
A three-
dimensional
approach
to parallel matrix
multiplication

by R. C. Agarwal
S. M. Bale
F. G. Gustavson
M. Joshi
P. Palkar

Communication

A three-dimensional (3D) matrix multiplication
algorithm for massively parallel processing
systems is presented. The P processors are
configured as a "virtual" processing cube with
dimensions pl, p2, and p3 proportional to the
matrices' dimensions-M, N, and K. Each
processor performs a single local matrix
multiplication of size Mlp, x Nlp, x Wp,.
Before the local computation can be carried
out, each subcube must receive a single
submatrix of A and B. After the single matrix
multiplication has completed, U/p3 submatrices
of this product must be sent to their respective
destination processors and then summed
together with the resulting matrix C. The 3D
parallel matrix multiplication approach has a
factor of P1" less communication than the 20
parallel algorithms. This algorithm has been
implemented on IBM POWERparallelTM SP2"
systems (up to 216 nodes) and has yielded
close to the peak performance of the machine.
The algorithm has been combined with
Winograd's variant of Strassen's algorithm to
achieve performance which exceeds the
theoretical peak of the system. (we assume
the MFLOPS rate of matrix multiplication to be
2 MNK.)

1. Introduction
A parallel high-performance matrix multiplication
P-GEM" algorithm based on a three-dimensional
approach is presented. For the parallel case, the algorithm
is a natural generalization of the serial -GEMM routine.
"GEMM computes C = PC + mp(A)op(B) where a, /? are
scalars, A, B, and C are matrices, and op(X) stands for X,
XT, or Xc. (Superior T indicates transpose, and superior C
conjugate transpose.) The algorithm described has been
implemented in both the double-precision and complex
double-precision IEEE format, as well as for all
combinations of matrix products involving matrices in their
normal form, their transposed form, and their conjugates.
For all of these data combinations, performance was the
same.

Most parallel matrix multiplication algorithms used as
building blocks in scientific applications are 2D algorithms.
The primary issue is that the 3D algorithm moves a factor
of Pli6 less data than the known 2D algorithms. From this
standpoint, the 3D algorithms appear to be a better choice
than 2D algorithms. We show, in Section 3, that the 3D
algorithm yields better performance than the 2D
ScaLAPACK PDGEMM algorithm [2].

The literature describing matrix multiplication algorithms
is very extensive. Some descriptions are given by Demmel,

and complex double (Z) precision.
The - symbol stands for S , D, C, and Z [l, 21; i.e., ?ingle, double, complex single,

-

Topyright 1995 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

portion of this paper must be obtained from the Editor.

001&8646/95/$3.00 0 1995 IBM

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995 R. C. AGARWAL ET AL.

Heath, and van der Vorst [3], by Choi, Dongarra, and
Walker [4], by Huss-Lederman, Jacobson, and Tsao [5],
by Agarwal, Gustavson, and Zubair [6] , and by van de
Geijn and Watts [7]. Aggarwal, Chandra, and Snir [8] show
that a 3D-type algorithm is optimal for an LPRAM.
Johnsson and Ho [9] and Ho, Johnsson, and Edelman [lo]
discuss 3D and other types of algorithms for Boolean
cubes and hypercubes. Gupta and Kumar [l l] discuss
the scalability of many parallel matrix multiplication
algorithms, including 2D as well as 3D versions. Like other
authors, they demonstrate that the communication ratio
of 3D over 2D is Pli6. For distributed memory message-
passing computers, our algorithm has the least amount of
communication of all the 3D algorithms cited. It reduces
the amount of communication required by the other
3D algorithms by a factor of 513 [ll]. Lemmerling,
Vanhamme, and HoZ describe several lD, 2D, and
some new 3D parallel algorithms. To the best of our
knowledge, prior work has not addressed the problem of
minimizing communication for matrices of arbitrary shape.
In this paper, we provide a solution which minimizes
communication for such matrices.

manner with the 0 (n2.’l) matrix multiplication scheme
developed by Strassen, thereby allowing it to take full
advantage of the latter’s high efficiency [l]. It is also
possible to use Strassen’s algorithm on the global matrices
down to a level where the matrices fit into the local
memory of the node, as described by Agarwal et
Bailey [12], Grayson, Shah, and van de Geijn [13], Balle
[14, Section 21 and Douglas et al. [15] describe 2D
implementations of Strassen’s method.

In Section 2, we outline the 3D algorithm and its
Strassen variation. Section 3 also demonstrates that the
3D approach yields very high performance on the IBM
POWERparallelTM SP2TM system. Section 4 presents
concluding remarks.

Our 3D algorithm can be combined in a straightforward

2. A 30 parallel P-GEMM algorithm
A matrix multiplication of size (M, N, K) requires MNK
multiply-adds. This can be represented by a rectangular
parallelepiped of size (M, N, K) in the computing space.
To achieve computational load balance using P = p1p2p3
processors, each processor must compute 11Pth of this
computational rectangular parallelepiped. Thus, the volume
of the computational space assigned to each processor is
fixed at MNKIP. This guarantees computational load
balance if each such processor performs an identical

Algorithms Using Message Passing Interface (MPI),” IBM Almaden Research
2 P. Lemmerling, L. Vanhamme, and C.-T. Ho, “On Matrix Multiplication

Laboratory, San Jose, CA, 1995, unpublished note.

Dimensional Approach to Parallel Matrix Multiplication,” Technical Report, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY, 1995; in preparation.

R. C. Agarwal, S. M. Balle, F. G. Gustavson, and M. Joshi, “A Three-

576

computation of size MNKIP. In addition, to minimize
communication, each processor must do this much
computation with a minimum amount of data movement
(communication). Assuming that each processor does a
subcube (of size rn = II = k) of the Computation, the
three faces of the subcube (corresponding to equal square
submatrices of A, B, and C) represent a data movement of
size 3Prn2, since these submatrices must be broughtlsent
to these P subcubes in order to perform the P DGEMM
computations. We note that data movement of r n 2 numbers
is proportional to the area of a square of size rn. Hence,
our problem of minimal data communication can be viewed
as the classical problem of minimizing surface area for a
given volume. The optimal solution of this problem is that
each of the P rectangular parallelepipeds must be a subcube
of identical sides. This fact establishes a lower bound on
the amount of communication necessary to perform this
parallel multiplication; namely, 3Prn2. Assuming a three-
dimensional processing grid of size (pl, p2, p3), the
subparallelepiped computed at each processor is of size
(Mlpl, NIP2, KIP,). To minimize communication, the
following relationship must be true: Mlp, = rn =
NIP, = n = KIP, = k . Finally, we note that when this
relationship holds, the algorithm presented in this paper
achieves this lower bound; i.e., the total amount of data
moved for A, B, and C is P m 2 .

For simplicity, we consider a 2 X 2 X 2 processing
cube. (This example is consistent with a description of the
general case; i.e., no information that would be given by
such a description is altered or omitted.) The underlying
idea can be described in terms of block matrices for a
single 2 X 2 block partitioning of the matrices A, B, and C.
Let

(1)
where A is an M by K matrix, B is a K by N matrix, and
C is an M b y N matrix. If we let p = 0.0 and a = 1.0, we
get C = AB; Le.,

(2)

Now the block matrices A, and B,j both have the same
order. Thus, all P = 2, products A,B, consist of an
identical computation:

Processor (i, j , I) computesAi,B4, 0 5 i, j , 1 < 2. (3)

For large K, almost all of the computation cost in
Equation (2) is consumed by the P products in Equation
(3). This is the so-called volume-to-surface effect of matrix
multiplication; for M = N = K we have that matrix
multiplication performs 2N3 FLOPS and matrix addition
performs N2 FLOPS. The computations in Equation (3)

R. C. AGARWAL ET AL. IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995

are perfectly load-balanced. It follows that most of the
computation in Equation (2) is done at 100% efficiency.
The essence of the underlying idea is implicit in Equations
(2) and (3): Form the matrices A , and B, from the input
data and place them on processor (i, j, I). ComputeA,B,
in parallel, thereby getting 100% efficiency most of the
time the algorithm is computing. Finally, perform the
matrix additions of Equation (2).

The communication part of the algorithm is done by
simultaneously making calls to the MPI collective
communication primitives all-gather and all-to-all [16, 171.
For the performance studies presented in Section 3, we
used the equivalent MPL (Message Passing Library)
primitives mp-concat and mp-index, respectively [18].
In the following, we define P to be the total number
of processors, andp,, p,, andp, to be the number of
processors in the d l , d , , and d , directions, respectively-
thereby having P = p1p2p3. The indices i, j, and 1 are
used to identify the processors in the d l , d , , and d ,
directions, respectively: 0 I i < p,, 0 I j < p,, and

To describe the 3D matrix multiplication algorithm,
0 I 1 < p,.

we define the following variables: (m, n , k) =

(Mlp,, Nlp,, KIP,), k, = kip,, n , = nlp,, and
n3 = nlp,. We use the colon notation [19] to describe
submatrices of the global matrices A, B, and C. Thus,
A = A (: , :) = A(0 : M - 1, 0 : K - 1). The indices
(i , j, I) are also used as subscripts to identify submatrices
of A, B, and C. We define

A , = A(im : im + m - 1, lk : lk + k - l) , (4)

B , = B (l k : l k + k - l , j n : j n + n - l) , (5)

Cq = C(im : im + m - 1, jn : jn + n - l) , (6)

with 0 5 i < p,, 0 5 j < p,, and 0 5 1 < p,.
We choose to have the matrix A associated with the

d l - d , plane, with d , being the orthogonal dimension, as
illustrated in Figure 1. The matrix B is similarly laid out in
the d,-d, plane, having d l as its orthogonal dimension.
The d l - d , plane holds the output matrix C, thereby
making d, its orthogonal dimension. We must define
certain submatrices of the submatrices A,, B,, and C,.
We consider the submatrix A , and partition its k columns
intop, sets, each of size k,, of contiguous columns. We
use the notation A , (j), 0 I j < p,, to denote the
submatrix of A , that consists of the j th set of contiguous
columns ofA,. Similarly, we need BIj(i), 0 5 i < p,, and
Cij(l), 0 I 1 < p,. This is a 3D block distribution, where
the (rows, columns) of A are distributed on a (p,, p2p3)
grid (Figure 1) and similarly for the other matrices B and
C. In particular, all matrices are equidistributed. These
submatrices of submatrices are easily defined in terms of
the colon notation:

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995

m;
dl i dl

~~~~~~~~~, 
1" " ~.~~~~~~~ 

1 Layout e-dimensional processor 
t grid of dimension ( p ,  = 2, p ,  = 2, p ,  = 2) after Step 2 of the 
j algorithm. The boldface  numbers 0-7 indicate the processor labels. 

Group (10) Group (01) Group (11) 

A,(j) = A,( :, jk, : jk, + k, - l ) ,  

B4(i) = BJ:, in, : in, + n, - l) ,  

and 

C,(l) = Cq(:, In, : In, + n3 - 1). 

Let G, be  the group of processors j on which the 
matricesA,(j) reside, 0 I j < pz (Figure 2). Gj, and G, 
are similarly defined for the  group of processors associated 

R. C .  AGARWAL ET AL. 



! Layout of D on a three-dimensional processor grid of dimension 
( p ,  = 2, p ,  = 2, p ,  = 2). The boldface  numbers 0-7 indicate the 1 processor labels. 

1 Generic picture of the matrices D'..(r) associated  with  the  processor 1 group G, consisting of the four matrices D)O: 1) and Di(0:  1). The 
all-to-all gather of Step 5 places D;(O) and D!.(O) on processor 
( i , j ,  0) and Di(1) and Di(1) on processor ( i ,  j ,  1). i 

~ 578 
* 

I R. C. AGARWAL ET AL. 

with B, and C,. The 3D algorithm features a single matrix 
multiplication, A,B,, on every processor ( i ,  j ,  1 ). We 
define an auxiliary m by n matrix Dl;. to denote this 
product (Figure 3): 

Dh = AiIB,. (10) 

Like thep, submatrices Cij ( l )  of C,, we need to define 
p3 submatrices of Dl; (Figure 4), each consisting of a 
contiguous block of n3 columns of Dl;: 

D$r) = (A&)(:, rn, : rn, + n3 - l), (11) 

where 0 I r < p,. 
We are now  in position to define the algorithm. The 

input matrices that reside on processor ( i ,  j, I )  are the 
matrices A, ( j ) ,  B y ( i ) ,  and C,( l )  given by Equations (7), 
(8), and (9), respectively. 

A lgorithm 1: 3 0  parallel P-GEMM algorithm 

1. i. Definep,p, groups of processes Gn (0 I i < p1 
and 0 I 1 < p,) [16], each of sizep,,  to handle 
the communication involving the global matrix A 
(Figure 2). 

ii. Definep,~,  groups of processes G,j (0 I j < p, 
and 0 5 1 < p,), each of sizep,,  to handle the 
communication involving the global matrix B. 

iii. Def inep ,~ ,  groups of processes G,  (0 I i < p1 
and 0 I j < p , ) ,  each of sizep,,  to handle the 
communication involving the global matrix C. 

2. Simultaneously, for every group Gil defined in Step l.i, 
using the input matricesA,(j), (0 5 j < pJ, perform 
an all-gather [16, Section 4.51. Each process ( i ,  j, I )  of 
Gil receives the same submatrix A ,  [Equation (4)]. 

3. Similarly, simultaneously, for every group G, defined  in 
Step l.ii, using the input matrices Blj(i), (0 I i < pl), 
perform an all-gather [16, Section 4.51. Each process 
( i ,  j ,  1 )  of G,j receives the same submatrix of B, 
[Equation (5)]. 

D,; = A,,Bij on  all P processes, as described by 
Equation (10). 

5. Simultaneously, for every group G, defined  in Step l.iii, 
using the input matrices DIi(r) [Equation (ll)], perform 
an all-to-all [16, Section 4-81. Each process ( i ,  j, I )  of 
GI, (0 I l < p , )  receivesp, submatrices: 

Di(1) = (A$,$(:, In, : In, + n, - 1). (12) 

4. Perform a single local matrix-matrix product 

6.  On every process, compute 

P3- 1 

C,(l) = PC,(l) + a 2 D p ) .  
r=O 

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995 



Combining Strassen’s algorithm with the 3 0  P-GEMM 
algorithm 
A straightforward variation of the 3D algorithm allows the 
use of an O(n2.81)  matrix  multiplication  algorithm  devised  by 
Strassen [20].  Our approach  is to use the Winograd variant of 
Strassen’s  algorithm to perform the local  computation  instead 
of  using  -GEMM. In Step 4, we replace the single  call to 
-GEMM  with a call to -GEMMS [l]. 

3. Performance  results 
Performance results for the parallel 3D matrix 
multiplication are presented. These experiments were 
carried out on IBM POWERparallel SP2 systems [21,  221. 
MPL message-passing subroutines are used as 
communication primitives [18]. 

Figures 5 and 6 show performance for the 3D parallel 
matrix multiplication of the matrix C = C + AB for 
PDGEMM  and  PZGEMM on SP2 Thin2 nodes. All timings 
were recorded using the wall clock and hence include the 
cost of communication and computation. For each 
experiment we report either the wall clock time or the 
“nominal MFLOP rate” per processor, or both. Figures 5 
and 6 illustrate that even for relatively small matrices 
and/or a large  number of processors, this approach yields 
very high performance. 

Table 1 shows representative MFLOPS rates per 
processor for the cases C = C + AB, C = C + ATB,  
C = C + ABT, and C = C + ATBT for real matrices. 
Similar results were obtained for other matrix sizes and 
different numbers of processors. 

Winograd variant of the Strassen algorithm are “nominal 
rates computed by dividing 2n3 (the number of operations 
that would be executed by the conventional algorithm) by 
the actual compute time.  This permits us to illustrate the 
improvements achieved by using Strassen’s algorithm. In 
the complex case, there is  an additional advantage, since it 
is possible to multiply two complex matrices together using 
three real matrix multiplications and five real matrix 
additions instead of four real matrix multiplications and 
two real matrix additions [l]. 

algorithm, as implemented in PESSL [2], with the 3D 
algorithm for P = 32 processors. The PESSL numbers 
are preliminary numbers. Unfortunately we were not 
able to obtain a full set of performance numbers for all 
configurations for a large  number of processors. The 3D 
algorithm shows relatively better performance for small 
matrices and more uniform performance for different 
values of the TRANS (type) parameter. 

The MFLOPS rates presented in Table 2 for the 

In Table 3, we compare the 2D ScaLAPACK PDGEMM 

4. Conclusion 
We have shown that our 3D approach to parallel 
matrix multiplication yields very high performance on 

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995 

300 
C = C + A B  

Theoretical  peak  performance  per  node 

250 1 
-8 x 

200 - 

B 
v1 150 

- 

100 - 

50 - 

; /  
o *  

+ 
Y 

x 

X 

51, 
X 

- 8-node SF? system 
- 16-node 
o 27-node 
+ 64-node 
* 128-node 
x 216-node 

Matrix  dimension n 

Performance results for the 3D parallel double-precision PDGEMM 
when using DGEMM [l] for the local call. The global input 

j matrices are square. 

I 
Theoreticai  peak  performance  per  node 

- 

* 
- * 0 

+ 
x 

x 

* o  

- x +  

0 

+ 

* 
0 
% x 

0 

+ 216-node SP2 system 
o 125-node 
x 64-node 
* 27-node 

50 I I I I I I 

0 1000  2000 3000 4000  5000 
Matrix  dimension n 

Performance results for  the 3D parallel double-precision complex 
1 PZGEMM when using ZGEMM [l] for the local call. The global 
4 input matrices are square. 

R. C. AGARWAL ET AL. 



Table 1 MFLOPS rate per  processor for the  four  cases  for the double-precision IEEE format. 

n Number of C = C + A B  c =  c + A T B  C = C + A B ~  c = c + ATBT 
nodes 

1000 8 196  197  193  194 
1000  16  186  186  184  185 
5000  128 244  244  242  242 

Table 2 Performance  results  for  the 3D matrix  multiplication  algorithm  when  using  DGEMMS [l] for  the local call. The 
matrices to be multiplied are square of dimension 5000. 

Number 
of SP2 

Double precision * Double-precision complex* 

nodes 
.I ~~~ 

MFLOPS Total 
per node MFLOPS 

MFLOPS 
per node MFLOPS 

Total 

27  272 
64  271 

125 243 
216  223 

7337 
17344 
30320 
48907 

304 
369 
329 
361 

8198 
23616 
41094 
77976 

‘IEEE format. 

Table 3 Performance  results  for the 3D matrix  multiplication  algorithm  and  the  PESSL  PDGEMM [2] on a 32-Thin2-node 
SP2 system. 

Sue Configuration Type Time MFLOPS per node PESSLI3D 

PESSL 3 0  PESSL 3 0  PESSL 
ratio 

3 0  

500 
500 
500 
500 

1000 
1000 
1000 
1000 
2000 
2000 
2000 
2000 

2192  (68) 
1768  (55) 
1837  (57) 
846  (26) 

3330  (104) 
2934  (92) 
2920  (91) 
1860  (58) 
4746  (148) 
4183  (131) 
4354  (136) 
2983  (93) 

4122  (129) 
4088  (128) 
3994  (125) 
3997  (125) 
5460  (171) 
5499  (172) 
5417  (169) 
5417  (169) 
6550  (205) 
6511  (203) 
6470  (202) 
6473  (202) 

1.89 
2.33 
2.19 
4.81 
1.64 
1.87 
1.86 
2.91 
1.39 
1.55 
1.49 
2.17 

massively parallel processing systems such as the IBM 
POWERparallel SP2 system. Our algorithm  is perfectly 
load-balanced for both communication and computation. 
We have introduced a new scheme for partitioning 
matrices across processors on distributed memory 
computers that allows multiple use of the MPI collective 
communication primitives all-gather and all-to-all. 
Additionally, this choice of data distribution reduces the 
amount of communication from that required by the other 
3D algorithms by a factor of  5I3. Our 3D algorithm not 
only results in less communication but also produces better 
node performance, as the submatrices multiplied at each 
node are larger and have a better aspect ratio. This is 

580 evidenced by the fact that most 2D algorithms perform P”’ 

R. C. AGARWAL ET AL. 

local matrix multiplications of size NIP”, while our 3D 
algorithm performs only one local matrix multiplication of 
size NIP’”. Our performance results for small matrices 
also emphasize this result. Another important result is that 
the Winograd variant of Strassen’s algorithm can be 
incorporated in this algorithm in a straightforward manner 
to yield extremely high performance. 

The amount of communication required to reshuffle the 
data from 2D to 3D is proportional to the sum of the sizes 
of the matrices A, B, and C. The 3D algorithm moves a 
factor PIi6 less data than the 2D algorithms, which  move a 
total amount of data equal to PIi2 times the sum of the 
sizes of the A and B matrices. This means that even when 
the extra communication cost of reshuffling  back and forth 

IBM J. RES. DEVELOP.  VOL. 39 NO. 5 SEPTEMBER 1995 



between 2D and  3D is added to the total communication 
cost of the 3D algorithm, it still has less total 
communication cost than the 2D algorithms. Further 
investigations are still needed with respect to the 
reshuffling of data between the two data distributions. We 
are interested in  2D block and block cyclic layouts as well 
as in only rearranging submatrices of the global matrices 
A, B, and C. 

processors presented in conjunction with the 3D matrix 
multiplication  algorithm  is applicable to most of the level-3 
B U S .  Gustavson has shown that 26  of the 30 level-3 
B U S  can be expressed in terms of this 3D distribution. 
This work is still ongoing research. 

Instead of applying Strassen’s algorithm at the local 
level, it can be used at the global level. This approach is of 
interest when the matrices to be multiplied are too big to 
fit into local memory. The variant of the 3D algorithm 
using the Strassen algorithm at a global  level is on our list 
of future work. 

The new scheme for partitioning matrices across 

Acknowledgments 
We thank V. Kumar from the University of Minnesota and 
M. Zubair for their initial ideas regarding the analysis of 
communication in the 3D algorithm.  We thank C.-T. Ho 
and M. Snir for discussions about their 3D algorithms and 
for information about the MPI and MPL communication 
routines. We thank A. Ho for discussions regarding the 
implementation of the MPI primitives on the IBM 
POWERparallel SP2 systems. 

POWERparallel and SP2 are trademarks of International 
Business Machines Corporation. 

References 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

ZBM Engineering  and  Scientific Subroutine Library, 
Guide and Reference, 1994, Order No. SC23-0526-01; 
available through IBM branch offices. 
ZBM Parallel Engineering  and Scientific Subroutine 
Library, Guide and Reference, April  1995, Order No. 
GC23-3837; available through IBM branch offices. 
J. W. Demmel, M.  T. Heath, and H. A. van der Vorst, 
“Parallel Numerical Linear Algebra,” Acta Numerica 
1993, Cambridge University Press, 1993,  pp. 111-197. 
J. Choi, J. J. Dongarra, and D.  W. Walker, “PUMMA: 
Parallel Universal Matrix Multiplication Algorithms 
on Distributed Memory Concurrent Computers,” 
Concurrency: Pract. & Exper. 6,543-570 (October 1994). 
S .  Huss-Lederman, E. M. Jacobson, and A. Tsao, 
“Comparison of Scalable Parallel Matrix Multiplication 
Libraries,” Proceedings of the Scalable Parallel Libraries 
Conference, IEEE Computer Society Press, 1994, pp. 
142-149. 
R.  C. Aganval, F. G.  Gustavson, and M. Zubair, “A 
High-Performance Matrix Multiplication Algorithm on a 
Distributed-Memory Parallel Computer, Using Overlapped 
Communication,” ZBM J. Res. Develop. 38, 673-681 
(1994). 
R. van  de Geijn and J. Watts, “SUMMA: Scalable 
Universal Matrix Multiplication Algorithm,” Technical 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Report TR 95-13, Department of Computer Science, 
University of Texas at Austin, 1995; submitted to 
Concurrency: Pract. & Exper. 
A. Aggarwal, A. K. Chandra, and M. Snir, 
“Communication Complexity of PRAMS,” Theor. 
Comput. Sci. 7, 3-71  (1990). 
S .  L. Johnsson and  C.-T. Ho, “Algorithms for Multiplying 
Matrices of Arbitrary Shapes Using Shared Memory 
Primitives on Boolean Cubes,” Technical Report TR-569, 
Yale University, New Haven, CT,  1987. 
C.-T. Ho, S .  L. Johnsson, and A. Edelman, “Matrix 
Multiplication on Hypercubes Using Full Band Bandwidth 
and Constant Storage,” Proceedings of the Sixth 
Distributed Memory Computing Conference, IEEE 
Computer Society Press, 1991, pp. 447-451. 
A. Gupta and V. Kumar, “Scalability of Parallel 
Algorithms for Matrix Multiplication,” Technical Report, 
Department of Computer Science, University of 
Minnesota, 1991; revised April  1994. 
D. H. Bailey, “Extra High Speed Matrix Multiplication on 
the Cray-2,” SL4MJ.  Sci. Stat. Comput. 9, 603-607 
(1988). 
B. Grayson, A. P. Shah, and R. van de Geijn, “A High 
Performance Parallel Strassen Implementation,” Technical 
Report TR 95-24, Department of Computer Science, 
University of Texas at Austin, 1995; submitted to Parallel 
h o c .  Lett. 
S .  M. Balle, “Distributed-Memory Matrix Computations,” 
Technical Report UNZC-95-02 (Ph.D. thesis), Danish 
Computing Center for Research and Education, Technical 
University of Denmark, Copenhagen, February 1995. 
C. C. Douglas, M. Heroux, G.  Slishman, and R.  M. 
Smith, “GEMMW: A Portable Level 3 BLAS Winograd 
Variant of Strassen’s Matrix-Matrix Multiply Algorithm,” 

” - 
J. Comput. Phys. 110, 1-10  (1994). 

Passing Interface Standard, University of Tennessee at 
Knoxville, May 2,  1995. 

17.  W. Gropp, E. Lusk, and A. Skjellum, Using MPZ: 
Portable Parallel Programming with the Message Passing 
Interface, MIT Press, Cambridge, MA,  1994. 

18. ZBMAZX Parallel Environment: Parallel Programming 
Subroutine Reference, 1994, Order No.  SH26-7228-02; 
available through IBM branch offices. 

19. G. H. Golub and C. F. Van Loan, Matrix Computations, 
2nd  ed., Johns Hopkins University Press, Baltimore, MD, 
1989. 

Numer. Math. 13, 354-356  (1969). 

(1995). 

Snir, “MPI Programming Environment for IBM SPl/SP2,” 
Technical Report RC-19991, IBM Thomas J. Watson 
Research Center, Yorktown Heights, N Y ,  March 1995. 

Received September 13,  1995; accepted for publication 
September 27, 1995 

16. Message-Passing Interface Forum, MPZ: A Message- 

20.  V. Strassen, “Gaussian Elimination Is Not Optimal,” 

21. “Scalable Parallel Computing,” ZBM Syst. J. 34, No. 2 

22. H. Franke, C. E.  Wu, M. Riviere, P. Pattnaik, and M. 

581 1 
I 

R. C. AGARWAL ET AL. I IBM J. RES. DEVELOP. \ ‘OL. 39 1 90. 5 SEPTEMBER 1995 



Ramesh c. Agarwal IBM Research Division, Thomas 
J. Watson  Research Center, P.O. Box 218, Yorktown 
Heights, New York 10598 (AGARWAL at Y m  
agarwal@watson. ibm. com). Dr.  Agarwal received a B.Tech. 
(Hons.) degree from the Indian Institute of Technology (IIT), 
Bombay. He  was the recipient of The President of India Gold 
Medal while there. He received M.S. and  Ph.D. degrees from 
Rice University and was awarded the Sigma Xi Award for best 
Ph.D. thesis in electrical engineering. He has been a member 
of the Mathematical Sciences Department at the IBM Thomas 
J. Watson Research Center since 1983. Dr. Agarwal has 
done research in many areas of engineering, science, and 
mathematics and has published over 60 papers in various 
journals. Currently, his primary research interest is in the area 
of algorithms and architecture for high-performance computing 
on workstations and scalable parallel machines. In 1974, Dr. 
Aganval received the Senior Award for best papers from the 
IEEE Acoustics, Speech, and Signal Processing (ASSP) group. 
He has received several Outstanding Achievement Awards and 
a Corporate Award from IBM.  Dr. Aganval is a Fellow of the 
IEEE and a member of the IBM Academy of Technology. 

Susanne  M. Balle IBM Research Division, Thomas 
J. Watson  Research Center, P.O. Box 218, Yorktown Heights, 
New York 10598 (susanne@watson. ibm. com). Dr. Balle 
received her Ph.D. degree in 1995 in computational 
mathematics from the Danish Computing Center for Research 
and Education and the Technical University of Denmark. She 
received an M.S.  in mechanical engineering and computational 
fluid dynamics from the Technical University of Denmark and 
a B.S.  in mechanical engineering from Odense Teknikum, 
Denmark. From 1992 to 1995 she consulted for the Connection 
Machine Scientific Software Library (CMSSL) group at 
Thinking Machines Corporation. During  fall 1993 and spring 
1994, she  was a visiting scholar at the Department of 
Mathematics at the University of California, Berkeley. 
Dr. Balle is currently on a one-year postdoctoral assignment 
in the Mathematical Sciences Department. Her primary 
research interests  are numerical linear algebra, numerical 
analysis, and parallel distributed-memory computation. 

Fred  G.  Gustavson ZBM Research Division, Thomas 
J. Watson Research Center, P.O. Box 218, Yorktown 
Heights, New York 10598 (GUSTAVat 
gustav@watson. ibm. com). Dr. Gustavson is manager of 
Algorithms and Architectures in the Mathematical Sciences 
Department at the IBM Thomas J. Watson Research Center. 
He received his B.S.  in physics, and his M.S. and Ph.D. 
degrees in applied mathematics, all from Rensselaer 
Polytechnic Institute. He joined IBM Research in 1963. One 
of his primary interests has been in developing theory and 
programming techniques for exploiting the sparseness inherent 
in large systems of linear equations. Dr. Gustavson has 
worked in the areas of nonlinear differential equations, linear 
algebra, symbolic computation, computer-aided design of 
networks, design and analysis of algorithms, and  programming 
applications. He and  his group are currently engaged  in 
activities that are aimed at exploiting the novel features of the 
IBM  family of RISC processors. These include hardware 
design for divide and square root, new algorithms for 
POWER2 for the Engineering and Scientific Subroutine 
Library (ESSL) and for other math kernels, and parallel 
algorithms for distributed memory processors. Dr. Gustavson 
has received an IBM Outstanding Contribution Award, an 
IBM Outstanding Innovation Award, an IBM Outstanding 
Invention Award, two IBM Outstanding Technical 
Achievement Awards, two IBM Corporate Technical 
Recognition Awards, and a Research Division Technical 

582 Group Award. 

R. C. AGARWAL ET AL. 

Mahesh  Joshi IBM Research Division, Thomas J. Watson 
Research Center, P.O. Box  218, Yorktown Heights, New York 
10598 (clmajo@watson. ibm. com). Mr. Joshi received his 
M. Tech. (Integ.) degree in electrical engineering from the 
Indian Institute of Technology, Bombay, in 1993. His research 
areas for master’s work  were intelligent control, fuzzy logic, 
and numerical algorithms. He visited the IBM Thomas J. 
Watson Research Center from December 1993 to December 
1995, on assignment from Tata Information Systems Ltd. 
During this visit he worked in the areas of performance 
optimization on POWERx architectures, parallel algorithm 
design  and implementation on IBM’s SPx machines, and 
technical support for software development. Mr. Joshi is 
one of the developers of the IBM Parallel Engineering and 
Scientific Subroutines Library (PESSL). He will commence 
working toward a Ph.D. degree in computer science at the 
University of Minnesota in December 1995. His research areas 
during the course of Ph.D. work will be broadly related to 
high-performance parallel computing. 

Prasad  Palkar Via International, Sun Mateo, California 
94402. Mr. Palkar graduated from the College of Engineering, 
Pune, India, in 1987 with a bachelor’s degree in electronics 
and communications. He received his master of technology 
degree in computer science and engineering from the Indian 
Institute of Technology, Bombay, in 1990. Mr. Palkar visited 
the IBM Thomas J. Watson Research Center in 1993 and  in 
1994-1995 while  he was an employee of Tata Information 
Systems Limited. He worked on the ESSL/6000 development 
team to develop the initial parallel matrix multiply code. His 
interests include performance optimization techniques, 
parallelizing compilers, and operating systems. Mr. Palkar 
currently works at Visa International, San Mateo, California. 

POWER2 is a  trademark of International Business Machines Corporation. 

IBM J. RES. DEVELOP. VOL. 39 NO. 5 SEPTEMBER 1995 


