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Abstract

An overview of model reduction methods and a comparison of the resulting algorithms is presented.
These approaches are divided into two broad categories, namely SVD based and moment matching
based methods. It turns out that the approximation error in the former case behaves better globally
in frequency while in the latter case the local behavior is better.

1 Introduction and problem statement

Direct numerical simulation of dynamical systems has been an extremely successful means for studying
complex physical phenomena. However, as more detail is included, the dimensionality of such simulations
may increase to unmanageable levels of storage and computational requirements. One approach to
overcoming this is through model reduction. The goal is to produce a low dimensional system that has
the same response characteristics as the original system with far less storage requirements and much
lower evaluation time. The resulting reduced model might be used to replace the original system as a
component in a larger simulation or it might be used to develop a low dimensional controller suitable for
real time applications.

The model reduction problem we are interested in can be stated as follows. Given is a linear dynamical
system in state space form:

S :

{

σx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1.1)

where σ is either the derivative operator σf(t) = d
dt

f(t), t ∈ R, or the shift σf(t) = f(t + 1), t ∈ Z,
depending on whether the system is continuous- or discrete-time. For simplicity we will use the notation:

S =

[

A B

C D

]

∈ R
(n+p)×(n+m) (1.2)

The problem consists in approximating S with:

Ŝ =

[

Â B̂

Ĉ D̂

]

∈ R
(k+p)×(k+m) (1.3)
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where k ≪ n such that the following properties are satisfied:

1. The approximation error is small, and there exists a global error bound.

2. System properties, like stability, passivity, are preserved.

3. The procedure is computationally stable and efficient.

There are two sets of methods which are currently in use, namely

(a) SVD based methods and

(b) moment matching based methods.

One commonly used approach is the so-called Balanced Model Reduction first introduced by Moore [19],
which belongs to the former category. In this method, the system is transformed to a basis where the states
which are difficult to reach are simultaneously difficult to observe. Then, the reduced model is obtained
simply by truncating the states which have this property. Two other closely related model reduction
techniques are Hankel Norm Approximation [20] and the Singular Perturbation Approximation [16],
[18]. When applied to stable systems, all of these three approaches are guaranteed to preserve stability
and provide bounds on the approximation error. Recently much research has been done to establish
connections between Krylov subspace projection methods used in numerical linear algebra and model
reduction [8], [10], [12], [13], [15], [24], [11]; consequently The implicit restarting algorithm [23] has been
applied to obtain stable reduced models [14].

Issues arising in the approximation of large systems are: storage, computational speed, and
accuracy. In general storage and computational speed are finite and problems are ill-conditioned. In
addition: we need global error bounds and preservation of stability/passivity. SVD based methods
have provide error bounds and preserve stability, but are computationally not efficient. On the other
hand, moment matching based methods can be implemented in a numerically efficient way, but do
not automatically preserve stability and have no global error bounds. To remedy this situation, the
Approximate Balancing method was introduced in [8]. It attempts to combine all requite properties by
iteratively computing a reduced order approximate balanced system.

The paper is organized as follows. After the problem definition, the first part is devoted to approxi-
mation methods which are related to the SVD. Subsequently, moment matching methods are reviewed.
The third part of the paper is devoted to a comparison of the resulting seven algorithms applied on six
dynamical systems of low to moderate complexity. We conclude with unifying features, and complexity
considerations.
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2 Approximation in the 2-norm: SVD-based methods

2.1 The singular value decomposition: static systems

Given a matrix A ∈ R
n×m, its Singular Value Decomposition (SVD) is defined as follows:

A = UΣV ∗, Σ = diag (σ1, · · · , σn) ∈ R
n×m,

where σ1(A) ≥ · · · ≥ σn(A) ≥ 0: are the singular values; recall that σ1(A) is the 2-induced norm of
A. Furthermore, the columns of the orthogonal matrices U = (u1 u2 · · · un), UU∗ = In, V =
(v1 v2 · · · vm), V V ∗ = Im, are the left, right singular vectors of A, respectively. Assuming that σr > 0,
σr+1 = 0, implies that the rank of A is r. Finally, the SVD induces a dyadic decomposition of A:

A = σ1u1v
∗
1 + σ2u2v

∗
2 + · · · σrurv

∗
r

Given A ∈ R
n×m with rankA = r ≤ n ≤ m, we seek to find X ∈ R

n×m with rankX = k < r, such that
the 2-norm of the error E := A−X is minimized.

Theorem 2.1 Schmidt-Mirsky: Optimal approximation in the 2 norm. Provided that σk > σk+1,
there holds: minrankX≤k ‖ A−X ‖2= σk+1(A) . A (non-unique) minimizer X∗ is obtained by truncating
the dyadic decomposition: X∗ = σ1u1v

∗
1 + σ2u2v

∗
2 + · · · σkukv

∗
k .

Next, we address the sub-optimal approximation in the 2 norm, namely: find all matrices X of rank
k satisfying

σk+1(A) <‖ A−X ‖2< ǫ < σk(A) (2.1)

First, we notice that there exist matrices Λi, i = 1, 2, such that In − ǫ−2AA∗ = Λ1Λ
∗
1 − Λ2Λ

∗
2, and

rank (Λ1) + rank (Λ2) = rank (A). These relationships imply the existence of a J-unitary matrix Θ, such
that: [In ǫ−1T ]Θ = [Λ2 Λ1], where

ΘJΘ∗ = J, J =

(

In 0
0 −In

)

, Θ =

(

Θ11 Θ12

Θ21 Θ22

)

∈ R
2n×2n

We now define: Ei ∈ R
n×n, i = 1, 2, ∆ ∈ R

n×n, as follows:

(

E1

E2

)

= Θ

(

∆
In

)

=

(

Θ11∆ + Θ12

Θ21∆ + Θ22

)

Theorem 2.2 Sub-optimal approximation in the 2 norm. X̂ is a sub-optimal approximant sat-
isfying (2.1) iff there exists a contraction ∆ such that: A − X̂ = E := E1E

−1
2 , where ‖ ∆ ‖2< 1, and

rank (Λ1 + Λ2∆) = k.

It should be noticed that for a particular choice of Λ1 and Λ2, the rank condition above can be converted
to the block triangularity of the contraction ∆.

Clown approximation. The above approximation method is applied to the clown image shown in
figure 2.1, which can be found in matlab. This is a 320 × 200 pixel image; each pixel has 64 levels of
gray. First, the 200 singular values of this 2-dimensional array are computed (see upper right-hand side
subplot of the figure); the singular values drop-off rapidly making a low-order approximation with small
error, possible. The optimal approximants for rank k = 1, 3, 10, 30 are shown. Notice that the storage
reduction of a rank k approximant is (n + m + 1) ∗ k compared to n ∗m for the original image.
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Exact image: k = 200

1

Approximation of CLOWN
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Figure 1: Approximation of clown image

Nonlinear systems Linear systems

POD methods Hankel-norm approximation
Balanced truncation
Singular perturbation
New method (Cross grammian)

Table 1: SVD based approximation methods

2.2 SVD methods applied to dynamical systems

There are different ways of applying the SVD to the approximation of dynamical systems. The table
below summarizes the different approaches.

Its application to non-linear systems is known under the name POD, that is: Proper Orthogonal De-
composition. Then in the linear case we can make use of additional structure. The result corresponding
to a generalization of the Schmidt-Mirsky theorem is known under the name of Hankel norm approxima-
tion. Closely related methods are approximation by balanced truncation and approximation by singular
perturbation. Finally, the new method proposed in section 3.4 is based on the SVD in a different way.

2.2.1 Proper Orthogonal Decomposition (POD) methods

Consider the nonlinear system described by ẋ(t) = f(x(t), u(t)); let

X = [x(t1) x(t2) · · · x(tN )] ∈ R
n×N
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be a collection of snapshots of the solution of this system. We compute the singular value decomposition
and truncate depending on how fast the singular values decay:

X = UΣV ∗ ≈ UkΣkV
∗
k , k ≪ n

Let x(t) ≈ Ukξ(t), ξ(t) ∈ R
k. Thus the approximation ξ(t) of the state x(t) evolves in a low-dimensional

space. Then Ukξ̇(t) = f(Ukξ(t), u(t)), which implies the reduced order state equation:

ξ̇(t) = U∗
kf(Ukξ(t), u(t))

2.2.2 Optimal approximation of linear systems

Consider the following Hankel operator:

H =











α1 α2 α3 · · ·
α2 α3 α4 · · ·
α3 α4 α5 · · ·
...

...
...

. . .











: ℓ(Z+) −→ ℓ(Z+)

It is assumed that rankH = n <∞, which is equivalent with the rationality of the (formal) power series:

∑

t>0

αtz
−t =

π(z)

χ(z)
=: GH(z), deg χ = n > deg π

It is well known that in this case GH possesses a state-space realization denoted by (1.2):

GH(z) =
π(z)

χ(z)
= C(zI −A)−1B, A ∈ R

n×n, B,C∗ ∈ R
n

This is a discrete-time system; thus the eigenvalues of A (roots of χ) lie inside the unit disc if and only
if

∑

t>0 | αt |
2<∞.

The problem which arises now is to approximate H by a Hankel operator Ĥ of lower rank, optimally
in the 2-induced norm. The system-theoretic interpretation of this problem is to optimally approximate
the linear system described by G = π

χ
, by a system of lower complexity, Ĝ = π̂

χ̂
, deg χ > deg χ̂. This is

the problem of approximation in the Hankel norm.
First we note that H is bounded and compact and hence possesses a discrete set of non-zero singular

values with an accumulation point at zero:

σ1(H) ≥ σ2(H) ≥ · · · ≥ σn(H) > 0

These are called the Hankel singular values of S. By the Schmidt-Mirsky result, any approximant K, not
necessarily structured, of rank k < n satisfies:

‖ H −K ‖2≥ σk+1(H)

The question which arises is whether there exist an approximant of rank k which has Hankel structure
and achieves the lower bound. In system-theoretic terms we seek a low order approximant Ŝ to S. The
question has an affirmative answer.

Theorem 2.3 Adamjan, Arov, Krein (AAK). There exists a unique approximant Ĥ of rank k, which
has Hankel structure and attains the lower bound: σ1(H− Ĥ) = σk+1(H).

The above result holds for continuous-time systems as well. In this case the discrete-time Hankel
operator introduced above is replaced by the continuous-time Hankel operator defined as follows: y(t) =
H(u)(t) =

∫ 0
−∞ h(t− τ)u(τ)dτ , t > 0, where h(t) = CeAtB is the impulse response of the system.
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2.2.3 Optimal and suboptimal approximation in the 2-norm

It turns out that both sub-optimal and optimal approximants of MIMO (multi-input, multi-output) linear
continuous- and discrete-time systems can be treated within the same framework. The problem is thus:
given a stable system S, we seek approximants S∗ satisfying

σk+1(S) ≤ ‖S − S∗‖H ≤ ǫ < σk(S) (2.2)

This is accomplished by the following construction.

Ŝ(ǫ) -

-

-

-
6

?d- -−

+

Se

S

Construction of approximants

Given S, construct Ŝ such that Se := S − Ŝ has norm ǫ, and is all-pass; in this case Ŝ is called an
ǫ-all-pass dilation of S. The following result holds.

Theorem 2.4 Let Ŝ be an ǫ-all-pass dilation of the linear, stable, discrete- or continuous-time system
S. The stable part Ŝ+ of S has exactly k stable poles and the inequalities (2.2) hold. Furthermore, if
σk+1(S) = ǫ, σk+1(S) = ‖S − Ŝ‖H .

Computation. The Hankel singular values of S given by (1.2), can be computed by solving two
Lyapunov equations in finite dimensions. For continuous-time systems, let P, Q be the system grammians:

AP + PA∗ + BB∗ = 0, A∗Q+QA + C∗C = 0 (2.3)

It follows that
σi(S) =

√

λi(PQ) (2.4)

The error bound for optimal approximants, in the 2-norm of the convolution operator:

σk+1 ≤‖ S − Ŝ ‖∞≤ 2(σk+1 + · · · + σn) (2.5)

where the H∞ norm is maximum of the largest singular value of the frequency response, or alternatively,
the 2-induced norm of the convolution operator, namely: y(t) = S(u)(t) =

∫ ∞
−∞ h(t − τ)u(τ)dτ , t ∈ R,

where h(t) = CeAtB. For details on these issues we refer to [7].

2.2.4 Approximation by balanced truncation

A linear system S in state space form is called balanced if the solutions of the two grammians (2.3) are
equal and diagonal:

P = Q = Σ = diag (σ1, · · · , σn) (2.6)

It turns our that every controllable and observable system can be transformed to balanced form by means
of a basis change x̂ = Tx. Let P = UU∗ and Q = LL∗ where U and L are upper and lower triangular
matrices respectively. Let also U∗L = ZSY ∗ be the singular value decomposition (SVD) of U∗L. A the

balancing transformation is T = S
1

2 Z∗U−1 = S− 1

2 Y ∗L∗. Let S be balanced with grammians equal to

7



Σ =

(

Σ1 0
0 Σ2

)

, where Σ1 ∈ R
k×k, and Σ2 contains all the small Hankel singular values. Partition

conformally the system matrices:

S =





A11 A12 B1

A21 A22 B2

C1 C2 D



 where A11 ∈ R
k×k, B1 ∈ R

k×m, C1 ∈ R
p×k (2.7)

The system Ŝ :=

[

A11 B1

C1

]

, is a reduced order system obtained by balanced truncation. This system

has the following guaranteed properties: (a) stability is preserved, and (b) the same error bound (2.5)
holds as in Hankel-norm approximation.

2.2.5 Singular Perturbation Approximation

A closely related approximation method, is the so-called singular perturbation approximation. It is based
on the balanced form presented above. Thus, let (2.7) hold; the reduced order model is given by

Ŝ =

[

Â B̂

Ĉ D̂

]

=

[

A11 −A12A
−1
22 A21 B1 −A12A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]

. (2.8)

Again, the same guaranteed properties as for the approximation by balanced truncation, are satisfied.

3 Approximation by moment matching

Given a linear system S in state space form (1.2), its transfer function G(s) = C(sI − A)−1B + D, is
expanded in a Laurent series around a given point s0 ∈ C in the complex plane:

G(s0 + σ) = η0 + η1σ + η2σ
2 + η3σ

3 + · · ·

The ηt are called the moments of S at s0. We seek a reduced order system Ŝ as in (1.3), such that the
Laurent expansion of the corresponding transfer function at s0 has the form

Ĝ(s0 + σ) = η̂0 + η̂1σ + η̂2σ
2 + η̂3σ

3 + · · ·

where k moments are matched:
ηj = η̂j , j = 1, 2, · · · , k

for appropriate k ≪ n. If s0 is infinity, the moments are called Markov parameters; the corresponding
problem is known as partial realization, or Padé approximation; the solution of this problem can be found
in [1], [4]. Importantly, the solution of these problems can be implemented in a numerically stable and
efficient way, by means of the Lanczos and Arnoldi procedures. For arbitrary s0 ∈ C, the problem is
known as rational interpolation, see e.g. [2], [3]. A numerically efficient solution is given by means of the
rational Lanczos/Arnoldi procedures.

Recently, there has been renewed interest in moment matching and projection methods for model
reduction in LTI systems. Three leading efforts in this area are Padé via Lanczos (PVL) [10], multi-
point rational interpolation [12], and implicitly restarted dual Arnoldi [15].

The PVL approach exploits the deep connection between the (nonsymmetric) Lanczos process and
classic moment matching techniques. The multi-point rational interpolation approach utilizes the rational
Krylov method of Ruhe [22] to provide moment matching of the transfer function at selected frequencies
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and hence to obtain enhanced approximation of the transfer function over a broad frequency range. These
techniques have proven to be very effective. PVL has enjoyed considerable success in circuit simulation
applications. Rational interpolation achieves remarkable approximation of the transfer function with
very low order models. Nevertheless, there are shortcomings to both approaches. In particular, since
the methods are local in nature, it is difficult to establish rigorous error bounds. Heuristics have been
developed that appear to work, but no global results exist. Secondly, the rational interpolation method
requires selection of interpolation points. At present, this is not an automated process

and relies on ad-hoc specification by the user.
In [15] an implicitly restarted dual Arnoldi approach is described. The dual Arnoldi method runs

two separate Arnoldi processes, one for the controllability subspace, and the other for the observability
subspace and then constructs an oblique projection from the two orthogonal Arnoldi basis sets. The basis
sets and the reduced model are updated using a generalized notion of implicit restarting. The updating
process is designed to iteratively improve the approximation properties of the model. Essentially, the
reduced model is reduced further, keeping the best features, and then expanded via the dual Arnoldi
processes to include new information. The goal is to achieve approximation properties similar to those
of balanced truncation. Other related approaches [9, 17, 21] work directly with projected forms of the
two Lyapunov equations (2.3) to obtain low rank approximations to the system Grammians.

In the sequel we will review the Lanczos and Arnoldi procedures. We will also review the concept of
implicit restarting. For simplicity only the scalar (SISO) versions will be discussed.

3.1 The Lanczos procedure

Given is the scalar system S as in (1.2) with m = p = 1, we seek to find Ŝ as in (1.3), k < n,
such that the first 2k Markov parameters ηi = CAi−1B, of S, and η̂i := ĈÂi−1B̂, of Ŝ, are matched:
ηi = η̂i, i = 1, · · · , 2k. We will solve this problem following a non-conventional path with system-
theoretic flavor; the Lanczos factorization in numerical analysis is introduced using a different set of
arguments. First, the observability matrix Ot, and the reachability matrix Rt are defined:

Ot =











C
CA
...
CAt−1











∈ R
t×n, Rt =

[

B AB · · · At−1B
]

∈ R
n×t

Secondly, we define the t× t Hankel matrix, and its shift:

Ht :=











η1 η2 · · · ηt

η2 η3 · · · ηt+1
...

. . .

ηt ηt+1 · · · η2t−1











, σHt :=











η2 η3 · · · ηt+1

η3 η4 · · · ηt+2
...

. . .

ηt+1 ηt+2 · · · η2t











It follows that Ht = OtRt and σHt = OtARt. The key step is as follows: assuming that detHi 6= 0,
i = 1, · · · , k, we compute the LU factorization of Hk:

Hk = LU

with L(i, j) = 0, i < j, U(i, j) = 0, i > j, and L(i, i) = ±U(i, i). Define the maps:

πL := L−1Ok and πU := RkU
−1 (3.1)

Clearly, the following properties hold: (a) πLπU = 1, and (b) πUπL: orthogonal projection. The reduced
order system Ŝ, is now defined as follows:

Â := πLAπU , B̂ = πLB, Ĉ = CπU (3.2)
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Theorem 3.1 Ŝ as defined above matches 2k Markov parameters. Furthermore, Â is tridiagonal, and
B̂, Ĉ∗ are multiples of the unit vector e1.

3.2 The Arnoldi procedure

As in the Lanczos case, we will derive the Arnoldi factorization following a non-conventional path, which is
different from the path usually adopted by numerical analysts in this case. Let Rn = [B AB · · · An−1B]
with A ∈ R

n×n, B ∈ R
n. Then:

ARn = RnF where F =















0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

. . .

0 0 · · · 1 −αn−1















and χA(s) = det (sI−A) = sn+αn−1s
n−1+ · · ·+α1s+α0. The key step in this case consists in computing

the QR factorization of Rn:
Rn = V U

where V is orthogonal and U is upper triangular. It follows that AV U = V UF , AV = V UFU−1, which
in turn with F̄ = UFU−1, implies that AV = V F̄ ; thereby U , U−1 are upper triangular, F is upper
Hessenberg, and therefore F̄ : is upper Hessenberg. This yields the k-step Arnoldi factorization:

[AV ]k =
[

V F̄
]

k
⇒ A[V ]k = [V ]kF̄kk + fe∗k

where f is a multiple of the k + 1-st column of V; F̄kk, is still upper Hessenberg, and the columns of [V ]k
provide an orthonormal basis for the space spanned by the first k columns of Rn.

Recall that Hk = OkRk; a projection π can be attached to the QR factorization of Rk:

π := RkU
−1 = V, V ∈ R

n×k, V ∗V = Ik, U : upper triangular (3.3)

The reduced order system Ŝ is now defined as follows:

Â := π∗Aπ, B̂ = π∗B, Ĉ = Cπ (3.4)

Theorem 3.2 Ŝ matches k Markov parameters: η̂i = ηi, i = 1, · · · , k. Furthermore, Â is in Hessenberg
form, and B̂ is a multiple of e1.

Remarks. (a) Number of operations needed to compute Ŝ using Lanczos or Arnoldi is O(k2n),
vs. O(n3) operations needed for the other methods. Only matrix-vector multiplications are required as
opposed to matrix factorizations and/or inversions.

(b) Drawback Lanczos: it breaks down if detHi = 0, for some 1 ≤ i ≤ n. The remedy in this case
are look-ahead methods. Arnoldi breaks down if Ri does not have full rank; this happens less frequently.

(c) Ŝ tends to approximate the high frequency poles of S. Hence the steady-state error may be
significant. Remedy: match expansions around other frequencies. This leads to rational Lanczos.

(d) Ŝ may not be stable, even if S is stable. Remedy: implicit restart of Lanczos and Arnoldi.
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3.3 The algorithms

3.3.1 The Lanczos algorithm: recursive implementation

Given: the triple A ∈ R
n×n, B,C∗ ∈ R

n, find: V,W ∈ R
n×k, f, g ∈ R

n, and K ∈ R
k×k, such that

AV = V K + fe∗k, A∗W = WK∗ + ge∗k, where

K = V ∗AW, V ∗W = Ik, W ∗f = 0, V ∗g = 0

where ek denotes the kth unit vector in R
n. The projections πL, πU defined above are given by V ∗, W .

Two-sided Lanczos algorithm

1. β1 :=
√

|CB|, γ1 := sgn (CB)β1

v1 := B/β1, w1 := C∗/γ1

2. For j = 1, · · · , k, set

(a) αj := w∗
j Avj

(b) rj := Avj − αjvj − γjvj−1, qj := A∗wj − αjwj − βjwj−1

(c) βj+1 =
√

|r∗j qj|, γj+1 = sgn (r∗j qj)βj+1

(d) vj+1 = rj/βj+1, wj+1 = qj/γj+1

The following relationships hold: Vk = (v1 v2 · · · vk), Wk = (w1 w2 · · · wk), where AVk = VkKk +

βk+1vk+1e
∗
k, A∗Wk = WkK

∗
k + γk+1wk+1e

∗
k, and Kk =











α1 γ2

β2 α2

. . .

. . .
. . . γk

βk αk











, rk ∈ Rk+1(A,B), q∗k ∈

Ok+1(C,A).

3.3.2 The Arnoldi algorithm: recursive implementation

Given: the triple A ∈ R
n×n, B,C∗ ∈ R

n, find: V ∈ R
n×k, f ∈ R

n, and K ∈ R
k×k, such that

AV = V K + fe∗k, where

K = V ∗AV, V ∗V = Ik, V ∗f = 0

where K is in upper Hessenberg form. The projection π defined above is given by V .

The Arnoldi algorithm

1. v1 := v
‖v‖ , w := Av1; α1 := v∗1w

f1 := w − v1α1; V1 := (v1); K1 := (α1)

2. For j = 1, 2, · · · , k − 1
βj :=‖ fj ‖, vj+1 :=

fj

βj

Vj+1 := (Vj vj+1), K̂j =

(

Kj

βje
∗
j

)

w := Avj+1, h := V ∗
j+1w, fj+1 = w − Vj+1h

Hj+1 :=
(

Ĥj h
)

Remarks. (a) The residual fj := Avj−Vjhj , where hj is chosen so that the norm ‖ fj ‖ is minimized.
It turns out that V ∗

j hj = 0, and hj = V ∗
j Avj , where w = Avj , that is fj = (I − VjV

∗
j )Avj .

(b) If A is symmetric, then Hj is tridiagonal, and the Arnoldi algorithm coincides with the Lanczos
algorithm.
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3.3.3 Implicitly restarted Arnoldi and Lanczos methods

The goal of restarting the Lanczos and Arnoldi factorizations is to get a better approximation of some
desired set of preferred eigenvalues, for example, those eigenvalues that have

• Largest modulus

• Largest real part

• Positive or negative real part

Let A have eigenvalues in the left half-plane, and let the approximant Km obtained through Lanczos or
Arnoldi, have an eigenvalue µ in the right half-plane. To eliminate this unwanted eigenvalue the reduced
order system obtained at the m-th step AVm = VmKm + fme∗m, is projected onto an (m − 1)-st order
system. First, compute the QR-factorization of Km − µIm = QmRm:

AV̄m = V̄mK̄m + fme∗mQm where V̄m = VmQm, K̄m = Q∗
mKmQm

We now truncate the above relationship to contain m − 1 columns; let K̄m−1 denote the principal sub-
matrix of K̄m, containing the leading m− 1 rows and columns.

Theorem 3.3 Given the above set-up, K̄m−1 can be obtained through an m−1 step Arnoldi process with
A unchanged, and the new starting vector B̄ := (µIn −A)B: AV̄m−1 = V̄m−1K̄m−1 + f̄e∗m−1.

This process can be repeated to eliminate other unwanted eigenvalues (poles) from the reduced order
system.

3.3.4 The Rational Krylov Method

The rational Krylov Method is a generalized version of the standard Arnoldi and Lanczos methods.
Given a dynamical system Σ, a set of interpolation points w1, · · · , wl, and an integer N , the Rational
Krylov Algorithm produces a reduced order system Σk that matches N moments of Σ at w1, · · · , wl. The
reduced system is not guaranteed to be stable and no global error bounds exist. Moreover the selection
of interpolation points which determines the reduced model is not an automated process and has to be
figured out by the user using trial and error.

3.4 A new approach: The cross grammian

The approach to model reduction proposed below is related to the implicitly restarted dual Arnoldi
approach developed in [15]; although it is not a moment matching method it belongs to the general
set of Krylov projection methods. Its main feature is that is based on one Sylvester equation instead of
two Lyapunov equations. One problem with prior attempts at working with the two Lyapunov equations
separately and then applying dense methods to the reduced equations, is consistency. One cannot be
certain that the two separate basis sets are the ones that would have been selected if the full system
Grammians had been available. Since our method actually provides best rank k approximations to the
system Grammians with a computable error bound, we are assured to obtain a valid approximation to
the balanced reduction.

Given S as in (1.2) with m = p = 1, the cross grammian X ∈ R
n×n is the solution to the following

Sylvester equation:
AX + XA + BC = 0 (3.5)

12



Recall the definition of the controllability and observability grammians (2.3). The relationship between
these three grammians is:

X2 = PQ (3.6)

Moreover, the eigenvalues of X are equal to the non-zero eigenvalues of the Hankel operator H. If A is
stable

X =

∫ ∞

0
eAtBCeAtdt =

1

2π

∫ ∞

−∞
(jω −A)−1BC(−jω −A)−1

Furthermore, in this case the H2 norm of the system is given by ‖ S ‖2H2
= CXB. Often, the singular

values of X drop off very rapidly and X can be well approximated by a low rank matrix. Therefore the
idea is to capture most of the energy with Xk, the best rank k approximation to X:

‖ S ‖2H2
= CXkB +O(σk+1(X))

The Approximate Balanced Method [8] solves a Sylvester Equation to obtain a reduced order almost
balanced system iteratively without computing the full order balanced realization S in (2.7).

3.4.1 Description of the solution

We now return to the study of the Sylvester equation (3.5). It is well known that X is a solution iff

(

A BC
0 −A

)(

I X
0 I

)

=

(

I X
0 I

)(

A 0
0 −A

)

This suggests that X can be computed using a projection method:

(

A BC
0 −A

)(

V1

V2

)

=

(

V1

V2

)

H

where V is orthogonal: V ∗
1 V1 + V ∗

2 V2 = I. If V2 is non-singular, then AV1 + BCV2 = V1H, −AV2 = V2H,
which implies A(V1V

−1
2 ) + BC = (V1V

−1
2 )Ĥ, H = −A, where Ĥ = V2HV −1

2 . Therefore the solution is:

X = V1V
−1
2

The best rank k approximation to X is related to the C-S decomposition. Let V = [V ∗
1 V ∗

2 ]∗ ∈ R
2n×k, with

V ∗V = Ik; then we have V1 = U1ΓW ∗, V2 = U2∆W ∗, where U1, U2 are orthogonal, W nonsingular and
Γ2 + ∆2 = Ik. Assuming A stable, V2 has full rank iff the eigenvalues of A include those of H. It follows
that the SVD of X can be expressed as X = U1(Γ/∆)U∗

2 . To compute the best rank k approximation to
X, we begin with the full (n-step) decomposition: V1, V2 ∈ R

n×n, V2 full rank:

AV1 + BCV2 = V1H

−AV2 = V2H

Let Wk := W (:, 1 : k), Γk := Γ(1 : k, 1 : k), ∆k := ∆(1 : k, 1 : k). Then

A(V1Wk) + BC(V2Wk) = (V1W )(W ∗HWk)

−A(V2Wk) = (V2W )(W ∗HWk)

Therefore

A(U1kΓk) + BC(U2k∆k) = (U1kΓk)Hk + Ek

−U∗
2kAU2k∆k = ∆kHk

13



where U∗
1kEk = 0 and Hk = W ∗

k HWk. We thus obtain the projected Sylvester equation

U∗
1k(AXk + XkA + BC)U2k = 0

This implies the error equation

AXk + XkA + BC = −A(X −Xk)− (X −Xk)A = O(γk+1/δk+1)

where
Xk = U1k(Γk/∆k)U

∗
2k

is the best rank k approximation of the cross grammian X. The Reduced order system is now defined
as follows: let the SVD of the cross grammian be X = UΣV ∗, and the best rank k approximant be
Xk = UkΣkV

∗
k . Then Ŝ is given by

Ŝ =

[

Â B̂

Ĉ

]

=

[

V ∗
k AVk V ∗

k B

CVk

]

(3.7)

A closely related alternative method of defining a reduced order model is the following. Let X̂ be the
best rank k approximation to X. Compute a partial eigenvalue decomposition of X̂ = ZkDkW

∗
k where

W ∗
k Zk = Ik. Then an approximately balanced system is obtained as

Ŝ =

[

Â B̂

Ĉ

]

=

[

W ∗
k AZk W ∗

k Bk

CZk

]

(3.8)

The advantage of the this method which will be referred to as Approximate Balancing in the sequel, is
that it computes an almost balanced reduced system iteratively without computing a balanced realization
of the full order system first, and then truncating. Some details on the implementation of this algorithm
are provided in section 3.4.3; more details can be found in [8].

Finally, a word about the MIMO case. Recall that (3.5) is not defined unless m = p. Hence, we to
apply this method to MIMO systems, we proceed by embedding the system S in a system S̃ which has
the same order, is square, and symmetric:

S̃ =

[

A B̃

C̃

]





A JC∗ B

C
B∗J−1



 , J = J∗ (3.9)

The symmetrizer J is chosen so that AJ = JA∗ and λi(PQ) ≈ λi(P̃Q̃) = λ(X̃)2 where X̃ is the cross
grammian of S̃; for details see [8].

3.4.2 A stopping criterion

As stopping criterion, we look at the L∞-norm of the following residual:

R(s) = BC − (sI −A)Vk(sI − Â)−1B̂Ĉ(−sI − Â)−1V ∗
k (−sI −A)

Notice that projected residual is zero: V ∗
k R(s)Vk = 0. Consider:

(sI −A)V (sI − V ∗AV )−1V ∗B = (sI −A)V V ∗(sI −AV V ∗)−1B

Assume that we change basis so that V ∗ = [Ik 0]; let in this basis

A =

(

A11 A12

A21 A22

)

, B =

(

B1

B2

)

, C =
(

C1 C2

)
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Then this last expression becomes:
(

I
−A21(sIk −A11)

−1

)

B1

Similarly, CV (−sI − V ∗AV )−1V ∗(−sI −A) = C1[I (−sI −A11)
−1A12]. Hence

R(s) =

(

B1

B2

)

(

C1 C2

)

−

(

I
−A21(sIk −A11)

−1

)

B1C1

(

I (−sI −A11)
−1A12

)

In state space form we have

R =







A11 B1C1 B1C1 0
0 −A11 0 A12

0 −B1C1 0 B1C2

A21 0 B2C1 B2C2






∈ R

(2k+n)×(2k+n)

The implication is that R(s) is n × n proper rational matrix with McMillan degree 2k; its L∞-norm
‖ R(s) ‖∞ can be readily computed.

3.4.3 Computation of the solution

The following points are important to keep in mind. First, we give up Krylov (Arnoldi requires special
starting vector), and second, an iterative scheme related to the Jacobi-Davidson algorithm together with
implicit restarting will be used. Given is

(−A)V = V H + F, V ∗V = I, V ∗F = 0

1. Solve the projected Sylvester equation in the Controllability space and compute the SVD of the
solution:

AY + BCV = Y H ⇒ [Q,S,W ] = svd (Y )

2. Project onto the space of the largest singular values

Sk = S(1 : k, 1 : k) V ← V Wk

Qk = Q(:, 1 : k) H̄ = Q∗
kAQk

Wk = W (1 : k, :) H ← W ∗
k HWk

3. Correct the projected Sylvester equation in the observability space:

E := A∗V WkSk + V WkSkH̄
∗ + C∗B∗Qk

Solve A∗Z + ZH̄∗ = −E.

4. Adjoin Correction and project:
[V,R] = qr ([V Wk, Z])
H ← −(V ∗AV )
F ← (−I + V V ∗)AV

Remark. It should be stressed that the equations in 1. and 3.
(

A BCV
0 −H

)(

V1

V2

)

=

(

V1

V2

)

R,

(

A∗ E
0 −H∗

)(

W1

W2

)

=

(

W1

W2

)

Q

above are solved by IRAM. No inversions are required. However convergence may be accelerated with a
single sparse direct factorization.
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4 Application of the reduction algorithms

In this section we apply the algorithms mentioned above to six different dynamical systems: A Structural
Model, Building Model, Heat Transfer Model, CD Player, Clamped Beam, Low-Pass Butterworth Filter.
We reduce the order of models with a tolerance1 value, ρ, of 1 × 10−3. Table-2 shows the order of the
systems, n; the number of inputs, m; and outputs, p; and the order of reduced system, k. Moreover, the
Normalized2 Hankel Singular Values of each model are depicted in Figure 2-a and 2-b. To make a better
comparison between the systems, in Figure 3 we also show relative degree reduction k

n
vs a given error

tolerance σk

σ1
. This figure shows how much the order can be reduced for the given tolerance: the lower

the curve, the easier to approximate. It can be seen from Figure 3 that among all models for a fixed
tolerance value less than 1.0 × 10−1, the building model is the hardest one to approximate. One should
notice that specification of the tolerance value ρ determines everything in all of the methods except the
Rational Krylov Method. The order of the reduced model and the eigenvalue placements are completely
automatic. On the other hand, in the Rational Krylov Method, one has to choose the interpolation points
and the integer N which determines the number of moments matched per point.

n m p k

Structural Model 270 3 3 37

Building Model 48 1 1 31

Heat Model 197 2 2 5

CD Player 120 1 1 12

Clamped Beam 348 1 1 13

Butterworth Filter 100 1 1 35

Table 2: The systems used for comparing the model reduction algorithms
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Figure 2: Normalized Hankel Singular Values of (a) Heat Model, Butterworth Filter , Clamped Beam Model and

Structural Model; (b) Butterworth Filter, Building Example, CD Player.

1The tolerance corresponding to a k
th order reduced system is given by the ratio

σk

σ1

where σ1 and σk are the largest and

k
th singular value of the system respectively.

2For comparison, we normalize the highest Hankel Singular Value of each system to 1.
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In each subsection below, we briefly describe the systems and then apply the algorithms. For each
the largest singular value of the frequency response of full order, reduced order, and of the corresponding
error systems; and the nyquist plots of the full order and reduced order systems are shown. Moreover, the
relative H∞ and H2 norms of the error systems are tabulated. Since balanced reduction and approximate
balanced reduction approximants were almost the same for all the models except the heat model, we show
and tabulate results just for the former for those cases.
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Figure 3: Relative degree reduction k
n

vs error tolerance σk

σ1

4.1 Structural Model

This is a model of component 1r (Russian service module) of the International Space Station. It has 270
states, 3 inputs and 3 outputs. The real part of the pole closest to imaginary axis is −3.11 × 10−3. The
normalized Hankel Singular Values of the system are shown in Figure 2-a. We approximate the system
with reduced models of order 37. Since the system is MIMO, the Arnoldi and Lanczos Algorithms do
not apply. The resultant reduced order systems are shown in Figure 4-a. As seen from the figure, all the
models work quite well. The peaks, especially the ones at the lower frequencies, are well approximated.
Figure 4-b shows the largest singular value σmax of the frequency response of the error systems. Rational
Krylov does a perfect job at the lower and higher frequencies. But for the moderate peak frequency
levels, it has the highest error amplitude. This is because of the fact that the selection of interpolation
point is not an automated process and relies on ad-hoc specification by the user. Singular perturbation
approximation is the worst for low and higher frequencies. Table 3 lists the relative3 H∞ and H2 norms
of the errors system. As seen from the figure, Rational Krylov has the highest error norms. Considering

H∞ norm H2 norm

Balanced 6.93 × 10−4 5.70 × 10−3

Hankel 8.84 × 10−4 1.98 × 10−2

Sing. Pert 1.08 × 10−3 3.66 × 10−2

Rat. Kry 4.46 × 10−2 1.33 × 10−1

Table 3: Relative Error Norms for Structural Model

3To find the relative error, we divide the norm of the error system with the corresponding norm of the full order system
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Figure 4: σmax of the frequency response of the (a) Reduced and (b) Error Systems of Structural Model

both the relative H∞, H2 norms error norms and the whole frequency range, Balanced Reduction is the
best. The nyquist plots of the full order and the reduced order systems are shown in Figure 5-a. Notice
that all the approximants matches the full order model very well except the fact the rational Krylov
deviates around origin.
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Figure 5: Nyquist plots of the full order and reduced order models for the (a) Structral (b) Building Model

4.2 Building Model

The full order model is a building (Los Angeles University Hospital) with 8 floors each of which has 3
degrees of freedom, namely displacements in x and y directions, and rotation. Hence we have 24 variables
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with the following type of second order differential equation describing the dynamics of the system:

Mq̈(t) + Dq̇(t) + Kq(t) = v u(t) (4.1)

where u(t) is the input. (4.1) can be put into state-space form by defining x∗ = [ q∗ q̇∗ ]∗:

ẋ(t) =

[

0 I
−M−1K −M−1D

]

x(t) +

[

0
M−1v

]

u(t)

We are mostly interested in the motion in the first coordinate q1(t). Hence, we choose v = [1 0 · · · 0]∗

and the output y(t) = q̇1(t) = x25(t).
The state-space model has order 48, and is single input and single output. For this example, the

pole closest to imaginary axis has real part equal to −2.62 × 10−1. We approximate the system with a
model of order 31. The largest singular value σmax of the frequency response of the reduced order and
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Figure 6: σmax of the frequency response of the reduced systems of Building Model

of the error systems are shown in Figure 6 and 7 respectively. Since the expansion of transfer function
G(s) around s0 = ∞ results in unstable reduced systems for Arnoldi and Lanczos procedures, we use
the shifted version of these two methods with s0 = 1. The effect of choosing s0 as a low frequency
point is very well observed in Figure 7-b that Arnoldi and Lanczos result in very good approximants
for the low frequency range. The same is valid for rational Krylov methods as well, since s0 = 1 was
chosen as one of the interpolation points for this method. When compared to SVD based methods, the
moments matching based methods are much better for low frequency range. Among the SVD based
methods, Singular perturbation and balanced reduction methods are the best for the low frequency and
high frequency range respectively. When we consider the whole frequency range, balancing and singular
perturbation are closer to the original model. But in terms of relative H∞ norm of error, Hankel Norm
Approximation is the best. As expected rational Krylov, Arnoldi and Lanczos result in high relative
errors due to being local in nature. Among them, rational Krylov is the best. Figure 5-b illustrates the
nyquist plots of the full order and the reduced order systems. The figure shows that all the approximants
matches the nyquist plots of the full order model quite well.

4.3 Heat diffusion model

The original system is a plate with two heat sources and two points of measurements. It is described by
the heat equation. A model of order 197 is obtained by spatial discretization. The real part of the pole
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Figure 7: (a)-(b) σmax of the frequency response of the error systems of Building Model

H∞ norm of error H2 norm of error

Balanced 9, 64 × 10−4 2.04 × 10−3

Hankel 5.50 × 10−4 6.25 × 10−3

Sing. Pert 9.65 × 10−4 2, 42 × 10−2

Rat. Kry 7.51 × 10−3 1.11 × 10−2

Lanczos 7.86 × 10−3 1.26 × 10−2

Arnoldi 1.93 × 10−2 3.33 × 10−2

Table 4: Relative Error Norms Building Model

closest to imaginary axis is −1.52 × 10−2. It is observed from Figure 2-a that this system is very easy
to approximate since the Hankel singular values decay very rapidly. We approximate the model with a
model of order 5. Since this is a MIMO system, Lanczos and Arnoldi do not apply. As expected due to
the very low tolerance value, all the methods generate satisfactory approximants matching the full order
model through the whole frequency range (see Figure 8). Only the Rational Krylov Method has some
problems for moderate frequencies due to the unautomated choice of interpolation points. The nyquist
plots of the full order and the reduced order systems are shown in Figure 9-a. The figure reveals that as
in the structural model example, rational Krylov have problem matching the full order system around
the origin. Except the rational Krylov approximant, all the methods very well approximate the nyquist
plots of the full order model.

H∞ norm of error H2 norm of error

Balanced 2.03 × 10−3 5.26 × 10−2

App. Balanced 4.25 × 10−3 4.68 × 10−2

Hankel 1.93 × 10−3 6.16 × 10−2

Sing. Pert 2.39 × 10−3 7.39 × 10−2

Rat. Kry 1.92 × 10−2 2.01 × 10−1

Table 5: Relative Error Norms of Heat Model
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Figure 8: σmax of the frequency response of the (a) Reduced and (b) Error Systems of Heat diffusion model

4.4 CD Player

This system describes the dynamics between the lens actuator and the radial arm position of a portable
CD player. The model has 120 states with a single input and a single output. The pole closest to the
imaginary axis has the real part equal to −2.43× 10−2. Approximants have order 12. The first moment
of the system is zero. Hence, instead of expanding the transfer function around s = ∞, we expand it
around s0 = 200 rad/sec. This overcomes the breakdown in Lanczos procedure. We also use the shifted
version of Arnoldi procedure with s0 = 200 rad/sec. Figure 10-a illustrates the largest singular values
of the frequency response of the reduced order models together with that of the full order model. One
should notice that only the rational Krylov catch the peaks around the frequency range 104−105 rad/sec.
No SVD based method matches those peaks. Among the SVD based ones, Hankel Norm Approximation
is the worst around s = 0, and also around s =∞. The largest singular values of the frequency response
of error systems in Figure 10-b reveal that the SVD based methods are better when we consider the
whole frequency range. Despite doing a perfect job at s = 0 and s =∞, Rational Krylov has the highest
relative H∞ and H2 error norms as listed in Table 6. But one should notice that the rational Krylov
is superior to the Arnoldi and Lanczos procedures except the frequency range 102 − 103 rad/sec. When
we consider the whole frequency range, balanced reduction is again the best one. Figure 9-b illustrates
the nyquist plots of the full order and the reduced order systems. Except rational Krylov’s having some
deviation from the full order model, all the methods result in satisfactory approximants.

H∞ norm of error H2 norm of error

Balanced 9.74 × 10−4 3.92 × 10−3

Approx. Balanc. 9.74 × 10−4 3.92 × 10−3

Hankel 9.01 × 10−4 4.55 × 10−3

Sing. Pert 1.22 × 10−3 4.16 × 10−3

Rat. Kry 5.60 × 10−2 4.06 × 10−2

Arnoldi 1.81 × 10−2 1.84 × 10−2

Lanczos 1.28 × 10−2 1.28 × 10−2

Table 6: Relative Error Norms of CD Player
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Figure 9: Nyquist plots of the full order and reduced order models for the (a) Heat Model (b) CD Player

4.5 Clamped Beam Model

The clamped beam model has 348 states and is SISO. It is again obtained by spatial discretization of
an appropriate partial differential equation. The input represents the force applied to the structure, and
the output is the displacement. For this example, the real part of the pole closest to imaginary axis is
−5.05 × 10−3. We approximate the system with a model of order 13. The plots of the largest singular
value of the frequency response of the approximants and error systems are shown in Figure 11-a and
11-b respectively. Since CB = 0, we expand the transfer function G(s) of the original system around
s0 = 0.1 instead of s = ∞ to prevent the breakdown of Lanczos. Moreover, to obtain better result, we
use the shifted Arnoldi with s0 = 0.1 rad/sec. Rational Krylov is again the best one for both s = 0
and s = ∞. Indeed except for the frequency range between 0.6 and 30 rad/sec, this method gives the
best approximant among all the methdos. Lanczos and Arnoldi procedures also lead to a very good
approximant especially for the frequency range 0 − 1 rad/sec. This is due to the choice of s0 as a low
frequency point. Balanced model reduction is the best one among the SVD methods after s = 1 rad/sec.
In terms of error norms, SVD based methods are better than moment matching based methods, but
the difference are not as high as the previous examples. Again, the rational Krylov is the best among
moment matching based methods. The nyquist plots of the full order and the reduced order systems are
shown in Figure 12-a. The figure shows that all the approximants match the the nyquist plots of the full
order model very well. Indeed, this is the best match of the nyquist plots among all the six examples.

H∞ norm of error H2 norm of error

Balanced 2.14 × 10−4 7.69 × 10−3

Hankel 2.97 × 10−4 8.10 × 10−3

Sing. Pert 3.28 × 10−4 4.88 × 10−2

Rat. Kry 5.45 × 10−4 8.88 × 10−3

Arnoldi 3.72 × 10−3 1.68 × 10−2

Lanczos 9.43 × 10−4 1.67 × 10−2

Table 7: Relative Error Norms of Clamped Beam Model

22



10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−140

−120

−100

−80

−60

−40

−20

0

20

40
CD Player Reduced Systems for tol = 1e−3

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

Full Order
Balanced  
Hankel    
SPA       
Rat. Kry  
Arnoldi   
Lanczos   

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−150

−100

−50

0

50
Singular Values of the Error Systems for CD Player, tol = 1e−3

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

Balanced
Arnoldi 
Lanczos 
Hankel  
SPA     
Rat. Kry

(a) (b)

Figure 10: σmax of the frequency response of the (a) Reduced and (b) Error Systems of CD Player

4.6 Low-Pass Butterworth Filter

The full order model is a Low-Pass Butterworth filter of order 100 with the cutoff frequency being 1
rad/sec. The normalized Hankel Singular Values corresponding to this system are shown in Figure 2-a
and Figure 2-b. It should be noticed that unlike the other systems, Hankel Singular Values stay constant
at the beginning, and then start to decay. Therefore, we cannot reduce the model to order less than 25.
We approximate the system with a model of order 35. One should notice that the transfer function of
this example has no zeros. Thus Arnoldi and Lanczos procedures do not work if we expand the transfer
function G(s) around s = ∞. Instead, we expand G(s) around s0 = 0.1. As Figure 13-a illustrates,
all the moment matching based methods have difficulty especially around the cutoff frequency. Among
them, Lanczos and Arnoldi show very similar results and are better than Rational Krylov Method. On
the other hand, SVD based methods work without any problem producing quite good approximants for
the whole frequency range. Although the Hankel norm approximation is the best in terms H∞ norm, it
is the worst in terms of H2 norm among the SVD based methods. Singular perturbation methods and
balanced reduction shows very close behaviors for the frequencies less than 1 rad/sec. But after that,
balanced reduction is better. Figure 12-b depicts the nyquist plots of the full order and the reduced order
systems. As seen from the figure, moment matching methods are far from matching the full order model
as in matching the frequency response. SVD based methods do not yield very good approximants, but
compared to former, they are much better.

H∞ norm of error H2 norm of error

Balanced 6.29× 10−4 5.19 × 10−4

Approx. Balanc. 6.29× 10−4 5.19 × 10−4

Hankel 5.68× 10−4 1.65 × 10−3

Sing. Pert 6.33× 10−4 5.21 × 10−4

Rat. Kry 1.02 × 100 4.44 × 10−1

Arnoldi 1.02 × 100 5.38 × 10−1

Lanczos 1.04 × 100 3.68 × 10−1

Table 8: Relative Error Norms of Butterworth Filter
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Figure 11: σmax of the frequency response of the (a) Reduced and (b) Error Systems of Clamped Beam

5 Projectors and computational complexity

The unifying feature of all model reduction methods presented above is that they are obtained by means
of projections. Let π = V W ∗ be a projection, i.e. π2 = π. The corresponding reduced order model Ŝ in
(1.3) is obtained as follows:

σx̂ = (W ∗AV )x̂ + (W ∗B)u
ŷ = (CV )x̂

(5.1)

The quality of the approximant is measured in terms of the frequency response G(jω) = C(jωI−A)−1B.
Optimal Hankel norm and Balancing emphasize energy of Grammians

P =
1

2π

∫ +∞

−∞
(jωI −A)−1BB∗(jωI −A∗)−1dω, Q =

1

2π

∫ +∞

−∞
(jωI −A∗)−1C∗C(jωI −A)−1dω

Krylov methods adapt to frequency response and emphasize relative contributions of C(jωI − A)−1B.
The new method emphasizes the energy of the cross grammian

X =
1

2π

∫ +∞

−∞
(jωI −A)−1BC(−jωI −A)−1dω

The choices of projectors for the different methods are as follows.

1. Balanced truncation. Solve: AP +PA∗ + BB∗ = 0, A∗Q+QA+ C∗C = 0, and project onto the
dominant eigenspace of PQ.

2. Optimal Hankel norm approximation. Solve for the Grammians. Embed in a lossless transfer
function and project onto its stable eigenspace.

3. Krylov-based approximation. Project onto controllability and/or observability spaces.

4. New method. Project onto the space spanned by the dominant right singular vectors or eigen-
vectors of the cross grammian.
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Figure 12: Nyquist plots of the full order and reduced order models for the (a) Clamped Beam Model (b)

Butterworth Filter

The complexity of these methods using dense decompositions taking into account only dominant terms
of the total cost, is as follows:

1. Balanced truncation. Compute Grammians ≈ 70N3 (QZ algorithm); perform balancing ≈ 30N3

(eigendecomposition).

2. Optimal Hankel norm approximation. Compute Grammians ≈ 70N3 (QZ algorithm); perform
balancing and embedding ≈ 60N3.

3. Krylov approximation. ≈ kN2 operations.

The complexity using approximate and/or sparse decompositions, is as follows. Let α be the average
number of non-zero elements per row in A, and let k be the number of expansion points. Then:

1. Balanced truncation. Grammians ≈ c1αkN ; balancing O(n3).

2. Optimal Hankel norm approximation. Grammians ≈ c1αkN ; embedding O(n3).

3. Krylov approximation. ≈ c2kαN operations

6 Conclusions

In this note we presented a comparative study of seven algorithms for model reduction, namely: Bal-
anced Model Reduction, Approximate Balanced Reduction, Singular Perturbation Method, Hankel Norm
Approximation, Arnoldi Procedure, Lanczos Procedure, and Rational Krylov Method. These algorithms
have been applied to six different dynamical systems. The first four make use of Hankel Singular Values
and the latter three are based on matching the moments; i.e. the coefficients of the Laurent expansion of
the transfer function around some point of the complex plane. The results show that Balanced Reduction
and Approximate Balanced Reduction are the best when we consider the whole frequency range. Between
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Figure 13: σmax of the frequency response of the (a) Reduced and (b) Error Systems of Butterworth Filter

these two, Approximate Balancing has the advantage that it computes an almost balanced reduced sys-
tem iteratively without obtaining a balanced realization of the full order system first, and subsequently
truncating, thus reducing the computational cost and storage requirements. Hankel Norm Approxima-
tion gives the worst approximation around s = 0 among the SVD based methods. Although it has the
lowest H∞ error norm in most of the cases, it leads to the highest H2 error norm. Being local in nature
Moment Matching methods always lead a higher error norms than SVD based methods; but they reduce
the computational cost and storage requirements remarkably when compared to the latter. Among them,
the Rational Krylov Algorithm gives better results due to the flexibility of the selection of interpolation
points. However, the selection of these points which determines the reduced model is not an automated
process and has to be specified by the user, with little guidance from the theory on how to choose these
points. In contrast, in other methods a given error tolerance value determines everything.
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