
SPECIAL SECTION: COMPUTATIONAL SCIENCE

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000804

TUTORIALS

An introduction to automatic differentiation  

Arun Verma* 
Computer Science Department and Cornell Theory Center, Cornell University, Ithaca NY 14850, USA

Differentiation is one of the fundamental problems in nu-
merical mathematics. The solution of many optimization
problems and other applications require knowledge of the
gradient, the Jacobian matrix, or the
Hessian matrix of a given function.                  
  Automatic differentiation (AD) can compute fast and
accurate derivatives of any degree computationally via
propagating Taylor series coefficients using the chain
rule. AD does not incur any truncation error and would
yield exact results if the calculations were done in real
arithmetic; in other words the derivatives obtained are ac-
curate to machine precision.          
  In this tutorial we uncover the details of the AD technol-
ogy, presenting them in a simple manner. We present ba-
sics of AD and its complexity followed by some examples.

1.  Introduction

The field of computational science includes problems rang-
ing from modeling physical phenomena, computation of
option pricing in finance, and optimal control problems, to
inverse problems in medical imaging and geosciences. The
solution of problems in a variety of
areas in computational science often involves presenting
the problem as a numerical optimization problem which in
turn requires computing derivatives of numerical functions.
In numerical optimization derivatives, usually in the form of
gradients, Jacobians and Hessians, are used to locate the
extrema of a function; most optimization software include
some way of computing the derivatives
(exactly or approximately) if not provided by the user.
  Automatic differentiation (AD)1–6 is an upcoming tech-
nology which provides software for automatic computation
of derivatives of a general function provided by the user.
There are many AD tools which are out, including ADOL-C
for C/C++ functions7, ADIFOR for FORTRAN8 and ADMIT-
1 and ADMAT for MATLAB9,10.
  The outline of this tutorial is as follows: In §1, we
present some basics of AD. In §2, we present illustrative
examples of the working of AD in both forward and reverse
modes. In §3, we outline the complexity of AD in the reverse
and forward mode. We conclude with a
summary and an overview of some extensions to the basic
AD technology.

2.  Basics of AD

AD is a chain-rule-based technique for evaluating the
derivatives with respect to the input variables of functions
defined by a high-level language computer program. AD
relies on the fact that all computer programs, no matter how
complicated, use a finite set of elementary (unary or binary,
e.g. sin(·),  sqrt(·)), operations as defined by the program-
ming language. The value or function computed by the pro-
gram is simply a composition of these elementary functions.
The partial derivatives of the elementary functions are
known, and the overall derivatives can be computed using
the chain rule; this process is known as AD1,11.
  Abstractly, the program to evaluate the solution y (an m-
vector) as a function of x (generally an n-vector) has the
form:

x ≡ (x1, x2, . . ., xn),

      ↓
z ≡ (z1, z2, . . ., zp),   p  >>     m + n,

      ↓
y ≡ (y1, y2, . . ., ym),

where the intermediate variables z are related through a se-
ries of these elementary functions which may be unary,

,),(elem kizfz i
k

k <=

consisting of operations such as (–, pow(·), sin(·), . . .) or
binary,

,,),,(elem kjkizzfz ji
k

k <<=

such as (+, /, . . .).
  In general, the number of intermediate variables is much
larger than the dimensions of the problem, i.e. p >> m, n.
  AD has two basic modes of operations, the forward mode
and the reverse mode. In the forward mode the deriva-
tives are propagated throughout the computation using the
chain rule, e.g. for the elementary step                   
the intermediate derivative, dzk/dx, can be propagated in the
forward mode as:

.elemelem

dx

dz

z

f

dx

dz

z

f

dx

dz j

j

k
i

i

k
k

∂
∂+

∂
∂=

This chain rule-based computation is done for all the*e-mail: verma@CS.Cornell.EDU

),(elem ji
k

k zzfz =

SPECIAL SECTION: COMPUTATIONAL SCIENCE



SPECIAL SECTION: COMPUTATIONAL SCIENCE

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000 805

intermediate variables z and for the output variables y, fi-
nally yielding the derivative dy/dx.
  The reverse mode computes the derivatives dy/dzk for all
intermediate variables backwards (i.e. in the reverse order)
through the computation. For example, for the elementary
step                   the derivatives are propagated as:

.and elemelem

kj

k

jki

k

i dz

dy

z

f

dz

dy

dz

dy

z

f

dz

dy

∂
∂=

∂
∂=

At the end of computation of the reverse mode the deri-
vative dy/dx will be obtained. The key is that the derivative
propagation is done in reverse manner, hence, you need
du/dzk in order to compute derivatives du/dzi, du/dzj. Ini-
tially, du/du is initialized to 1.
  The reverse mode requires saving the entire computation
trace, since the propagation is done backwards through the
computation, and hence, the partials

i

k

j

k

z

f

z

f

∂
∂

∂
∂ elemelem ,

need to be stored for derivative computation as shown
above. Hence the reverse mode can be prohibitive due to
memory requirements.
  In summary, given a function computation, F(x): ℜn

→ ℜm, the forward mode can compute the Jacobian-matrix
product, J*V,  and the reverse mode can compute the ad-
joint product, JT

*W, where J = J(x) is the Jacobian matrix,
dF/dx. Here V ∈ ℜn × p

1, W ∈ ℜm × p
2, where p1 and p2 are

number of columns in V and W respectively.

3.  AD in action

Consider the following simple program (Figure 1), which
computes f(x) = (x + x2)2.
  The user function does not need to be in the binary form
as showed in Figure 1, it can be any code (say in C or

MATLAB or your favorite programming language) and the
AD tool will internally view it as a sequence of binary code.
For example, you can include complicated code such as
y = sqrt(sin(A + log(B + cos(C + tanh(D))))). The AD tool
will internally break it up in the binary form as:

t1 = tanh(D),

t2 = cos(C + t1),

t3 = log(B + t2),

t4 = sin(A + t3),

y = sqrt(t4).

3.1.  AD in forward mode

AD can be seen as simply augmenting the function with the
derivative statements, as shown in the following
derivative function in Figure 2. This is just a view of the
sample AD tool output, the user will not need to see this
view and this is just to illustrate the working of the AD tool
on the sample code above. In the AD tool, the augmented
derivative statements are carried out computa-
tionally and not physically inserted in the code.

  In the above program u• stands for the derivative, du/dx.
Since x is independent, x• = (dx/dx) + 1. In general x• stands
for the tangent direction. Consider the input, x = 2, x• = 1, the
program returns:

z = x*x = 2*2 = 4,

z• = 2*x* x• = 2*2*1 = 4,

w = x + z = 2 + 4 = 6,

zxw ••• += = 1 + 4 = 5,

y = w*w = 6*6 = 36,

y• = 2*w* w• = 2*6*5 = 60.

  The function of an AD tool is illustrated best using a
flowchart as shown in Figure 3 corresponding to the simple
MATLAB program in Figure 1. We have given simple scalar
values to the variables for the purpose of illustration. The
values of the derivatives are propagated along with the val-
ues of the variables as shown in the flowchart. The value
variables are represented by x, z, w, y and the derivatives by
dx/dx, dz/dx, dw/dx, dy/dx.

),,(elem ji
k

k zzfz =

function  y = f(x)

   z = x*x;

   w = x + z;

   y = w*w;

end

Figure 1.  A sample function.

   z = x*x ;

    z• = 2*x* x• ;

   w = x + z ;

    w• = x• + z• ;

   y = w*w ;

    y•  = 2*w* w• ;

end

Figure 2.  AD of the sample function.

),(),( xxfyy ••• =function



SPECIAL SECTION: COMPUTATIONAL SCIENCE

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000806

3.2.  AD in reverse mode

In the reverse mode, the flow of the computation is re-
versed. The AD tool functions in the manner as shown in
Figure 4. After the full function computation, the values of
x, w, z are saved and used in the reverse computation of
derivative.
  Here u stands for the derivative dy/du, hence y = dy/dy
= 1. In general y could be a general adjoint direction. If we
input the same value of x = 2, and an initial deriva-
tive y = 1, we get the following computation:

w = 2*w* y = 2*6*1 = 12,

x = w = 12, z = w =12,

x = x + 2*x* z = 12+ 2*2*12 = 60.

  Hence, you get the same answer with the reverse mode as
well.

4.  Complexity of AD

One key advantage of AD is that it allows an a priori bound
on the cost of evaluating certain derivative objects in terms
of the cost for evaluating the function itself. Consider a
general nonlinear F(x): ℜn → ℜm. Let ω(·) denote the tempo-
ral complexity or computational cost to carry out a certain
operation and S(·) denote the spatial (memory) complexity.

Cost of basic forward and reverse mode

• Forward mode: (x, V∈ ℜn × p
1) → (F(x), JV)

Work cost: ω(F, JV) = p1·ω(F)

Space cost: S(F, JV) = S(F).

• Reverse mode: (x, W∈ ℜm × p
2) → (F(x), JTW)

Work cost: ω(F, JTW) = p2·ω(F)

Space cost: S(F, JTW) = numIvars(F).

  numIvars(F) represents the total number of intermediate
variables generated in the computation of F. All of these
variables need to be saved for the reverse mode
operation.
  One special case of the reverse mode is gradient evalua-
tion, where we can use W = 1 (a scalar) to compute the gra-
dient ∇f(x) ≡ JT at a cost proportional to ω(F); the constant
in front can be shown to be about 5 in practice. This is also
known as the cheap gradient result. However, this does
require space proportional to numIvars(F) which can be
prohibitive. Note however that the forward mode costs
n·ω(F).
  Hence in the reverse mode

ω(f, ∇f) = 5·ω(f),  S(f, ∇f) = numIvars(f).

4.1.  AD vs finite difference

In this section we illustrate the key differences between AD
and finite differences. AD computes the derivatives exactly
(up to machine precision) while finite differences incur trun-
cation errors. The size of the step needed for finite differ-
ence (h) varies with the current value of x (the
independents) making the problem of choosing h very diffi-
cult. AD on the other hand, is automatic and time need not
be spent in choosing step-size parameters, etc. Also, a ca-
veat is that, if the function computation itself is not accurate
(i.e. it has roundoff errors), these will appear in the AD pro-
cess as well (ditto for stability questions). If the function
computation is accurate and numerically stable then so will
be the AD process1.
  AD is also traditionally faster than finite difference, since

     x = 2.0
 dx/dx = 1.0

      z = 4.0
 dz/dx = 2*x*dx/dx = 4.0

      w = 6.0
 dw/dx = dx/dx+dz/dx =5.0

      y = 36.0
 dy/dx =2*w*dw/dx =60.0

Figure 3.  Flowchart corresponding to the sample function in Fig-
ure 1.

   z = x*x ;    (1)

   w = x + z;   (2)

   y = w*w ;   (3)

//  Reverse the flow for derivative computation

end

Figure 4.  AD in the sample function.

),()( yxfx =function

)3from(;2 yww ∗∗=

)2from(;; wzwx ==

)1from(;2 zxxx ∗∗+=



SPECIAL SECTION: COMPUTATIONAL SCIENCE

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000 807

AD can take advantage of the problem structure (descrip-
tion of problem structure and its advantages is outside the
scope of this article)3,4.
  For example, consider a simple MATLAB computation of
inverting a 200 × 200 dense matrix. The function
computation takes 0.46 s on a SUN Ultra SPARC work-
station. AD takes a total of 0.78 s to compute the derivative
of the inverse (w.r.t. one independent), while finite differ-
ence takes 0.92 s (basically equivalent to two
function computations).

5.  Extensions and summary

We have illustrated the working of the bare-bone AD tool
with some examples. In many problems, working with this
bare-bone functionality is not adequate; e.g. often the
Jacobian matrices associated with large-scale nonlinear
problems are sparse, which requires a layer of sparsity ex-
ploitation technology above AD. The Bi-coloring method
by Coleman and Verma is a very efficient way to compute
sparse derivative matrices8.
  Many large-scale optimization applications (e.g. inverse
problems) are very complex in nature. It becomes
impractical to consider the function evaluation of such
problems as a ‘black-box’ function since the computation is
structured in some manner, going through a set of
defined structured steps, i.e. problem structure. It pays to
expose the problem structure in the computation to be able
to compute the derivatives efficiently, thus making the
problem solution practical3–5.
  AD technology has been applied to a variety of applica-
tions, in particular some recent work has been in the compu-
tational finance area12, seismic inversion13, and shape
optimization14.
  In general, the full framework of the AD technology

should be rightly seen as a layered view shown in Figure 5.
AD forms the backbone of the computational ladder shown,
driven from the top with real-world problems. Often, the
real-world problems are translated to an optimization sub-
problem. The AD tools allow fast solution to the optimiza-
tion problem by potentially exploiting the sparsity (if there
is sparsity in Jacobian or Hessian matrices, they can be
computed efficiently, see ref. 2) or problem structure for a
practical and painless solution of the application at hand.

 1. Griewank, A., in Complexity in Nonlinear Optimization (ed. Par-
dalos, P.), World Scientific, Singapore, 1993, pp. 128–161.

 2. Coleman, T. F. and Verma, A., SIAM J. Sci. Comput., 1998, 19,
1210–1233.

 3. Coleman, T. F. and Verma, A., in Computational Differentia-
tion: Techniques, Applications and Tools (eds Berz, M., Bischof,
C., Corliss, G. and Griewank, A.), SIAM, Philadelphia, 1966, pp.
149–159.

 4. Coleman, T. F. and Verma, A., Proceedings of 96th Interna-
tional Conference on Nonlinear Programming (ed. Yuan, Y.-X.),
Kluwer Academic Publishers, Boston, 1996, pp. 55–72.

 5. Coleman, T. F., Santosa, F. and Verma, A., in Computational
Methods for Optimal Design and Control (eds Borggaard, J.,
Burns, J., Cliff, E. and Schreek, S.), Birkhauser, 1977, pp. 113–
126.

 6. Verma, A., Ph D thesis, Department of Computer Science, Cor-
nell University, NY, 1988.

 7. Griewank, A. Juedes, D. and Utke, J., ACM Trans. Math. Soft-
ware, 1966, 22, 131–167.

 8. Bischof, C. H., Carle, A., Corliss, G. F., Griewank, A. and Hov-
land, P., Sci. Program.¸1992, 1, 11–29.

 9. Coleman, T. F. and Verma, A., ACM TOMS, 1998 (submitted).
 10. Coleman, T. F. and Verma, A., Proceedings of SIAM workshop

on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing, SIAM, Philadelphia, 1998.

 11. Griewank, A., in Large Scale Numerical Optimization (eds
Coleman, T. F., Li, Y.), SIAM, Philadelphia, 1990, pp. 115–
137.

 12. Coleman, T. F., Li, Y. and Verma, A., J. Comput. Finan., 1999.
 13. Coleman, T. F., Santosa, F. and Verma, A., J. Comput. Phys.,

1999; Also appeared as IMA preprint series #1579, June 1998,
University of Minnesota and Cornell Theory Center, CTC9803.

 14. Borggaard, J. and Verma, A., SIAM J. Sci. Comput., 1999 (sub-
mitted).

ACKNOWLEDGEMENTS.  This work was partially supported by
the Cornell Theory Center which receives funding from Cornell
University, New York State, the National Center for Research Re-
sources at the National Institutes of Health, the Department of De-
fence Modernization Program, the United States Department of
Agriculture, and members of the Corporate Partnership Program and
the National Science Foundation under the grant DMS-9704509.

Applications

Optimization

Structure

Sparsity

AD

Figure 5.  Layered view.


