i.e.,

xj�1
2
� aþ ðj� 1ÞDx and xjþ1

2
� aþ jDx. For an arbitrary function wðxÞ, let �wj be the cell-averaged value of

wðxÞ in the jth cell, i.e.,

�wj ¼
1

Dx

Z x
jþ1

2

x
j�1

2

wðxÞdx: ð8Þ

Also, let wjþ1
2
denote the numerical approximation to wðxjþ1

2
Þ.

Consider a differential equation of the form

wt ¼ Fx þR; ð9Þ

where Fx corresponds to the advection and diffusion terms, and R corresponds to the reaction term. The

finite-volume form of (9) is given by

ð�wtÞj ¼
Fðwjþ1

2
; tÞ �Fðwj�1

2
; tÞ

Dx
þ �Rj: ð10Þ
Because R is not in flux form in (9), it is expressed as a cell-averaged variable in (10).
3. Conservative MISDC methods

This section first presents a brief description of conservative MISDC methods in the context of A–D–R
equations and then extends the methods to the solution of reactive gas dynamics described by (1)–(4).

Conservative MISDC methods are similar to the original MISDC methods [4] in that processes of different

time-scales are decoupled and integrated using different time steps. However, unlike the original MISDC

methods, conservative MISDC methods integrate the advection and diffusion terms in the flux difference

form.

3.1. Advection–diffusion–reaction equations

Conservative MISDC methods compute approximations to the cell-averaged or finite-volume solution

of an A–D–R equation via a MOL discretization on the flux difference form of the equation. Let uðx; tÞ be a

(possibly vector-valued) function that satisfies the A–D–R equation
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ut ¼ ðfAÞx þ luxx þR � AþDþR ð11Þ

for x 2 ½a; b� and t 2 ½0; T �. In (11), fAðt; uðx; tÞÞ is the advective flux term, lux is the diffusive flux term, and

Rðt; uðx; tÞÞ is the reaction term. Boundary conditions and initial conditions must be given to complete the

specification of the problem. The diffusivity l is assumed to be zero or small for the gas dynamics models

used in this study. For diffusivity l 6¼ 0, u and ux are continuous for most fA andR of interest; however, for

a small l, nonlinear forcings may still introduce sharp gradients that require a specialized spatial discret-

ization approach.

Eq. (11) is rewritten in finite-volume form as described in Section 2. A MOL discretization of the re-

sulting equation yields the following system of ODEs

�u0 ðtÞ ¼ �A ðt; �uðtÞÞ þ �D ðt; �uðtÞÞ þ �R ðt; �uðtÞÞ; ð12Þ
j j j j
�ujð0Þ ¼ ð�u0Þj; ð13Þ

where �A and �D are given by

�Ajðt; �uðtÞÞ ¼
ðfAÞjþ1

2
ðt; u�ðtÞÞ � ðfAÞj�1

2
ðt; u�ðtÞÞ

; ð14Þ

Dx
�Djðt; �uðtÞÞ ¼ l
ux

jþ1
2

ðtÞ � ux
j�1

2

ðtÞ

Dx
: ð15Þ

Because of the MOL approach, �Ajðt; �uðtÞÞ, �Djðt; �uðtÞÞ, and �Rjðt; �uðtÞÞ are evaluated at the integration

nodes in time. That is, unlike many second-order conservative methods (e.g., Godunov method [11]), there

is no ‘‘time-centering’’ of fluxes or characteristic tracing.

In (14), u�ðtÞ is the solution of the Riemann problem with the left and right states computed from a

piecewise parabolic interpolation of �uðtÞ [8]. The piecewise parabolic interpolation is fourth-order accurate

in regions where the solution is smooth (i.e., where the fourth derivative of the solution exists and is finite).

As is done in [8], the interpolation function is set to be a constant if the left or right state is a local maximum

or minimum to ensure monotonicity; a narrower profile is used in the interpolation in the neighborhood of
a sharp gradient or a discontinuity. The procedures and parameters used to detect sharp gradients or

discontinuities are the same as [8]. For l ¼ 0, �Dj ¼ 0; for l 6¼ 0, ux is continuous but higher-order deriv-
atives may be discontinuous. Thus, ux in (15) is approximated using a fourth-order centered difference in

regions where the solution is smooth; a second-order centered difference is used in the neighborhood of a

sharp gradient.

The reaction term R, which is not in flux form in (11), is expressed as a cell-averaged variable in (12). To

achieve high-order spatial accuracy, R, which is nonlinear, is computed as point values at cell edges. The

point values Rj�1
2
are then used to update cell-averages �Rj using a fourth-order numerical quadrature.

As in MISDC methods [4], conservative MISDC methods handle the non-stiff advection process ex-

plicitly and integrate the stiff diffusion and reaction processes implicitly. (The stiffness of the diffusion term

grows as OðDt=Dx2Þ: In the present implementation, Dt scales with Dx (i.e., OðDtÞ ¼ OðDxÞ); thus, with a

sufficiently refined spatial grid, or in regions of high spatial resolution in an adaptive mesh refinement

method, the diffusion term can be stiff even with a small diffusivity l. The same is true for applications that

choose Dt independently of Dx.) The time steps used for the integration of the advection and diffusion

processes are larger than that of the reaction process. To advance the solution of the spatially-discretized

A–D–R equations by one time step, these processes are integrated sequentially using methods that are first
order in time. Then the accuracy of the solution is improved by iteratively solving a series of correction
equations, which simultaneously reduce splitting and integration errors.
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In the temporal discretization, let Dt > 0 be the time step and tn ¼ nDt, for n ¼ 0; 1; 2; . . . ; be the nth
time-level. Consider for now a simplified case in which the same time step Dt is used for all processes. To

advance the solution of (12) by one time step, the following equations are approximated sequentially:

�uAðt þ DtÞ ¼ �uðtÞ þ
Z tþDt

�Aðs; �uAðsÞÞds; ð16Þ

t

�uDðt þ DtÞ ¼ �uðtÞ þ
Z tþDt

�Aðs; �uAðsÞÞ
�

þ �Dðs; �uDðsÞÞ
�
ds; ð17Þ
t

�uðt þ DtÞ ¼ �uðtÞ þ
Z tþDt

t

�Aðs; �uAðsÞÞ
�

þ �Dðs; �uDðsÞÞ þ �Rðs; �uðsÞÞ
�
ds: ð18Þ

Note that when the same Dt is used for all processes, �uD ¼ �uA þ
R tþDt
t

�Dds and �u ¼ �uD þ
R tþDt
t

�Rds.
However, these relationships do not hold when different time steps are used for the processes.

The above approach avoids the solution of a system that couples the non-local �D term and the nonlinear
�R term, which may be computationally expensive. Moreover, the intermediate solutions are weakly coupled

in (16)–(18): the solution �uA of (16) is used in the evaluation of �A in (17) and (18), and the solution �uD of

(17) is used in the evaluation of �D in (18). This approach generates approximations that are more accurate

than the traditional operator-splitting approach [18,28], in which processes are completely decoupled and
integrated sequentially.

Given some interval ½tn; tnþ1� on which the solution is sought and an approximation ~�uðtÞ to �uðtÞ, con-
servative MISDC methods improve the accuracy of ~�uðtÞ by computing an approximation to the correction

term

dðtÞ � �uðtÞ � ~�uðtÞ: ð19Þ

To this end, let Eðt; ~�uÞ be the residual function associated with ~�uðtÞ given by

Eðt; ~�uÞ ¼ �uðtnÞ þ
Z t

tn

�Aðs; ~�uðsÞÞ
�

þ �Dðs; ~�uðsÞÞ þ �Rðs; ~�uðsÞÞ
�
ds� ~�uðtÞ: ð20Þ

Following [4], the correction equation that arises from (18) and (20) is

dðtÞ ¼
Z t

tn

�Aðs; ~�uðsÞ
�

þ dðsÞÞ � �Aðs; ~�uðsÞÞ þ �Dðs; ~�uðsÞ þ dðsÞÞ � �Dðs; ~�uðsÞÞ

þ �Rðs; ~�uðsÞ þ dðsÞÞ � �Rðs; ~�uðsÞÞ
�
dsþ Eðt; ~�uÞ: ð21Þ

Given a sth order approximate solution ~�u (i.e., k�u� ~�uk ¼ OðDtsÞ) on the time interval ½tn; tnþ1�, if �A, �D,

and �R are Lipschitz continuous in �u, then (21) implies that kdðtÞ � Eðt; ~�uÞk ¼ OðDtsþ1Þ. Thus, from a

(s+1)th order approximation for Eðt; ~�uÞ and a simple first-order rectangle rule approximation to the integral

on the right side of (21), an approximation ~dðtÞ to dðtÞ can be computed such that kdðtÞ � ~dðtÞk ¼ OðDtsþ1Þ.
The approximate correction ~d can then be used to update ~�u to yield a (s+1)th order approximation to �u.
Thus, in the case where �A, �D, and �R are Lipschitz continuous, the error bounds can be vigorously proven.

However, in the context of the A–D–R equation, the operators �A and �D approximate differential op-
erators, which are not Lipschitz continuous. Therefore, additional assumptions must be made about the

provisional solutions ~�u (or, equivalently, �Að~�uÞ and �Dð~�uÞ) for the above arguments to hold; see [1,4,5,24] for
a discussion on the interaction between temporal and spatial errors. Moreover, in conservative MISDC
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methods, limiters may be applied in the computation of the left and right states and spatial derivatives. The

application of limiters may also render these operators non-Lipschitz continuous and affect the accuracy

and stability of the methods. A solution to the difficulty with limiters is described near the end of this
section.

By solving (21), the accuracy of an approximate solution ~�u is improved. However, a direct solution of

(21) requires an approximation of a system of coupled nonlinear equations. Thus, following the approach

used to obtain (16)–(18), a weakly coupled set of correction equations are approximated sequentially in-

stead:

dAðtÞ ¼
Z t

�Aðs; ~�uðsÞ
�

þ dAðsÞÞ � �Aðs; ~�uðsÞÞ
�
dsþ Eðt; ~�uÞ; ð22Þ
tn
dDðtÞ ¼
Z t

�Aðs; ~�uðsÞ
�

þ dAðsÞÞ � �Aðs; ~�uðsÞÞ þ �Dðs; ~�uðsÞ þ dDðsÞÞ � �Dðs; ~�uðsÞÞ
�
dsþ Eðt; ~�uÞ; ð23Þ
tn
dðtÞ ¼
Z t

tn

�Aðs; ~�uðsÞ
�

þ dAðsÞÞ � �Aðs; ~�uðsÞÞ þ �Dðs; ~�uðsÞ þ dDðsÞÞ � �Dðs; ~�uðsÞÞ

þ �Rðs; ~�uðsÞ þ dðsÞÞ � �Rðs; ~�uðsÞÞ
�
dsþ Eðt; ~�uÞ: ð24Þ

In addition to splitting errors, solutions computed by conservative MISDC methods contain integration

errors that arise from numerical quadrature approximation of the integrals. The integration errors asso-

ciated with the stiff reaction term may be larger than the advection and diffusion errors. Now owing to the

decoupling of processes, it is possible to selectively reduce integration errors by using smaller time steps for

fast-scale processes. Thus, the time step used to integrate the reaction process is smaller than those of

advection and diffusion processes. For gas dynamics applications in which the advection and diffusion time

scales are similar, the advection and diffusion time steps are taken to be equal.

Fig. 1. Illustration of three levels of time-step subdivision: ½tn; tnþ1� into ½tm; tmþ1�, ½tm; tmþ1� into ½tp; tpþ1�, and ½tp; tpþ1� into ½tq; tqþ1�. In this

example, NA ¼ 4, ND ¼ 3, NR ¼ 6, m ¼ 1, p ¼ 1, and q ¼ 3.



704 A.T. Layton, M.L. Minion / Journal of Computational Physics 194 (2004) 697–715
To integrate the solution from tn to tnþ1, the time interval ½tn; tnþ1� is divided into subintervals. Fig. 1

shows an example of time-step subdivision. Below is a description of the time-step subdivision for the

general case in which reaction is stiffer than diffusion, which is in turn stiffer than advection. The time
interval ½tn; tnþ1� is divided into NA subintervals by choosing points tn;m for m ¼ 0; 1; . . . ;NA such that

tn ¼ tn;0 < tn;1 < � � � < tn;m < � � � < tn;NA
¼ tnþ1. To use smaller time steps for the diffusion process and yet

smaller ones for the reaction process, the subinterval ½tn;m; tn;mþ1� is subdivided into ND subintervals by

choosing points tn;m;p for p ¼ 0; 1; . . . ;ND such that tn;m ¼ tn;m;0 < tn;m;1 < � � � < tn;m;p < � � � < tn;m;ND
¼ tn;mþ1.

(ND ¼ 1 corresponds to the case where the advection and diffusion time steps are equal.) Then ½tn;m;p; tn;m;pþ1�
is further subdivided into NR subintervals by choosing points tn;m;p;q for q ¼ 0; 1; . . . ;NR such that

tn;m;p ¼ tn;m;p;0 < tn;m;p;1 < � � � < tn;m;p;q < � � � < tn;m;p;NR
¼ tn;m;pþ1. For notational simplicity, the subscript n in

tn;m is omitted, n and m omitted in tn;m;p, and n, m, and p omitted in tn;m;p;q where there is no ambiguity, i.e.,
tn;m, tn;m;p, and tn;m;p;q are written as tm, tp, and tq, respectively. Let Dtm � tmþ1 � tm, Dtp � tpþ1 � tp, and
Dtq � tqþ1 � tq. In this implementation, tm, tp, and tq are Gauss–Lobatto nodes of the intervals ½tn; tnþ1�,
½tm; tmþ1�, and ½tp; tpþ1�, respectively.

For an arbitrary function wðtÞ, let wk
m, w

k
p, and wk

q denote the numerical approximations to wðtmÞ, wðtpÞ,
and wðtqÞ, respectively, after k deferred correction iterations. Using this notation, a multi-implicit dis-

cretization of the correction equations (22)–(24), based on forward and backward Euler methods, is given

by

dkAmþ1 ¼ dkAm þ Dtm �Amð�ukm
�

þ dkAmÞ � �Amð�ukmÞ
�
þ Emþ1ð�ukÞ � Emð�ukÞ; ð25Þ
dkDpþ1
¼ dkDp

þDtp �Amð�ukm
�

þdkAmÞ� �Amð�ukmÞþ �Dpþ1ð�ukpþ1þdkDpþ1
Þ� �Dpþ1ð�ukpþ1Þ

�
þEpþ1ð�ukÞ�Epð�ukÞ;
ð26Þ
dkqþ1 ¼ dkq þ Dtq �Amð�ukm
�

þ dkAmÞ � �Amð�ukmÞ þ �Dpþ1ð�ukpþ1 þ dkDpþ1Þ � �Dpþ1ð�ukpþ1Þ

þ �Rqþ1ð�ukqþ1 þ dkqþ1Þ � �Rqþ1ð�ukqþ1Þ
�
þ Eqþ1ð�ukÞ � Eqð�ukÞ: ð27Þ

As in [4,22], the discretized correction equations (25)–(27) are rewritten in terms of updated values of the

target function. To this end, let Isþ1
s ðwkÞ denote the numerical quadrature approximation toZ tsþ1

ts

�Aðs; �wkðsÞÞ
�

þ �Dðs; �wkðsÞÞ þ �Rðs; �wkðsÞÞ
�
ds; ð28Þ

where s ¼ m, p, or q, and w denotes an arbitrary function. Since the quadrature must be done for each

interval ½ts; tsþ1�, there are Ns ¼ NA, ND, and NR quadrature rules, for s ¼ m, p, and q, respectively. The
quadrature is given by

Isþ1
s ðwkÞ ¼

XNS

l¼0

als �Aðtl; �wkðtlÞÞ
�

þ �Dðtl; �wkðtlÞÞ þ �Rðtl; �wkðtlÞÞ
�

ð29Þ

for s ¼ 0; . . . ;Ns. The coefficients als are precomputed, and the quadrature is reduced to matrix–vector

multiplications.

The correction terms dA, dD, and d are used to obtain �uA, �uD, and �u, respectively, from ~�u. That is, �uA is set

to ~�uþ dA, �uD to ~�uþ dD, and �u to ~�uþ d. Combining these update relations with (26) and (27), one arrives at
the following update equations for the diffusion and reaction processes:
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�ukþ1 ¼ �ukþ1 þ Dtp �Amð�ukþ1Þ
�

� �Amð�uk Þ þ �Dpþ1ð�ukþ1 Þ � �Dpþ1ð�uk Þ
�
þ Ipþ1ð�ukÞ; ð30Þ
Dpþ1 Dp Am m Dpþ1 pþ1 p
�ukþ1
qþ1 ¼ �ukþ1

q þ Dtq �Amð�ukþ1
Am

Þ
�

� �Amð�ukmÞ þ �Dpþ1ð�ukþ1
Dpþ1

Þ � �Dpþ1ð�ukpþ1Þ þ �Rqþ1ð�ukþ1
qþ1Þ � �Rqþ1ð�ukqþ1Þ

�
þ Iqþ1

q ð�ukÞ: ð31Þ

Because the advection process is treated explicitly, �ukA need not be computed; thus, an update equation

for �ukA is not needed.

In summary, the following steps improve the order of accuracy of �uk by one:
For m ¼ 0; . . . ;NA � 1

For p ¼ 0; . . . ;ND � 1

Solve (30) for �ukþ1
Dpþ1

; Compute �Dpþ1ð�ukþ1
Dpþ1

Þ
For q ¼ 0; . . . ;NR � 1

Solve (31) for �ukþ1
qþ1; Compute �Rqþ1ð�ukþ1

qþ1Þ
End

Update �Dpþ1ð�ukþ1
pþ1Þ

End
Compute �Amþ1ð�ukþ1

mþ1Þ
End

Forward and backward Euler methods are used to compute the provisional solution �u0. That is, when
k ¼ �1, the terms �Amð�u�1

m Þ, �Dpþ1ð�u�1
pþ1Þ, �Rqþ1ð�u�1

qþ1Þ, and the numerical quadratures I �s in (30) and (31) are

taken to be zero. Alternatively, a more accurate provisional solution may be computed by means of a

higher-order integration method or using numerical quadratures from previous time steps.

Because �A, �D, and �R are discrete approximations to non-Lipschitz operators, to insure convergence

special care must be taken when applying limiters in the computation of the left and right states and the
spatial derivatives. As previously noted, given a (sþ 1)th order approximation ~�u, the terms inside the integral

of the right side of (21) are OðDtsþ1Þ. However, if limiters are applied to �A k at a spatial location xj but not to
�A kþ1 (or vice versa), then the difference k �A kþ1 � �A kk may be large at xj; similar problems may arise for �D

and �R. To overcome this difficulty, in the computation of the provisional solution (k ¼ �1), the spatial

locations at which limiters are applied are recorded. Then during the SDC iterations (kP 0), the limiters are

only applied at those locations. The numerical examples in Section 4 show that, with this approach, the

conservative MISDC methods preserve sharp gradients in solutions. Nonetheless, it is conceivable that the

first-order temporal errors in the provisional solutions may lead to incorrect limiter locations. Alternative
approaches of determining limiter locations are discussed in Section 5. However, it must be acknowledged
that none of these approaches have been rigorously shown to yield correct limiter locations.
3.2. Reacting gas dynamics

The remainder of this section extends the conservative MISDC methods to the system of reacting flow

(1)–(4).

In the diffusion step, the advection and diffusion processes are coupled, with the advection processes
handled explicitly and the diffusion processes integrated implicitly. First, the explicit (advective) components

are computed. Thus, to compute the provisional solution (k ¼ �1) the following equations are first solved:
qt þ ðquÞx � qt �AðqÞ ¼ 0; ð32Þ
ðquÞt þ ðqu2 þ pÞx � ðquÞt �AðquÞ ¼ 0; ð33Þ
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ðqEÞt þ ðquE þ upÞx � ðqEÞt �AðqEÞ ¼ 0; ð34Þ
ðqZiÞt þ ðquZiÞx � ðqZiÞt �AðqZiÞ ¼ 0: ð35Þ
For notational simplicity, in the definition of the advective flux terms, the parameters q, qu, qE, and qZi

are also used as indices for the flux functions, e.g., AðqÞ � AqðqÞ � �ðquÞx; similar notation is also used

for D and R below. The kth SDC iteration is given by

ð�qAÞ
kþ1 ¼ ð�qÞkþ1 þ Dtp �Að�qÞkþ1

�
� �Að�qÞk

�
þ Ipþ1ðqkÞ; ð36Þ
pþ1 p m m p
ð �quAÞ
kþ1 ¼ ð �quÞkþ1 þ Dtp �Að �quÞkþ1

�
� �Að �quÞk

�
þ Ipþ1ðqukÞ; ð37Þ
pþ1 p m m p
ð �qE Þkþ1 ¼ ð �qEÞkþ1 þ Dtp �Að �qEÞkþ1
�

� �Að �qEÞk
�
þ Ipþ1ðqEkÞ; ð38Þ
A pþ1 p m m p
ð �qZiAÞ
kþ1

pþ1 ¼ ð �qZiÞ
kþ1

p þ Dtp �Að �qZiÞ
kþ1

m

�
� �Að �qZiÞ

k
m

�
þ Ipþ1

p ðqZk
i Þ: ð39Þ

The diffusion processes are then integrated using the intermediate solutions of (36)–(39) as initial values.

Following the approach in [7], the following equations are solved:
qt ¼ 0 � DðqÞ; ð40Þ
ðquÞt ¼ ðluxÞx � DðquÞ; ð41Þ
q
u2

� �
¼ l

u2
� �� �

� D q
u2

� �
; ð42Þ
2 t 2 x x 2
ðqT Þt ¼
R ðkTxÞx � DðqT Þ; ð43Þ
c� 1
ðqZiÞt ¼ ðDZixÞx � DðqZiÞ: ð44Þ
The update equations for the diffusion processes are:

ð�q Þkþ1 ¼ ð�q Þkþ1 þ Dtp �Dð�qÞkþ1
�

� �Dð�qÞk
�
; ð45Þ
D pþ1 A pþ1 pþ1 pþ1
ð �qu Þkþ1 ¼ ð �qu Þkþ1 þ Dtp �Dð �quÞkþ1
�

� �Dð �quÞk
�
; ð46Þ
D pþ1 A pþ1 pþ1 pþ1
�
q
u2

2 D

� �kþ1

¼
�

q
u2

2 A

� �kþ1

þ Dtp �D
�

q
u2

2

� �kþ1
 

� �D
�

q
u2

2

� �k
!
; ð47Þ
pþ1 pþ1 pþ1 pþ1
� kþ1 � kþ1 � � kþ1
�

� � k
�

ðqTDÞpþ1 ¼ ðqTAÞpþ1 þ Dtp DðqT Þpþ1 �DðqT Þpþ1 ; ð48Þ
ð �qZ Þkþ1 ¼ ð �qZ Þkþ1 þ Dt �Dð �qZ Þkþ1
�

� �Dð �qZ Þk
�
: ð49Þ
iD pþ1 iA pþ1 p i pþ1 i pþ1
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Note that ð�qAÞ
kþ1

pþ1, ð �quAÞ
kþ1

pþ1, ð
�q u2
2 A

Þkþ1

pþ1, ð �qTAÞ
kþ1

pþ1, ð �qZiAÞ
kþ1

pþ1 are used as initial values, and that the nu-

merical quadratures Ipþ1
p �s, which are included in (36)–(39) do not appear in (45)–(49). Further details for

the solution of (45)–(49) are described in Appendix A.
Because there is no reaction associated with the density, momentum, or the kinetic or pressure

component of the total energy, the solutions of (45)–(48) are taken to be the solutions for the kth SDC

iteration; i.e., ð�qÞkþ1

pþ1 ¼ ð�qDÞ
kþ1

pþ1, ð �quÞ
kþ1

pþ1 ¼ ð �quDÞ
kþ1

pþ1, ð
�q u2
2
Þkþ1

pþ1 ¼ ð �q u2
2 D

Þkþ1

pþ1, and ð �qT Þkþ1

pþ1 ¼ ð �qTDÞ
kþ1

pþ1. The mass

fraction ð �qZiÞkþ1

pþ1 and total energy ð �qEÞkþ1

pþ1 are updated after the reaction step.

In the reaction step, the equation

ðqZiÞkþ1

qþ1 ¼ ðqZiÞkþ1

q þ Dtq �AðqZiÞkþ1

m

�
� �AðqZiÞkm þ �DðqZiDÞkþ1

pþ1 � �DðqZiDÞkpþ1

þRðqZiÞkþ1

qþ1 �RðqZiÞkqþ1

�
þ Iqþ1

q qZk
i

� �
; ð50Þ

is solved not at cell averages but rather at cell edges for i ¼ 1; . . . ;M , so that high-order spatial accuracy

may be achieved. Cell-edge values for �A and �D are computed using a piecewise parabolic interpolation of
the associated cell-averages as described in Section 3.1 and in [8]. The solution ðqZiÞkþ1

qþ1 is then used to

compute cell-averaged values for ð �qZiÞkþ1

qþ1 and to update ð �qEÞkþ1

qþ1.

Compared to the operator-splitting approach, which is a typical approach for computing solutions to

models of reacting gas dynamics, the conservative MISDC methods offer the same benefits of allowing the

stiff reaction terms to be solved implicitly while avoiding the solution of coupled nonlinear equations, and

of allowing different time steps to be used for different processes. Furthermore, unlike traditional operator-

splitting approaches, for which temporal accuracy higher than second order is difficult to achieve,

conservative MISDC methods can be constructed to yield high-order accuracy. To compute high-order
solutions, additional computational cost is required by the iterative process. In Section 4.4, the efficiency of

the third- and fourth-order conservative MISDC methods is compared to a conservative, second-order
operator-splitting method.
4. Numerical examples

In this section, the stability, accuracy, and convergence behavior of the conservative MISDC methods
are studied using test cases with increasing complexity. The Euler equations are used to test the ability of

the methods to robustly handle shocks; the reactive, compressible Euler equations are used to study the

accuracy of the methods in the solution of a Chapman–Jouguet (CJ) detonation wave; and the reactive,

compressible Navier–Stokes equations are used to study the accuracy of the methods in obtaining solutions

in which the diffusion and reaction terms are balanced to generate continuous solutions with sharp gra-

dients. The last example is also used to compare the efficiency of the methods to a conservative, second-

order operator-splitting method. In all calculations reported in this section, R ¼ 1. Solid-wall boundary

conditions are assumed on both ends of the spatial domain. All computations reported in this section were
performed using Fortran programs implemented in double precision on an IBM system with an Intel

Pentium IV 2 GHz processor and with 1 GB of RAM.

4.1. Euler equations

In the first example, a well-studied problem consisting of the Euler equations of gas dynamics for a

polytropic gas [21] is solved to study the representation of shocks by the conservative MISDC methods

and the restriction on time step imposed by the advective component of the equations. The initial

conditions are
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ðq; u; pÞ ¼
ð1; 0; 103Þ; x < 0:1;
ð1; 0; 10�2Þ; 0:16 x < 0:9;
ð1; 0; 102Þ; 0:96 x6 1:

8<
: ð51Þ

An inviscid and non-reactive model is considered, i.e., the diffusion constants l, k, and D, and the heat

release qi are taken to be 0. Because the flow is non-reactive, the mass fraction equation (4) is not solved.

Eqs. (1)–(3) are solved on the spatial domain [0,1] and time domain [0,0.038].

Figs. 2 and 3 display results at t ¼ 0:038 computed using the third-order conservative MISDC method

with NA ¼ 2. Numerical solutions computed using 200 and 400 cells (shown with crosses) are compared to

one that is computed using 800 cells (shown with solid lines), which is regarded as a reference solution.

These resolutions were chosen to facilitate direct comparison with results reported in [21,26]. The time step

is taken to be Dt ¼ 2Dtm ¼ 0:067Dx, which corresponds to a Courant–Friedrichs–Lewy (CFL) number,
given by CFL ¼ maxðju� cjÞDtm=Dx, of �1. Some smearing is observed with 200 cells, but in the solution

obtained with 400 cells most of the fine structures are captured, even though the methods are not designed

for non-stiff and non-split problems such as the Euler equations. Indeed, these solutions compare favorably
to results reported in [21].
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Fig. 2. Numerical results for example 1 using 200 cells: (a) density; (b) velocity; (c) pressure. Crosses and dashed lines are solutions

computed using 200 and 800 cells, respectively.
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Fig. 3. Numerical results for example 1 using 400 cells: (a) density; (b) velocity; (c) pressure. Crosses and dashed lines are solutions

computed using 400 and 800 cells, respectively.
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4.2. Compressible Euler equations for a reacting mixture

The next example assesses the accuracy of the methods in computing a solution to a CJ detonation wave.

The example considers a standard simplified form of the reacting mixture, in which a species may be of two

states, unburnt and burnt. The unburnt gas is converted to burnt gas by a one-step irreversible chemical

reaction; thus, M ¼ 1 and the subscript i for the chemical species is omitted. The Arrhenius kinetics in (4) is

replaced by the Heaviside kinetics

gðT ; ZÞ ¼ BZ; T P To;
0; T < To:

�
ð52Þ

Because diffusion is assumed negligible in this system, the diffusion coefficients in model Eqs. (1)–(4) are

set to 0. The initial conditions consist of totally burnt gas (Z ¼ 0) on the left-hand side (�0:56 x < 0) and

totally unburnt gas (Z ¼ 1) on the right-hand side (06 x6 0:5). The density, velocity, and pressure of the
burnt gas are given by q ¼ 1:4, u ¼ 0, and p ¼ 1; and the corresponding initial values of the unburnt gas are

given by q ¼ 0:887565, u ¼ �0:577350, and p ¼ 0:191709. These states are connected by a CJ detonation
2
wave moving with speed 1. The reaction rate is B ¼ 10 , ignition temperature To ¼ 0:22, and heat release
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constant q0 ¼ 1. If the reaction zone is not resolved by a sufficiently refined spatial grid, the present

methods may not generate a correct approximation of the detonation wave. In particular, with the pa-

rameters specified above, because the ignition temperature is only slightly higher than the temperature of
the unburnt gas (T ¼ 0:2160), if the reaction zone is not sufficiently resolved, the temperature may not be

calculated with sufficiently high accuracy, which may result in incorrect burning rate and wave propagation

speed.

Eqs. (1)–(4) are integrated by means of a third-order conservative MISDC method with NA ¼ 2 and

NR ¼ 1. The reaction process is integrated analytically as done in [7,13,19]. A spatial grid of 256 cells is

used. Fig. 4 shows the pressure p of the detonation wave and the normalized fuel concentration Z at t ¼ 2.

These results show that the conservative MISDC methods correctly capture the propagation of this det-

onation wave.
The parameters and results for the above simulation are similar to those reported in [13]. The reaction

could be made much stiffer by choosing higher reaction rates such as BP 103. Then unless spatial resolution

is refined accordingly, the method produces a non-physical solution, a discontinuity that propagates with a

speed of one mesh cell per time step. This phenomenon was first reported by Colella et al. [7]. In order to

avoid this problem, one could use adaptive mesh refinement or specialized front tracking schemes (e.g.,

[14,19]). These approaches will be pursued in the context of conservative MISDC methods in future studies.

4.3. Compressible Navier–Stokes equations for a multi-species reacting mixture

The third example considers a reacting model with three species (M ¼ 3) in a viscous medium. This is the

only example considered in this study that involves multiple species undergoing advection, diffusion, and

reaction. This example is used (i) to show the accuracy of the methods in capturing sharp gradients using a

coarse grid, (ii) to demonstrate temporal convergence of the methods, and (iii) to show that the high-order

methods are more efficient than a second-order operator-splitting method.

The parameters for this system are To ¼ 2, B ¼ 106, a ¼ 0, q1 ¼ 100, q2 ¼ 0, q3 ¼ 0, w1 ¼ 2, w2 ¼ 32,

w3 ¼ 18, mr1 ¼ 2, mr2 ¼ 1, mr3 ¼ 0, mp1 ¼ 0, mp2 ¼ 0, mp3 ¼ 2, and l ¼ k ¼ D ¼ 2� 10�4. The initial data is

w ¼ w1 þ w2 1
�

� tanh
x� ��

; ð53Þ

0:005

 

 

Fig. 4. Numerical results for example 2: (a) pressure; (b) normalized fuel concentration.
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where w ¼ q; u; p; Z1; Z2; ðq1; q2Þ ¼ ð1; 0:5Þ, ðu1; u2Þ ¼ ð0; 4Þ, ðp1; p2Þ ¼ ð1; 9:5Þ, ðZ11; Z12Þ ¼ ð0; 1=18Þ, and

ðZ21; Z22Þ ¼ ð0; 4=9Þ; Z3 ¼ 1� Z1 � Z2. These parameters were chosen to facilitate a direct comparison with

one of the test cases in [3].
Eqs. (1)–(4) are integrated by means of a third-order conservative MISDC method with NA ¼ 2, ND ¼ 1,

and NR ¼ 20. Fig. 5 shows the solutions at t ¼ 0:05. A numerical solution computed using 100 cells (dis-

played with crosses) is compared to the reference solution computed using 800 cells (displayed with solid

lines). Even with a coarse spatial grid of 100 cells, the solutions have sharp gradients. The time step is taken

to be Dt ¼ 0:1Dx, which corresponds to a CFL number of �1. These results show that even at low spatial

resolution, the conservative MISDC method correctly captures the propagation of the waves.

The next set of tests focus on the convergence behavior of the conservative MISDC methods using the

same set of parameters as described above. A spatial grid of 800 cells is used. With this more refined spatial
grid, the fronts are resolved. Because limiters affect the accuracy of a solution, they are not applied. Eqs.

(1)–(4) are integrated by means of conservative MISDC methods with NA þ 1 ¼ K, ND ¼ 1, and NR ¼ 20,

for K ¼ 3; 4, and 5, i.e., methods with orders 3, 4, and 5. Fig. 6 shows L1 errors of the density (q) at t ¼ 0:05
using time step Dt ¼ Dx=2rþ3, for r ¼ 0; 1; 2; 3. Because no analytic solution is known for the system, the
numerical solution computed using the fifth-order conservative MISDC method with r ¼ 4 is used as the
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Fig. 5. Numerical results for example 3: (a) density; (b) pressure; (c) velocity; (d) reactant mass fractions. Crosses and solid lines are

solutions computed using 100 and 400 cells, respectively.
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Fig. 6. Log–log plot of L1 error versus 2r, where Dt ¼ 2rDx for conservative MISDC methods with orders 3, 4, and 5.
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reference solution in computing the errors. In all cases, the approximations converge at the expected rate K:
magnitudes of the least-square slopes for the curves in Fig. 6 are found to be 2.9884, 3.7598, and 4.8451, for
K ¼ 3, 4, and 5, respectively. Similar convergence results were also obtained for other variables.

4.4. Efficiency comparison with a second-order operator-splitting method

The previous example is also used to compare the efficiency of the third- and fourth-order conservative

MISDC methods to a conservative, second-order operator-splitting method (hereafter ‘‘second-order OS

method’’), which may be considered a typical approach for solving gas dynamics problems. The second-

order OS method is similar to the fractional step method described in [7], except that a fourth-order method
is used to compute conservative cell-edge fluxes (thus, the method, like the conservative MISDC methods, is

fourth-order in space) and that a smaller time step is used for the reaction process. (The same time step is

used for all processes in [7].) Let LDt
A , L

Dt
D , and LDt

R be the integration operators that advance the advection,

diffusion, and reaction processes, respectively, by Dt. Then, using the Strang splitting approach the second-

order OS method advances the solution U from tn to tnþ1 by

Unþ1 ¼ L
Dt
2

AL
Dt
2

DL
Dt
20

R � � � L
Dt
20

RL
Dt
2

DL
Dt
2

AU
n:

The reaction integration operator L
Dt
20

R is applied 20 times.

Fig. 7 shows a log–log plot of L1 error of q versus computation times, measured in seconds, for the

second-order OS method, and for the third- and fourth-order conservative MISDC methods. These results

were obtained using a spatial grid of 800 cells and time step Dt ¼ Dx=2rþ3, for r ¼ 0; 1; 2; 3. The errors were
measured at t ¼ 0:05 using the fifth-order conservative MISDC method with r ¼ 4 as the reference solution.

These results indicate that, for all temporal resolutions considered, the third- and fourth-order conservative

MISDC methods are more efficient than the second-order OS method, and that, for this problem, the

fourth-order method is more efficient than the third-order method if an accuracy of 6 10�6 is desired.

However, compared to the second-order OS method, the conservative MISDC methods may have higher
memory cost. At each fractional time step, the second-order OS method requires function values at the
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Fig. 7. Log–log plot of L1 error versus computation times, measured in seconds, for a second-order OS method, and the third- and

fourth-order conservative MISDC method.
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previous fractional time step; thus, the method has a memory cost of OðNÞ, where N is the number of

spatial subintervals. The correction steps of a conservative MISDC method require function values at each

substep of the previous iteration, which gives a memory cost of OðN � ðNAð1þ NDð1þ NRÞÞÞÞ. Which

method is more desirable, given their memory costs and computational efficiency, depends on the appli-
cation and on available resources.
5. Discussion

In this paper, conservative MISDC methods for the temporal integration of reacting gas dynamics,

which involve processes with multiple time scales, have been presented. When applied to such models,

conservative MISDC methods integrate the advection term explicitly, and the diffusion and reaction terms

implicitly, independently, and possibly with different time steps. Unlike the original MISDC methods [4],
the advection and diffusion processes are integrated in flux difference form to insure correct propagation of

shocks or sharp gradients. Unlike standard operator-splitting methods, MISDC methods can easily be

constructed to generate numerical solutions with arbitrarily high-order of temporal accuracy. This is

achieved by simultaneously reducing integration and splitting errors in the deferred correction iterations.

When the third-order conservative MISDC method is applied to the Euler equations in Section 4.1, the

maximum advection time step Dtm allowed by stability is the same as the maximum time step allowed by the

Godunov method [11] or PPM [8]. Because three SDC iterations are required for the third-order conser-

vative MISDC method, the ratio of Dtm to the number of Riemann solves is Dtm=3. (In general, the ratio is
Dtm=K for a Kth-order MISDC method.) This ratio can be used as an efficiency measure. Compared to a

ratio of 1 for the Godunov method or PPM, one may conclude that the conservative MISDC methods offer

little advantage in this problem. Indeed, the methods offer the most possible benefit for applications with

stiff reactions (e.g., the reactive Navier–Stokes equations in Section 4.3) and these methods are not intended

for a non-stiff and non-split problem such as the Euler equations. Nevertheless, this example illustrates that
the methods are as effective as many popular methods in capturing shock propagations.
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The target applications for the conservative MISDC methods are those in which the reaction operator is

much stiffer than the advection and diffusion operators and in which solving the decoupled diffusion and

reaction problems is much simpler than solving the coupled diffusion–reaction equation. In particular, the
reactions in some applications are computed using chemistry packages, the black-box nature of which

renders solving coupled diffusion–reaction equations difficult. With a decoupling of the diffusion and re-

action terms, the conservative MISDC methods provide a solution for incorporating such black-box solvers

into a highly accurate time integration scheme.

In the examples considered in this study, diffusion is assumed to be either negligible or small. Thus, the

advection and diffusion time steps are chosen to be equal. However, conservative MISDC methods can also

be applied to problems with diffusion that is stiffer than advection (e.g., low Mach number reacting flows

[17]). When applied to these applications, the diffusion time step should be smaller than the advection time
step. Such problems have been studied in [4] for the original MISDC methods.

In the current implementation, limiter locations are computed during the computation of the provisional

solution; then, to ensure convergence, limiters are applied only at those locations during the SDC iterations.

Because a first-order method is used in the computation of the provisional solutions, the resulting limiter

locations may be inaccurate. Alternatively, one may recompute the limiter locations at the final SDC it-

eration, which should yield a more accurate solution, and repeat the time step using those locations.

However, because the solution at that final SDC iteration was obtained using limiter locations that (pos-

sibly) contain large errors, the limiter locations recomputed from this solution may also contain large er-
rors. Another alternative is to iterate the above process (i.e., the time step is repeated until the limiter

locations recomputed from the final SDC correction step is the same as those in the previous iteration of the

time step); however, convergence (or convergence to correct limiter locations) of such iterations is not

guaranteed. While the current implementation has been shown to preserve sharp gradients in solutions, the

development of a more rigorous approach to determining limiter locations is certainly a worthwhile
challenge.
Appendix A

Two issues involved in the solution of (45)–(49) deserve special attention. First, The kinetic component

of the total energy, ð �q u2
2 A

Þkþ1

pþ1, which is needed in (47), is not given explicitly as an intermediate solution by

(36)–(39). Second, the target conserved quantities in (46)–(49) are �quD,
�q u2
2 D

, �qTD, and �qZiD, respectively,

whereas the diffusive fluxes are functions of uD, TD, and ZiD only and are independent of q. Thus, standard
solvers for equations of the form f � qfxx ¼ g cannot be applied to (46)–(49).

A solution to the first problem is as follows. The kinetic energy ð �q u2
2 A

Þkþ1

pþ1 is computed from the density

ð�qAÞ
kþ1

pþ1 and momentum ð �quAÞ
kþ1

pþ1, which are given by (36) and (37), respectively. The temperature

term ð �qTAÞ
kþ1

pþ1, which appears on the right side of (48), is computed from ð �qEAÞ
kþ1

pþ1, ð
�q u2
2 A

Þkþ1

pþ1, and ð�qZiAÞkþ1

pþ1

using (6).

A solution to the second problem is now described. First, note that because the density Eq. (1) has

neither diffusion nor reaction term, ð�qÞkþ1

pþ1 ¼ ð�qDÞ
kþ1

pþ1; thus, (45) is superfluous and ð�qDÞ
kþ1

pþ1 is a known

quantity. The procedures for approximating the solution of (46) are as follows. As noted previously, be-

cause the diffusion term is not a scalar multiple of the second-derivative of the target quantity �quD, standard
solvers cannot be used. Thus, to approximate a solution to (46), one solves

ð �quDÞ
kþ1

pþ1 �
Dtp
Dx

l Lþ
D ð �quDÞ

kþ1

pþ1; ð�qDÞ
kþ1

pþ1

� ��
� L�

D ð �quDÞ
kþ1

pþ1; ð�qDÞ
kþ1

pþ1

� ��
¼ ð �quAÞ

kþ1

pþ1; ð54Þ

where Lþ
D and L�

D are linear operators that approximate ðuDÞkþ1

x p þ 1 at fxjgNj¼1 and fxjgN�1

j¼0 , respectively,

using ð �qu Þkþ1
and ð�qÞkþ1

. This is done by first computing cell-edge values of qu and q, dividing to obtain
D pþ1 pþ1 D
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ukþ1
Dpþ1

at cell edges, then approximating ðuDÞkþ1

xpþ1
at cell edges using centered difference. The solution of (47)–
(49) is similar to that of (46).
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