
Computer Science Technical Report
TR-07-34

October 6, 2007

Mihai Alexe and Adrian Sandu

DENSERKS: A suite of Fortran
sensitivity solvers using continuous,

explicit Runge-Kutta schemes

Computer Science Department
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061
Phone: (540)-231-2193
Fax: (540)-231-6075

Email: {mihai,asandu}@cs.vt.edu
http://eprints.cs.vt.edu

This article was submitted to ACM Transactions on Mathematical Software

DENSERKS: A suite of Fortran sensitivity solvers
using continuous, explicit Runge-Kutta schemes

MIHAI ALEXE and ADRIAN SANDU

Virginia Polytechnic Institute and State University

DENSERKS is a Fortran sensitivity equation solver package designed for integrating models whose
evolution can be described by ordinary differential equations (ODEs). A salient feature of DENSERKS
is its support for both forward and adjoint sensitivity analyses, with built-in integrators for both
first and second order continuous adjoint models. The software implements explicit Runge-Kutta
methods with adaptive timestepping and high-order dense output schemes for the forward and
the tangent linear model trajectory interpolation. Implementations of six Runge-Kutta methods
are provided, with orders of accuracy ranging from two to eight. This makes DENSERKS suitable
for a wide range of practical applications. The use of dense output, a novel approach in adjoint
sensitivity analysis solvers, allows for a high-order cost-effective interpolation. This is a necessary
feature when solving adjoints of nonlinear systems using highly accurate Runge-Kutta methods
(order five and above). To minimize memory requirements and make long-time adjoint model in-
tegrations computationally efficient, DENSERKS implements a two-level checkpointing mechanism.
The code is tested on a selection of problems illustrating first and second order sensitivity analysis
with respect to initial model conditions. The resulting derivative information is also used in a
gradient-based optimization algorithm to minimize cost functionals dependent on a given set of
model parameters.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions; G.4 [Mathematical Software]: Algorithm design and analysis

General Terms: Algorithms, Design

Additional Key Words and Phrases: ODEs, Runge-Kutta methods, dense output, sensitivity
analysis, tangent linear models, adjoint models, quadrature equations

1. INTRODUCTION

Sensitivity analysis is a research area attracting considerable attention due to the
wide range of applicability of its results. In short, the objective of sensitivity
analysis is to obtain qualitative and quantitative information about the relationship
between changes in the inputs or parameters of a given system and changes in the
outputs of that respective system. Parameter identification [Navon 1997], chemical
kinetics [Damian et al. 2002], data assimilation [LeDimet et al. 2002], optimal
control [Griesse and Walther 2003], ocean and atmosphere dynamics [Adcroft et al.
2007; Sandu et al. 2005], and design optimization [Özyurt and Barton 2005b] are

Authors’ address: Department of Computer Science, Virginia Polytechnic and State University,
2200 Kraft Dr, Blacksburg, VA, 24061, USA; email: malexe@cs.vt.edu, asandu@cs.vt.edu; phone:
+1-540-231-5568; fax: +1-540-231-9218
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–27.

2 · M. Alexe and A. Sandu

several of the areas where sensitivity information proves to be extremely useful. We
focus on systems whose time evolution can be modeled as initial-value problems,
using ODEs. Starting from this formulation, we derive the equations used in forward
and adjoint sensitivity analysis for quantifying the model output variation as a
response to perturbations in the initial conditions or other system parameters.
We designed DENSERKS to solve continuous forward, tangent linear and adjoint
models. While the discrete adjoint sensitivity analysis approach based on explicit
Runge-Kutta methods has been proven to be consistent with the continuous adjoint
model formulation [Hager 2000; Walther 2007; Sandu 2006], and tools such as
TAMC [Giering 1999], TAF [Giering and Kaminski 2003], and TAPENADE [Hascöet
and Pascual 2004] considerably speed up the code generation for discrete tangent
linear or adjoint models, the code generated by automatic differentiation (AD) is
frequently sub-optimal and hand-coded modifications of the differentiated code are
normally required in order to guarantee its corectness [Eberhard and Bischof 1999].

The continuous sensitivity analysis approach taken in DENSERKS requires the user
to provide only the right-hand side functions for the model equations. Once the
Fortran code corresponding to the forward model equations has been written, AD
can (and most of the time should) be used to generate very efficient code for the
computation of tangent linear and adjoint model right-hand side functions. These
are then supplied to DENSERKS for the forward or backward time integrations. Fur-
ther details on the use of AD with DENSERKS are given in the appendix.

1.1 Related software packages

A significant effort has been dedicated to creating efficient sensitivity solvers, and
currently there are several high quality implementations available for public use.
SUNDIALS [Hindmarsh et al. 2005] is a suite of ODE solvers featuring forward and
first order adjoint sensitivity analysis capabilities. The CVODES solver [Serban and
Hindmarsh 2003], part of SUNDIALS, is a sensitivity-enabled ODE solver. CVODES
users can choose between backward differentiation schemes or Adams-Moulton
methods for forward, tangent linear and adjoint model integrations. The forward
model trajectory is recreated via cubic Hermite interpolation or variable-order poly-
nomial interpolation [Hindmarsh and Serban 2006b].

Cao, Li and Petzold designed and implemented software for both the forward and
adjoint sensitivity analysis of differential-algebraic equations (DAEs) with index up
to two [Li and Petzold 1999; Cao et al. 2002]. Both their DASPK and DASPKADJOINT
packages use variable-order backward differentiation formulas to solve the DAE
sensitivity systems. Sandu and Miehe [2006] discuss the implementation of implicit
Runge-Kutta and Rosenbrock methods and their discrete and continuous adjoints.
Third order Hermite interpolation is used to approximate the original model solu-
tions at the points required in the continuous adjoint model solvers. Their code is
integrated into the Kinetic PreProcessor (KPP) software for solving chemical kinetics
[Damian et al. 2002; Sandu et al. 2003; Daescu et al. 2003].

In this paper we introduce a new sensitivity solver package based on explicit
Runge-Kutta methods. To the authors’ knowledge, there is no publicly available
sensitivity analysis software that makes use of both explicit Runge-Kutta methods
and dense output schemes for forward, tangent linear and (continuous) adjoint
model integrations. This paper fills the gap; moreover, our package also implements
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 3

a second-order adjoint model solver based on a set of equations equivalent to those
describing the directional second-order adjoint (dSOA) method [Özyurt and Barton
2005a].

1.2 Organization

The rest of this paper is organized as follows. Section 2 contains mathematical
background on Runge-Kutta numerical methods and dense output schemes, as well
as the analytical derivation of the tangent linear and adjoint models employed in
sensitivity analysis. Section 3 provides details on the implementation of DENSERKS.
Information about the availability of our software can be found in section 4. In
section 5 we test our integrators on a set of selected problems and report the
results. We conclude with a summary in section 6.

2. THEORETICAL BACKGROUND

2.1 Runge-Kutta methods

Consider a system modeled by the following initial-value problem, henceforth re-
ferred to as the forward model :

ẏ = F
(
t, y (t, p) , p

)
, t0 ≤ t ≤ tF ,

y
(
t0

)
= y0 (p) , (1)

where y(t, p) ∈ Rnx is the state vector, p ∈ Rnp denotes a vector of system param-
eters, and F : Rnx+1 × Rnp → Rnx . We assume that (1) has a unique solution
y = y(t), and that F is twice continuously differentiable with respect to both y and
p, for all t0 ≤ t ≤ tF .

Runge-Kutta schemes are a well-known class of numerical methods for solving
initial value problems (1). This paper focuses on embedded explicit Runge-Kutta
methods. An s-stage embedded Runge-Kutta integration scheme for (1) can be
defined by its Butcher tableau [Hairer et al. 1993]:

0
c2 a21

c3 a31 a32

...
...

. . .
cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

b̂1 b̂2 · · · b̂s−1 b̂s

(2)

such that

yn+1 = yn + h

s∑

j=1

bjkj

ŷn+1 = yn + h

s∑

j=1

b̂jkj , (3)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · M. Alexe and A. Sandu

where

kj = F

(
tn + hcj , yn + h

j−1∑

i=1

aijki, p

)
, (4)

tn+1 = tn + h and yn ≈ y(tn) denotes the numerical solution of (1) at tn. Both
approximations yn+1 and ŷn+1 use the same function values (stages) kj , but they
have different orders of accuracy, depeding on the particular choice of method
coefficients aij , bj , b̂j and cj . The next-step solution yn+1 is used to continue
the integration, whereas the second solution, ŷn+1 is used to estimate the local
truncation error as

en+1 = yn+1 − ŷn+1 . (5)

This error estimate is used to automatically control the integration time step
size. Hairer et al. [1993] give further details on the error control mechanism for
Runge-Kutta integrators (Section II.4).

2.2 Dense Output for Runge-Kutta methods

In many applications one needs the approximate solution at certain prescribed
time points; it is usually inefficient to have the Runge-Kutta routine compute those
approximations, since this would impose unnecessary constraints on the size of the
integration time steps. This situation motivated the construction of dense output
formulas [Hairer et al. 1993]. Given an approximate solution yn ≈ y(tn), the dense
output formulas yield cheap numerical approximations for the solution y(tn+θh) for
the entire interval 0 ≤ θ ≤ 1. For most Runge-Kutta schemes of higher order, one
needs to append s∗−s extra stages in order to accommodate dense output schemes.
Thus, the performance penalty incurred by the use of dense output formulas is equal
to at most the cost of a few extra function evaluations per time step. A dense output
formula for (3) has the form

u(θ) = yn + h

s∗∑

j=1

b̃j(θ)kj , (6)

where 0 ≤ θ ≤ 1, kj is defined in (4), and b̃j(θ) are polynomials in θ determined
such that

u(θ)− y(tn + hθ) = O
(
hq∗+1

)
. (7)

Following Hairer et al. [1993], consider an interval
[
tn, tn+1

]
far away from the

initial time t0, and denote by z(x) the local solution of (1) that passes through the
point (tn, yn). Then the error of the dense output formula can be written as:

u(θ)− y (tn + hθ) = [u(θ)− z(tn + hθ)] + [z(tn + hθ)− y(tn + hθ)] . (8)

The first term in the right hand side of (8) is the interpolation error and has
magnitude O (

hq∗+1
)
. The second term denotes the global error of the method and

is of magnitude O (hq). Therefore, to guarantee an order-q accurate dense output
approximation, it is sufficient to require q∗ = q − 1. For q ≤ 4, cubic Hermite
interpolation is sufficiently accurate. However, for larger values of q, performing
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 5

polynomial interpolation while preserving the number of stages becomes an increas-
ingly cumbersome process, and the quality of the interpolated solution depends on
the choice of interpolation points. Continuous Runge-Kutta schemes allow for an ef-
ficient interpolation, with only a modest increase in the computational cost coming
from the s∗−s additional stages incorporated in (3). Since the accuracy constraints
on the dense output coefficients usually allow for one or more degrees of freedom,
one selects the coefficients of the polynomials b̃j(θ) such that a certain error norm
or cost function is minimized (see, e.g., [Baker et al. 1996]). Various dense output
methods for constructing high-order interpolants have been proposed, notably by
Sharp and Verner [1998], based on the bootstrapping scheme of Verner [1993].

2.3 First order forward sensitivity analysis

One objective in sensitivity analysis is to compute the sensitivity of the forward
model solution with respect to the np parameters over the prescribed time interval[
t0, tF

]
. Let the sensitivity of the solution y with respect to the parameter pi be

denoted by τi:

τi(t) ≡ ∂y

∂pi
(t) . (9)

Under our smoothness assumptions on the solution of (1), we can formally dif-
ferentiate the ODE in (1) with respect to any parameter pi [Hairer et al. 1993].
Then the tangent linear model (usually abbreviated as TLM) describes the time
evolution of the sensitivities τi:

τ̇i(t) = Fyτi(t) + Fpi , t0 ≤ t ≤ tF ,

τi(t0) =
∂y

(
t0

)

∂pi
=

∂y0

∂pi
, i = 1 . . . np , (10)

with

Fy =
(

∂Fi

∂yj
(t, y, p)

)

i,j=1...nx

, (11)

and

Fpi =
∂F

∂pi
. (12)

2.3.1 First order forward sensitivities with respect to the initial conditions. A
special case that often arises in practice is p = y0 (this implies that np = nx). In
this case one computes the sensitivities of the solution y(tF) with respect to the
initial conditions y0 given in (1). The tangent linear model specializes to:

τ̇i(t) = Fyτi(t) , t0 ≤ t ≤ tF ,

τi(t0) = ei , i = 1 . . . nx , (13)

where ei ∈ Rnx is the i-th unit vector. Solving (13) we obtain

τi(tF) =
∂yF

∂y0
i

. (14)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · M. Alexe and A. Sandu

2.3.2 First order forward sensitivities with respect to vector perturbations in
the parameters. It is also useful to analyze the following scenario: suppose we are
looking for the sensitivity of the final model solution with respect to a change
δp ∈ Rnp in all the parameters p. Then we can solve a slightly modified version of
(10):

τ̇ = Fyτ + Fpδp , t0 ≤ t ≤ tF ,

τ(t0) =
∂y0

∂p
δp ≡ δy0 , (15)

to get

τ(tF) =
∂yF

∂p
δp ≡ δyF . (16)

This particular form of the tangent linear model plays an important role in the
second order sensitivity analysis framework, described in detail in section 2.6.

2.4 First order adjoint sensitivity analysis

An alternative objective is to find the sensitivity of a cost functional G that depends
on the original model state y(t) and on the np parameters:

G(p) =
∫ tF

t0
g
(
t, y(t, p), p

)
dt , (17)

where g : Rnx+1 ×Rnp → R is a given real-valued function.
The gradient ∂G

∂p can be obtained by using the Lagrange multiplier technique
[Özyurt and Barton 2005a; Cao et al. 2002; Hindmarsh et al. 2005]. We introduce
the Lagrange multipliers λ ∈ Rnx and form the extended cost functional

Ĝ(p) = G(p)−
∫ tF

t0
λT (ẏ − F (t, y, p)) dt

=
∫ tF

t0
g(t, y, p)− λT

(
ẏ − F (t, y, p)

)
dt . (18)

Under the model constraint (1), Ĝ(p) = G(p). It follows that the sensitivity of
Ĝ with respect to the parameters p is

∂Ĝ

∂p
=

∂G

∂p
=

∫ tF

t0
(gyyp + gp)−

∫ tF

t0
λT (−Fp − Fyyp + ẏp) dt . (19)

Integration by parts yields:

∂G

∂p
=

∫ tF

t0
(gyyp + gp) dt−

∫ tF

t0
(−λT Fp − λT Fyyp − λ̇T yp) dt− (λT yp)|t

F

t0

=
∫ tF

t0
(gp + λT Fp) dt−

∫ tF

t0
(−gy − λT Fy − λ̇T)yp dt− (λT yp)|t

F

t0 . (20)

To avoid the computation of the forward sensitivities yp(t) at t > t0, one defines
the first order adjoint variable λ ∈ Rnx as the solution of the first order adjoint
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 7

model, described by the following final-value problem:

λ̇ = −FT
y (t, y)λ− gT

y , tF ≥ t ≥ t0 ,

λ(tF) = 0 . (21)

The gradient (20) now reads

∂G

∂p
=

∫ tF

t0
(gp + λT Fp) dt +

(
λT yp

)∣∣
t=t0

. (22)

and it becomes apparent that one can compute the entire gradient ∂G/∂p at the
cost of a single first order adjoint model integration, plus an evaluation of (22).
Evaluating the integral in (22) amounts to solving the quadrature equations

ẇ = −FT
p λ− gT

p , tF ≥ t ≥ t0 ,

w
(
tF

)
= 0 , (23)

backward in time, to get

∂G

∂p
=

(
wT + λT yp

)∣∣
t=t0

, (24)

where w ∈ Rnp are the quadrature variables. To avoid storing intermediate values
for λ, it is generally advisable to integrate (21) and (23) simultaneously, e.g. as an
extended system of nx + np ODEs, or on different computational grids.

2.4.1 First order adjoint sensitivities for pointwise functionals. We now con-
sider a special case of (21). If we are interested in evaluating the gradient of a
pointwise cost functional GF (p) = g

(
y

(
tF , p

)
, p

)
, we can use the following relation

[Cao et al. 2002]:

∂GF

∂p

(
tF , p

)
=

∂g

∂p

(
tF , p

)
=

d

dtF
∂G

∂p
(p) . (25)

A straightforward application of the Leibniz differentiation rule yields:

d

dtF
∂G

∂p
=

(
γT yp

)∣∣
t=t0

+ gp

(
tF

)
+

(
λT Fp

)∣∣
t=tF +

∫ tF

t0
γT Fp dt

=
(
γT yp

)∣∣
t=t0

+ gp

(
tF

)
+

∫ tF

t0
γT Fp dt , (26)

where the last equation follows from the final condition on λ in (21) and

γ ≡ dλ

dtF
(27)

denotes the solution of the adjoint problem

γ̇ = −FT
y γ , tF ≥ t ≥ t0 ,

γ
(
tF

)
= gT

y

(
tF

)
, (28)

obtained by differentiating (21) with respect to tF .
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · M. Alexe and A. Sandu

2.4.2 First order adjoint sensitivities with respect to the initial conditions. In-
tegrating the ODE in (28) with final conditions λ(tF) = ei yields the sensitivities
of the i-th component of the forward model model state yF

i ≡ yi(tF) with respect
to the model initial conditions y0:

λ
(
t0

)
=

∂yF
i

∂y0
. (29)

2.5 Tangent linear versus adjoint models

By inspecting (10) and (21), one notes that each model is best suited for use in one
of two complementary scenarios. Forward sensitivity analysis is preferable when
the number of parameters is (considerably) smaller than the number of function-
als whose gradients need to be evaluated. Conversely, adjoint models are more
efficient when the sensitivity of one or a few cost functionals with respect to a
large number of parameters is desired. One can assert that the adjoint approach
is (relatively) insensitive to an increase in np as opposed to the forward sensitivity
analysis method [Özyurt and Barton 2005a]. The dependence on np becomes im-
portant when nx ¿ np, and the cost of integrating the quadrature equations (23)
dominates the sensitivity computations.

2.6 Second order adjoint sensitivity analysis

Problems in areas such as data assimilation [Sandu and Zhang 2007; Kalnay 2002]
require the minimization of a given cost functional of type (17). Numerical op-
timization schemes like the various flavors of the Newton method [Nocedal and
Wright 2006] make use of second-order information to accelerate convergence. In
practice, the computation of the full Hessian of the given cost functional is avoided,
due to the high computational complexity of such a task. To make this process com-
putationally tractable, second order information is usually computed in the form
of Hessian-vector products (e.g., in a Hessian-free Newton implementation). Such
products can be obtained efficiently by using the second order adjoint framework.
Second order adjoint models have been used successfully in dynamic optimization
problems such as 4D-Var data assimilation [Wang et al. 1992; LeDimet et al. 2002;
Sandu and Zhang 2007] to compute second order derivative information for various
cost functionals with respect to parameters or model initial conditions. DENSERKS
implements the directional second-order adjoint (dSOA) method [Özyurt and Bar-
ton 2005a; 2005b].

Our goal is to compute the Hessian-vector product
(
∂2G/∂p2

)·δp where δp ∈ Rnp

is a perturbation in the (time-independent) parameters. By differentiating (20) with
respect to p (similar to the procedure presented in [Özyurt and Barton 2005a]), we
arrive at the following second order adjoint model equation:

σ̇ + FT
y σ = − (Fyy ¯ (ypδp))T

λ− (Fyp ¯ δp)T
λ− gyy (ypδp)− gypδp ,

σ
(
tF

)
= 0 , tF ≥ t ≥ t0 , (30)

where σ ∈ Rnx is the second order adjoint variable,

Fyy =
(

∂2Fi

∂yj∂yk

)

i,j,k=1...nx

, (31)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 9

and the ¯ symbol denotes the tensor product

Fyy ¯ (ypδp) =

(
nx∑

k=1

(Fyy)i,j,k (ypδp)k

)

i,j

. (32)

Fyp, Fpp, Fpy are defined by similar formulas.
Using the second order adjoint model trajectory σ(t), we can compute the Hessian-

vector product for any given vector δp ∈ Rp as:

∂2G

∂p2
δp =

∫ tF

t0

(
gppδp + gpy(ypδp) + FT

p σ + (Fpp ¯ δp)T
λ + (Fpy ¯ (ypδp))T

λ
)

dt

+
(
(ypp ¯ δp)T

λ + yT
p σ

)∣∣∣
t=t0

. (33)

The corresponding quadrature equations for v ∈ Rnp

v̇ + FT
p σ = − (Fpp ¯ δp)T

λ− (Fpy ¯ (ypδp))T
λ− gppδp− gpy(ypδp)

v
(
tF

)
= 0 , tF ≥ t ≥ t0 , (34)

are integrated alongside the first and second order adjoint models (21), (30) to yield

∂2G

∂p2
δp = v

(
t0

)
+

(
(ypp ¯ δp)T

λ + yT
p σ

)∣∣∣
t=t0

. (35)

An additional tangent linear model integration is necessary to obtain the ypδp
term [Cao et al. 2002]. This requires the solution of (15) with τ(t) ≡ yp(t)δp.

2.6.1 Second order adjoint sensitivity of pointwise functionals. As in the case
of the first order adjoint, one can compute the second order directional derivative
of g by using the relation

∂2g

∂p2
(tF , p) =

d

dtF
∂2G

∂p2
(p) . (36)

Let

µ ≡ ∂σ

∂tF
. (37)

By differentiating (30) with respect to tF , we obtain the following formulation of
the second order adjoint model

µ̇ + FT
y µ = − (Fyp ¯ δp)T

γ − (Fyy ¯ (ypδp))T
γ , tF ≥ t ≥ t0

µ(tF) = (gyy(ypδp) + gypδp)|tF , (38)

where γ(t) is the solution of (28). A similar differentiation of (33) gives

∂2g

∂p2
δp = µ(t0) +

(
(ypp ¯ δp)T

γ + yT
p µ

)∣∣∣
t=t0

(39)

2.6.2 Second order adjoint sensitivities with respect to the initial conditions. If
np = nx, p = y0 and δp = δy0, i.e., one is interested in computing second-order
sensitivity information with respect to model initial conditions, the second order

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · M. Alexe and A. Sandu

Runge-Kutta method Order of
accuracy

Error control
order

Interpolation method

RK2 (Fehlberg) 2 3 Hermite (3rd/5th order)

RK3 3 2 Hermite (3rd/5th order)

RK4 (“3/8-rule”) 4 3 Hermite (3rd/5th order)

RK5 5 4 Hermite (3rd/5th order),
Dense output (4th order)

RK6 (DOPRI5) 6 5 Hermite (3rd/5th order),
Dense output (6th order)

RK8 (DOPRI8) 8 6 Hermite (3rd/5th order),
Dense output (7th order)

Table I. Explicit Runge-Kutta methods implemented by DENSERKS: RK2 - Fehlberg-type Runge-
Kutta method of order 2(3); RK3 - 3rd order Runge-Kutta with second order error control; RK4
- 4th order Runge-Kutta method with 3rd order error control built on the classic “3/8 rule”; RK5
- DOPRI5(4); RK6 - Runge-Kutta pair built on top of RK6(5)9FM; RK8 - DOPRI8(6).

adjoint system (38) simplifies to:

σ̇ + FT
y σ = − (Fyy ¯ δy)T

λ , tF ≥ t ≥ t0 ,

σ(tF) = gyyδy |tF , (40)

where δy = ypδp.
Solving (40) alongside (21) yields

σ(t0) =
∂2G

(∂y0)2
δy0 . (41)

3. IMPLEMENTATION DETAILS

3.1 Runge-Kutta implementations

DENSERKS implements several explicit Runge-Kutta methods, listed in Table I. It
is important to note that the user needs to employ the same Runge-Kutta method
for both the forward and adjoint mode integrations when solving (21) and (30).
This is motivated by the fact that the stages kj from the forward or tangent linear
model run are reused by the dense output mechanism for trajectory interpolation
during the adjoint integration. Thus stages corresponding to a method of the same
order are required if the adjoint solution is to be fully accurate (i.e. have the same
accuracy as the Runge-Kutta method used in the adjoint model integration). The
Butcher tableaus and the dense output coefficients corresponding to the Runge-
Kutta methods in Table I can be found in [Hairer et al. 1993; Baker et al. 1996;
Dormand and Prince 1980; Prince and Dormand 1981; Dormand et al. 1989]. The
DENSERKS adjoint model integrators can use either cubic/quintic Hermite polyno-
mial interpolation or dense output for forward trajectory recomputations. The in-
terpolation options are dependent on the particular choice of Runge-Kutta method.

3.2 Checkpointing

Upon closer inspection of the first (21) and second order (30) adjoint models, one
notices that they are terminal value problems whose solution depends on the for-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 11

ward model and tangent linear model trajectories, respectively. Since the Runge-
Kutta integrators have a variable step, one needs to store the information generated
during the forward integrations and reuse it to interpolate the forward trajectory
during the adjoint model run at the required time points. Once the forward model
integration data is available in memory, the dense output mechanism can be used
for the interpolation. However, memory requirements for large-scale applications
and long-time integration processes render infeasible any storage mechanisms based
exclusively on random-access memory. To mitigate this problem, we employ a two-
level checkpointing scheme, thus making use of available disk storage [Hindmarsh
et al. 2005; Adcroft et al. 2007; Cao et al. 2002]. A file checkpoint written by the
forward model integrator is defined as a triplet

CHKfwd = (h, t, y) (42)

that fully captures the integrator’s state at a particular time point t. Here h
denotes the time step that is taken to get from t to the next time point. This
data is sufficient to allow a hot restart of the integration from time t, i.e., the new
trajectory will be identical to the previously computed forward trajectory starting
from t. A file checkpoint is stored on disk every Nd integration steps (including an
extra checkpoint at t0). In between any two checkpoints, memory-based tapes are
used to store the integration data. The tape entries entry can be viewed as a tuple
of the form:

MEMfwd = (h, t, y, F, k2...s∗) . (43)

Note that we store both the right-hand side F and stage values kj in mem-
ory, since they are required in the dense output scheme (6). However, they are
not needed in the file checkpoints. At the end of the forward integration, Nc file
checkpoints will have been written (Nc ≥ 1 since a checkpoint is always written at
t = t0). At this point, the backward integrator is run and any necessary forward
trajectory recomputations are automatically performed. Note that the data stored
in the memory buffers between the last checkpoint and tF is reused in the adjoint
integration, not recomputed, for increased efficiency. Let us denote the computa-
tional cost of a full forward integration by πFWD and that of a first order adjoint
model integration by πADJ. Then we have that the cost of a full backward problem
integration, πBKWD, is bounded as

πFWD + πADJ ≤ πBKWD < 2× πFWD + πADJ . (44)

For a visual representation of a multilevel checkpointing scheme, the reader is
kindly directed to [Adcroft et al. 2007; Hindmarsh et al. 2005].

The discussion above also applies (with minor modifications) to the second order
adjoint model integration. We now need to store on disk quadruples that include
the tangent linear model state at time t:

CHKtlm = (h, t, y, τ) . (45)

Likewise, the memory tape entries are enlarged to accomodate TLM-related in-
formation:

MEMtlm = (h, t, y, τ, F, Fyτ + Fpδp, k2...s∗ , k
τ
2...s∗) . (46)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · M. Alexe and A. Sandu

Note that the forward and the tangent linear models share the same time steps
(h) and time moments (t) in (45–46), since DENSERKS integrates the two models
simultaneously, as a system of 2× nx ODEs.

The computational cost of a second order adjoint solve, πBKWD2, can be similarly
bounded as

πL ≤ πBKWD2 < πH , (47)

where

πL = πFWD + πTLM + πADJ + πSOA

πH = 2× πFWD + 2× πTLM + πADJ + πSOA , (48)

and πTLM and πSOA denote the computational cost incurred when integrating (13)
and (30), respectively. When np additional quadrature equations need to be inte-
grated, their associated cost has to be incorporated in (44) and (48).

3.3 Using automatic differentiation to obtain derivative information

From the equations that describe the first order and second order adjoint mod-
els (21,30), as well as from the gradient (22) and Hessian-vector product (33), it
becomes clear that one needs an efficient way to compute Jacobian-vector, Jacobian-
transpose times vector and Hessian-vector tensor products.

Assuming the right-hand side F (t, y, p) of the original model (1) is twice continu-
ously differentiable in both y and p, we can obtain first and second order derivative
information via automatic differentiation. The forward mode of automatic differ-
entiation can be used to yield Fyτi in (10). Likewise, applying the reverse mode of
AD is an efficient method to generate code for the computation of FT

y λ . In both
cases the products are evaluated directly, without accumulation of the full Jacobian
matrices. The “cheap gradient theorem” [Griewank 2000] asserts that both matrix-
vector products are evaluated at a cost not exceeding five evaluations of F (t, y, p).
Moreover, AD yields derivative information that has machine precision accuracy:
the result is not affected by the truncation errors present in any finite-difference
approximation [Griewank 2000].

Second order derivative information can be obtained by running AD twice. The
“forward over adjoint mode” (a forward mode differentiation of existing first order
adjoint code) avoids the computation of the first order sensitivity matrix yp ∈
Rnx×np and has proven to be very efficient from a numerical implementation
perspective [Özyurt and Barton 2005a]. Further details on AD and its use with
DENSERKS are provided in the appendix of this paper.

3.4 Code organization and usage

Table II lists the names of the model integrator subroutines along with their file
location, and succinct explanations of their purpose and usage. Sample drivers
for the test problems described in section 5 are also provided with DENSERKS. We
note that backward time integration in the forward mode is not supported, nor
is forward time integration in the adjoint mode. Thus, all integrators in Table II
require that t0 ≤ tF . In addition, the following source files are part of DENSERKS:

(1) erk tapes.f90, erk tlm tapes.f90: Implementations of the memory buffer
and file checkpoint mechanisms (for temporary storage of the forward and tan-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 13

gent linear model trajectories between two consecutive file checkpoints). Con-
tain functions for writing and reading file checkpoints and storing/retrieving
data from the memory buffers.

(2) erk utils.f90: An implementation of several Level 1 and Level 2 BLAS utility
functions used by the DENSERKS integrators. Alternatively, the user can simply
forward these calls to an optimized BLAS implementation available for his or
her computer architecture.

A sample call sequence for first order adjoint model integrations is the following
(we assume that file checkpointing is enabled, otherwise the values of Nc and Nd
are ignored):

!! size of forward and adjoint model state vectors
integer nx

!! size of quadrature system state
integer np

!! initial and final integration time
double precision t0, tF

!! forward and adjoint model state vectors
double precision y(nx), ady(nx)

!! quadrature system state vector
double precision w(np)

!! write a file checkpoint every Nd time steps
integer Nd

!! allocate the memory buffers and initialize the checkpoint files
call rk AllocateTapes(. . .)

!! initialize y, ady, w and other integrator parameters as needed
y, ady, w = . . .

!! integrate the forward model
call RKINT(nx,y,...,t0,tF,Nd,Nc,...)

!! Nc (integer) = total number of file checkpoints written
!! integrate the first order adjoint model

call RKINT ADJDR(nx,ady,...,np,w,...,Nc,...)
!! free memory

call rk DeallocateTapes

A similar sequence of DENSERKS subroutine calls ensures a correct backward-time
integration of a given second-order adjoint model. In the case of multiple integra-
tions of the same first or second order adjoint system (with different final condi-
tions), it is recommended to use RKINT ADJDR M and RKINT SOADR M, respectively.
Use of these subroutines results in a significant performance improvement over the
approach of making several RKINT ADJDR or RKINT SOADR calls, due to the reuse of
forward and tangent linear model trajectory data over all adjoint model integra-
tions. This lowers the cost of M first order adjoint model integrations, πM BKWD,
from M × πBKWD in (44) to

πFWD + M × πADJ ≤ πM BKWD < 2× πFWD + M × πADJ . (49)
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · M. Alexe and A. Sandu

Integrator Source file Description

RKINT erk.f90 Forward model integrator. Writes forward model trajectory data
to the memory buffers and file checkpoints, if the memory buffer-
ing and file checkpointing mechanisms are enabled. This routine
is user-callable.

RKINT TLM erk tlm.f90 Tangent linear model integrator. Simultaneously integrates the
forward model (the resulting system has size 2 × nx). Writes
forward and tangent linear model trajectory data to the memory
buffers and file checkpoints, if the memory buffering and file check-
pointing mechanisms are enabled. This routine is user-callable.

RKINT ADJ erk adj.f90 First order adjoint model integrator. The routine is used to in-
tegrate the first order adjoint model and the associated quadra-
ture equations (for a total backward problem size of nx + np)
between two given consecutive checkpoints. RKINT ADJ reads for-
ward model trajectory data from the memory buffers, implicitly
assuming they hold valid forward integration information. The
user should not call this subroutine directly. Instead, all first order
adjoint integrations should be done via calls to the RKINT ADJDR

wrapper subroutine.

RKINT SOA erk soa.f90 Second order adjoint model integrator. Simultaneously integrates
the first and second order adjoint model equations and the quadra-
ture equations (the resulting system has size 2×nx + np). Reads
data from the memory buffers only. The user should not call this
subroutine directly. Instead, all first order adjoint integrations
should be done via calls to the RKINT SOADR wrapper subroutine.

RKINT ADJDR erk adjdr.f90 Wrapper for RKINT ADJ. Handles all checkpoint reads and calls
RKINT to calculate the forward model trajectory, should such re-
computations be required. Calls RKINT ADJ for first order adjoint
model integration between consecutive checkpoints. This routine
is user-callable.

RKINT SOADR erk soadr.f90 Wrapper for RKINT SOA. Handles all checkpoint reads and calls
RKINT TLM to calculate the tangent linear model trajectory, should
such recomputations be required. Calls RKINT SOA for second or-
der adjoint model integration between consecutive checkpoints.
This routine is user-callable.

RKINT ADJDR M erk adjdr M.f90 Wrapper for RKINT ADJ used for multiple first order adjoint inte-
grations that reuse the forward model trajectory data generated
by RKINT. RKINT ADJDR M handles all checkpoint reads and calls
RKINT to calculate the forward model trajectory, should such re-
computations be required (in this case, at most one extra forward
model integration is performed). Calls RKINT ADJ for first order
adjoint model integration between consecutive checkpoints. This
subroutine is user-callable.

RKINT SOADR M erk soadr M.f90 Wrapper for RKINT SOA used for multiple second order adjoint
model integrations that reuse the forward and tangent linear
model trajectory data generated by RKINT TLM. RKINT SOADR M

handles all checkpoint reads and calls RKINT TLM to calculate the
forward and tangent linear model trajectories, should such recom-
putations be required (in this case, at most one extra forward and
tangent linear model integration is performed). Calls RKINT SOA

for second order adjoint model integration between consecutive
checkpoints. This subroutine is user-callable.

Table II. DENSERKS integrator subroutines.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 15

A similar reduction in computational cost is noticed in the case of M second order
adjoint model integrations with RKINT SOADR M. The corresponding cost bounds πL

and πH in (48) become

πLM = πFWD + πTLM + M × πADJ + M × πSOA

πHM = 2× πFWD + 2× πTLM + M × πADJ + M × πSOA , (50)

thus

πLM ≤ πM BKWD2 < πHM . (51)

4. AVAILABILITY AND SYSTEM REQUIREMENTS

The source code is released under a BSD open source license and is freely available
for download at http://people.cs.vt.edu/~asandu/Software/DENSERKS.

4.1 System requirements

To successfully compile and run DENSERKS, the user needs a Fortran 90 compliant
compiler. The code has been tested on Unix and Linux systems with the following
compilers: Intel Fortran compiler (ifort, Linux IA-32 version 9.1 and Unix IA-
64 version 10.0), the Portland Group compiler (pgf90, Linux version 6.0-2), Lahey
(lf95 for 32-bit Linux) and g951. Section 4.2 contains important information about
building DENSERKS with Intel’s ifort compiler.

4.2 Compiler optimization caveat

We have noticed that compilation of the DENSERKS source code using Intel’s Fortran
compiler ifort (Linux 32-bit version 9.1) with agressive optimizations enabled (-O2
or -O3) results in an erroneous binary file: a spurious time step-related error is
reported before the end of the final forward model integration time step. This issue
can be mitigated by compiling with the -mp switch, which forces the compiler to
maintain floating point precision (some arithmetic optimizations will be disabled).
Enabling full optimizations with all other compilers used in our tests has resulted
in valid binaries.

5. NUMERICAL EXPERIMENTS

All numerical experiments were performed using double precision floating-point
arithmetic on a 3 Ghz Intel Pentium 4 workstation with 2 GB of memory running
Fedora Core 6 Linux.

5.1 The Arenstorf orbit

The Arenstorf orbit system is usually given as a set of two second order ODEs
[Hairer et al. 1993], and can be readily transformed into a first order initial-value
problem:

ẏ1 = y3

ẏ2 = y4

1Freely available under a GPL license at http://www.g95.org/

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · M. Alexe and A. Sandu

ẏ3 = y1 + 2y4 − µ̂
y1 + µ

[(y1 + µ)2 + y2
2]3/2

− µ
y1 − µ̂

[(y1 − µ̂)2 + y2
2]3/2

ẏ4 = y2 − 2y3 − µ̂
y2

[(y1 + µ)2 + y2
2]3/2

− µ
y2

[(y1 − µ̂)2 + y2
2]3/2

, (52)

where

µ = 0.012277471 (53)
µ̂ = 1− µ . (54)

The initial conditions are:

y1(t0) = 0.994
y2(t0) = 0
y3(t0) = 0
y4(t0) ≈ −2.0016 (55)

We consider one-tenth of a full orbit period as our forward model integration
window: t0 = 0 and tF ≈ 1.7065. Figures 1 and 2 illustrate the absolute errors of the
forward, tangent linear and first order adjoint model solvers using the DOPRI5(4)
and DOPRI8(6) Runge-Kutta numerical schemes with 4th and 7th order dense
output. As expected, the corresponding tangent linear and adjoint model solutions
are 5th and 8th order accurate, respectively. This shows that the dense output
strategy implemented in DENSERKS makes it possible to compute a high-quality
adjoint solution that has the same order of accuracy as the underlying Runge-
Kutta method. The reference solution was obtained by integrating the TLM model
with very tight absolute and relative tolerances (ATOL = RTOL = 10−14) using the
DOPRI8(53) code written by Hairer et al. [1993]. One should note that, in the
figures illustrating relative and absolute integration errors, there is no continuous
dependence of the errors on the requested numerical accuracy. This is because both
the forward and the adjoint integration algorithms are adaptive. The continuous
graphs are only intended for better visualization.

5.2 The Van der Pol oscillator

5.2.1 First order sensitivity analysis. We now consider the scaled version of
the Van der Pol oscillator equation [Hairer and Wanner 1994]. The corresponding
first-order ODE system reads:

ẏ1 = y2

ẏ2 =
((

1− y2
1

)
y2 − y1

)
/ε (56)

with ε = 10−2 and initial conditions

y1(t0) = 2
y2(t0) = 0 (57)

The time integration interval spans from t0 = 0 to tF = 2. Figure 3 illustrates
the forward and adjoint model solutions, their order of accuracy, as well as the
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 17

19 28 42 62 92 137 204 303
10

−12

10
−8

10
−4

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

y
1
F

y
2
F

y
3
F

y
4
F

M−5

16 21 28 37 48 64 84 111
10

−15

10
−10

10
−5

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

y
1
F

y
2
F

y
3
F

y
4
F

M−8

(a) Forward model: DOPRI5(4) (b) Forward model: DOPRI8(6)

37 57 88 135 210 325 500 775
10

−12

10
−8

10
−4

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

∂ y
1
F / ∂ y

1
0

∂ y
2
F / ∂ y

1
0

∂ y
3
F / ∂ y

1
0

∂ y
4
F / ∂ y

1
0

M−5

18 24 33 44 59 79 107
10

−12

10
−8

10
−4

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

∂ y
1
F / ∂ y

1
0

∂ y
2
F / ∂ y

1
0

∂ y
3
F / ∂ y

1
0

∂ y
4
F / ∂ y

1
0

M−8

(c) Tangent linear model: DOPRI5(4) (d) Tangent linear model: DOPRI8(6)

Fig. 1. Arenstorf orbit problem: Relative errors in the forward and tangent linear model solutions
obtained using the DOPRI5(4) with 4th order dense output ((a),(c)) and DOPRI8(6) with 7th
order dense output ((b),(d)). The integration interval length is equal to one tenth of a full orbit
period: t0 = 0, tF ≈ 1.707. As expected, both the forward ((a),(b)) and the tangent linear model
solutions ((c),(d)) are fully accurate. In each TLM run we computed the first column (j = 1) of

the Jacobian matrix
(
∂yF

i /∂y0
j

)
i,j=1...4

.

time steps taken by the two integrators. Note that both the forward and adjoint
integrators are adaptive: the time step size is adjusted to keep the numerical so-
lution within the user-specified tolerance bounds. Step size control is performed
independently during both the forward and the reverse integration. Figures 3 (e)
and (f) assess how the forward integration errors affect the accuracy of the adjoint
solution. It can be seen that for this particular problem, we obtain an eight order
decrease in the error of the adjoint solution even when interpolating data corre-
sponding to a less accurate forward trajectory. Thus, using the adaptive forward
model integrator with looser tolerances still results in an accurate adjoint model
solution.

Let us consider ε as a model parameter and compute the sensitivity ∂G/∂ε for a
given cost function G(y) as in (17). To this aim we need to integrate the quadrature
equations (22) alongside the first order adjoint model. Figure 4 illustrates the
gradient results in the case of G = y(T) (where T > t0 is a fixed time point).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · M. Alexe and A. Sandu

40 60 85 125 180 265 385 560 814
10

−15

10
−10

10
−5

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

∂ y
1
F / ∂ y

1
0

∂ y
1
F / ∂ y

2
0

∂ y
1
F / ∂ y

3
0

∂ y
1
F / ∂ y

4
0

M−5

20 27 40 55 75 105 145 200
10

−15

10
−10

10
−5

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

∂ y
1
F / ∂ y

1
0

∂ y
1
F / ∂ y

2
0

∂ y
1
F / ∂ y

3
0

∂ y
1
F / ∂ y

4
0

M−8

(a) Adjoint model: DOPRI5(4) (b) Adjoint model: DOPRI8(6)

31 45 70 105 160 240 360 540 814
10

−12

10
−8

10
−4

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

∂ y
1
F / ∂ y

1
0

∂ y
1
F / ∂ y

2
0

∂ y
1
F / ∂ y

3
0

∂ y
1
F / ∂ y

4
0

M−5

38 55 75 100 140 200 272
10

−15

10
−10

10
−5

10
0

Number of steps (M)

R
el

at
iv

e
E

rr
or

∂ y
1
F / ∂ y

1
0

∂ y
1
F / ∂ y

2
0

∂ y
1
F / ∂ y

3
0

∂ y
1
F / ∂ y

4
0

M−8

(c) Adjoint model: DOPRI5(4) (d) Adjoint model: DOPRI8(6)
with variable forward tolerances with variable forward tolerances

Fig. 2. Arenstorf orbit problem: Relative errors in the first order adjoint model solutions obtained
using the DOPRI5(4) with 4th order dense output ((a),(c)) and DOPRI8(6) with 7th order dense
output ((b),(d)). The integration interval length is equal to one tenth of a full orbit period: t0 = 0,
tF ≈ 1.707. As expected, the adjoint model solutions are fully accurate. The user can choose
between two approaches: either run the adjoint model with variable tolerances, while keeping
the forward integration tolerances constant ((a) and (c) illustrate this case, with ATOLfwd =
RTOLfwd = 10−12), or vary both the forward and adjoint model tolerances during several adjoint
model test runs ((b) and (d) show the results of several adjoint model integrations where the
prescribed absolute and relative forward and adjoint integrator tolerances are equal and vary
between 10−4 and 10−12). In each adjoint model run we computed the first row (i = 1) of the

Jacobian matrix
(
∂yF

i /∂y0
j

)
i,j=1...4

.

5.2.2 Second order sensitivity analysis. As a second-order sensitivity analysis
example, we choose the following form of the Van der Pol system (adapted from
[Özyurt and Barton 2005a]):

ẏ1 =
(
1− y2

2

)
y1 − y2 + v(t, p)

ẏ2 = y1

ẏ3 = y2
1 + y2

2 + v2(t, p) (58)
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 19

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Time

y
1
(t)

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Time

∂ y
1
 / ∂ y

1
0

(a) Forward model solution: DOPRI8(6) (b) Adjoint model solution: DOPRI8(6)

0 0.5 1 1.5 2
0

1

2

3

4

5
x 10

−3

Time

T
im

e
st

ep
 le

ng
th

0 0.5 1 1.5 2
0

1

2

3

4

5
x 10

−3

Time

T
im

e
st

ep
 le

ng
th

(c) Forward integration time steps (d) Adjoint integration time steps

165 230 320 450 615 850 1200
10

−15

10
−10

10
−5

10
0

Number of steps (M)

A
bs

ol
ut

e
er

ro
r

∂ y
1
F / ∂ y

1
0

∂ y
1
F / ∂ y

2
0

M−8

200 270 365 490 660 885 1190
10

−15

10
−10

10
−5

10
0

Number of steps (M)

A
bs

ol
ut

e
er

ro
r

∂ y
1
F / ∂ y

1
0

∂ y
1
F / ∂ y

2
0

M−8

(e) Relative errors: DOPRI8(6) (f) Relative errors: DOPRI8(6)
with fixed forward tolerances with variable forward tolerances

Fig. 3. The Van der Pol oscillator (56): t0 = 0, tF = 2, ε = 10−2. Solutions obtained using
DOPRI8(6) for the forward (a) and adjoint model (b). Here ATOL = 10−12 and RTOL = 10−10

for both model runs. The adaptive time steps taken during the two model integrations are plotted
in (c) and (d). The bottom-two plots illustrate the absolute errors of the adjoint solution obtained
using a fixed tolerance for the forward model run (ATOLfwd = RTOLfwd = 10−12 in (e)) and,
alternatively, variable tolerance values for both the forward and adjoint integrators (in (f)).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · M. Alexe and A. Sandu

1 2 4 8 16 32
10

0

10
1

10
2

10
3

10
4

Time (T)

|∂ y
1
T / ∂ ε|

|∂ y
2
T / ∂ ε|

Fig. 4. The Van der Pol oscillator (56): Absolute value of the components of the gradient ∂y
∂ε

=[
∂y1
∂ε

∂y2
∂ε

]T
at various time moments T .

with t0 = 0, tF = 5,

v(t, p) =
np−1∑

i=1

t pi pi+1 (59)

and the initial conditions y1(t0) = 0, y2(t0) = 1, and y3(t0) = 0. The objective
functional is chosen as

G(p) = y3

(
tF , p

)
, (60)

and

p =
(

1
np

,
1
np

, . . . ,
1
np

)
,

δp =
(

1,
1
2
,
1
3
, . . . ,

1
np

)
. (61)

The forward sensitivity system, the first and second order adjoint models and the
quadrature equations are given in [Özyurt and Barton 2005a] for a general function
v(t, p). We approximate the Hessian-vector product

∂2g

∂p2
δp

∣∣∣∣
tF ,p

(62)

using two distinct approaches. We first compute a finite difference approximation
to (62):

∂2g

∂p2
δp

∣∣∣∣
tF ,p

≈ ∇p g
(
tF , p + ε δp

)−∇p g
(
tF , p

)

ε
, (63)

and then we compare the results against those provided by the second order adjoint
method (39). The relative computational cost of these two methods is illustrated
in Table III for increasing values of np. We note that the advantage of the dSOA
method is twofold. First, the computational cost of dSOA is inferior to that of the
finite difference method in most of the test runs (as shown in the last column of
Table III). Second, the accuracy of the Hessian-vector product approximation can
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 21

np πFWD [ms] πBKWD2 [ms] πBKWD2/πFDIFF

100 1 67 1.18

200 2 79 0.99

400 3 96 0.95

800 7 137 0.87

1600 11 245 0.82

3200 20 418 0.81

6400 41 794 0.77

12800 79 1659 0.78

Table III. Second order adjoint of the Van der Pol system (58): Computational cost of evaluating
d2g
dp2 δp - the second order adjoint method (πBKWD2) versus finite differences (πFDIFF). DOPRI8

has been used for all model integrations.

easily be controlled via the user-chosen integration tolerances, whereas in the finite
difference method (63) the accuracy depends on the particular choice of ε (and, at
best, it is equal to the square root of the chosen error tolerance).

5.3 The convection-diffusion PDE

We consider the following initial boundary-value problem (adapted from [Hind-
marsh and Serban 2006a]):

∂y

∂t
= p1

∂2y

∂x2
+ p2

∂y

∂x

t0 = 0 ≤ t ≤ tF = 1
x0 = 0 ≤ x ≤ x1 = 2 , (64)

with initial and boundary conditions

y(t, x0) = y(t, x1) = 0 , ∀ t ∈ [
t0, tF

]
,

y(t0, x) = y0(x) = x(2− x)e2x . (65)

Let us denote the solution of (64) with p1 = 1 and p2 = 0.5 by yref(t, x). The
objective function reads

G(t, p) =
∫ x1

x0

g(y) dx =
1
2

∫ x1

x0

(
y(t, x)− yref

)2
dx . (66)

We are interested in the computing the gradient

∇pG(tF) =
[

∂G

∂p1

(
tF

) ∂G

∂p2

(
tF

)]T

, (67)

using the first order adjoint sensitivity analysis method described in (17) – (23).
Additionally, we want to find the parameters for which the value of G(tF) is mini-
mized, i.e. solve the optimization problem

p∗ = arg min
p

G
(
tF , p

)
. (68)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · M. Alexe and A. Sandu

For this purpose we employ the L-BFGS-B optimization routine described in [Zhu
et al. 1997]. Problem (68) has the obvious solution p∗ = pref , with G

(
tF , p∗

)
= 0.

The gradient (67) can be obtained as

∂G

∂p1

(
tF , p

)
=

∫ tF

t0

∫ x1

x0

λ
∂2y

∂x2
dx dt

∂G

∂p2

(
tF , p

)
=

∫ tF

t0

∫ x1

x0

λ
∂y

∂x
dx dt , (69)

where λ(t, x) is the solution of the adjoint PDE:

∂λ

∂t
= −p1

∂2λ

∂x2
+ p2

∂λ

∂x

λ(tF , x) =
∂g

∂y

(
tF , x

)
= y

(
tF , x

)− yref
(
tF , x

)

λ (t, x0) = λ (t, x1) = 0 . (70)

We discretize the spatial derivatives in (64) and (70) using centered finite differ-
ence formulas on a uniform grid. Eliminating the homogeneous Dirichlet boundary
conditions, it follows that (64) and (70) are each described by a system of nx ODEs.
To compute the gradient (67), we need to add two additional quadrature equations
to the backward problem (one for each parameter p); thus, the adjoint system has
size nx + 2.

Figure 5 illustrates the decrease in the cost function G(p) and its projected gradi-
ent norm during several L-BFGS-B iterations. The starting point is (p0

1, p
0
2) = (3, 3)

and nx = 70. After 12 iterations the parameters converge to the reference values
(pref

1 , pref
2) = (1, 0.5).

6. SUMMARY

DENSERKS is a new addition to the range of publicly available software for perform-
ing sensitivity analysis of time-dependent models described by systems of ODEs.
Its prominent features are: the implementation of several explicit Runge-Kutta
integration schemes with adaptive time steps, the use of high order dense output
schemes for forward model trajectory interpolation during the backward run, and
the built-in support for second order adjoint sensitivity analysis. A storage strat-
egy that combines file checkpointing and memory buffering of the forward model
trajectories allows for an efficient integration of adjoint models for nonlinear prob-
lems. When performing multiple first or second order adjoint integrations but with
different initial conditions and (or) computing sensitivities of multiple pointwise
cost functionals for a given forward model, DENSERKS can reuse forward or tangent
linear model integration data for enhanced efficiency. Thus up to two forward or
tangent linear model integrations are required (this is a worst case bound when file
checkpointing is enabled). The dense output mechanism allows for a cost-efficient
interpolation, the overhead introduced by this approach being equal to at most a
few function evaluations per (forward integration) time step. DENSERKS implements
a selection of Runge-Kutta methods with order of accuracy from two up to eight.
This makes the integrators suitable for a wide range of practical applications de-
manding various solution accuracies. The dense output schemes, themselves up to
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 23

0 2 4 6 8 10 12
10

−12

10
−8

10
−4

10
0

Iteration number (M)

G
(t

F
,p

)

0 2 4 6 8 10 12
10

−6

10
−4

10
−2

10
0

Iteration number (M)

||p
ro

j ∇
p G

(t
F
,p

)|
|

(a) Cost function G
(
tF , p

)
(b) Norm of the projected gradient of G

(
tF , p

)

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration number (M)

(p
1,p

2)

p
1

p
2

(c) Convergence of p towards pref = (1, 0.5)

Fig. 5. The convection-diffusion equation: Optimization results using L-BFGS-B. (a) The decrease

in the cost function G
(
tF , p

)
and (b) the decrease in the projected norm of the gradient of

the cost function versus L-BFGS-B iteration count (M). (c) The convergence of the parameters

towards the reference values
(
pref
1 , pref

2

)
= (1, 0.5), where G

(
tF , pref

)
= 0. The starting point is(

p0
1, p0

2

)
= (3, 3) and the size of the spatially discretized forward ODE system is nx = 70.

7th order accurate, ensure full accuracy of the adjoint model solution, as illustrated
in the numerical examples. Cubic or quintic Hermite interpolation is also available
for use with the lower-order Runge-Kutta integrators. We hope that this range
of capabilities will make DENSERKS useful for a large community of computational
scientists and practitioners.

APPENDIX

In the following we illustrate the use of the well-known automatic differentiation
tool TAMC for tangent linear and adjoint code generation. Detailed information on
TAMC is given in the user’s manual [Giering 1999]. Note that a similar approach
is recommended when working with with other AD tools such as TAF [Giering and
Kaminski 2003] or TAPENADE [Hascöet and Pascual 2004].

Following the approach of Griewank [2000], consider the (nonlinear) vector equa-
tion

b = F (a) , (71)

with a , b ∈ Rnx and F is assumed to be twice continuously differentiable in a. The
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · M. Alexe and A. Sandu

forward mode of AD with a as input and b as output yields

δb = F ′(a)δa , (72)

whereas the reverse mode with the same input and output computes

ā = ā + b̄F ′(a)
b̄ = 0 . (73)

Here the tangent linear variable and the adjoint variable corresponding to a variable
x are denoted by δx and x̄, respectively, and F ′(a) ≡ dF/da. The costate (adjoint)
variables are shaped like row vectors. Let b ↔ ẏ and a ↔ y in (71), with y and
ẏ = dy/dt defined in (1). One can then associate in (72)

δa ↔ τi

δb ↔ τ̇i (74)

where τi are the forward sensitivity variables defined in (9).
DENSERKS requires that the right-hand side of the forward model equation be

implemented as a subroutine with the following parameter list:

SUBROUTINE RHS (NX, T, Y, F)
INTEGER :: NX
DOUBLE PRECISION :: T

!! Numerical solution of the forward model at time T
DOUBLE PRECISION :: Y(NX)

!! RHS of the forward model at time T
DOUBLE PRECISION :: F(NX)

Note that, for this and for all the following examples, the user is free to choose
any subroutine name. DENSERKS only requires the subroutine to have the specified
parameter list.

It follows that running TAMC in the forward mode on RHS with Y as input and F
as output can automatically generate the code for

SUBROUTINE TLM RHS (NX, T, Y, DY, DF)
!! Numerical solution of the tangent linear model at time T

DOUBLE PRECISION :: DY(NX)
!! RHS of the tangent linear model at time T

DOUBLE PRECISION :: DF(NX)

which is the subroutine that DENSERKS requires for tangent linear model right-hand
side evaluations. and The terms Fpi in (10), or Fpδp in (15) can be generated by
differentiating the code inside FEVAL with respect to the system parameters2.

For the adjoint mode, we can identify in (73)

ā ↔ λ̇T and b̄ ↔ λT . (75)

2One can add the parameter vector as a dummy argument to RHS and then differentiate.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 25

Thus, setting ā = 0 at the beginning of the adjoint subroutine and removing the
code for the second assignment in (73) leads to

SUBROUTINE ADJ RHS (NX, T, Y, ADY, ADF)
!! Numerical solution of the first order adjoint model at time T

DOUBLE PRECISION :: ADY(NX)
!! RHS of the first order adjoint model at time T

DOUBLE PRECISION :: ADF(NX)

A similar approach can be used for building the right hand side of the quadrature
system (23). Running TAMC in the adjoint mode and passing in the parameters p

as the inputs and F as the output yields the product (dF/dp)T · λ.
For the second order adjoint, we consider the simpler case of sensitivity analysis

with respect to initial conditions (p = y0). Thus we need to generate the Hessian-
vector product in the model equations (40). Forward mode differentiation of (73)
results in code that computes

˙̄a = ˙̄a + ˙̄bF ′(a) + b̄F ′′(a)ȧ , (76)

and we can identify using (40):

˙̄a ↔ σ̇T

˙̄b ↔ σT

ȧ ↔ δy

b̄ ↔ λT

a ↔ y (77)

Starting from ADJ RHS, we perform a forward differentiation with Y, ADY and ADF
as inputs and ADF as output. After some straightforward code manipulation, we
arrive at

SUBROUTINE SOA RHS (NX, NP, T, Y, DY, DP, ADY, AD2Y, AD2F)
!! Numerical solution of the second order adjoint model at time T

DOUBLE PRECISION :: AD2Y(NX)
!! RHS of the second order adjoint model at time T

DOUBLE PRECISION :: AD2F(NX)

The code generation for the other Hessian-vector products in (30), (34) and (38)
can be done in an analogous manner. Similarly, the second order quadrature equa-
tions may easily be derived by forward differentiation of the first order quadrature
code.

ACKNOWLEDGMENTS

This work has been supported by the National Science Foundation through the
award NSF CCF-0635194.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

26 · M. Alexe and A. Sandu

REFERENCES

Adcroft, A., Campin, J.-M., Heimbach, P., Hill, C., and Marshall, J. 2007. MIT General
Circulation Model User’s Manual. MIT, Boston, MA, USA.

Baker, T. S., Dormand, J. R., Gilmore, J. P., and Prince, P. J. 1996. Continuous approxi-
mation with embedded Runge-Kutta methods. Appl. Numer. Math. 22, 1-3, 51–62.

Cao, Y., Li, S., and Petzold, L. 2002. Adjoint sensitivity analysis for differential-algebraic
equations: Algorithms and software. J. Comp. Appl. Math. 149, 1, 171–191.

Cao, Y., Li, S., Petzold, L., and Serban, R. 2002. Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint DAE system and its numerical solution. SIAM J. Sci. Com-
put. 24, 3, 1076–1089.

Daescu, D. N., Sandu, A., and Carmichael, G. R. 2003. Direct and adjoint sensitivity analysis
of chemical kinetic systems with KPP: II—numerical validation and applications. Atmospheric
Environment 37, 36, 5097–5114.

Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G. R. 2002. The kinetic
preprocessor KPP - a software environment for solving chemical kinetics. Comput. Chem.
Eng. 26, 1567–1579.

Dormand, J. R., Lockyer, M. A., McGorrigan, N. E., and Prince, P. J. 1989. Global error
estimation with Runge-Kutta triples. Comput. Math. Appl. 18, 9, 835–846.

Dormand, J. R. and Prince, P. J. 1980. A family of embedded Runge-Kutta formulae. J.
Comput. Appl. Math. 6, 1, 19–26.

Eberhard, P. and Bischof, C. 1999. Automatic differentiation of numerical integration algo-
rithms. Math. Comput. 68, 226, 717–731.

Giering, R. 1999. Tangent linear and Adjoint Model Compiler, Users manual 1.4.

Giering, R. and Kaminski, T. 2003. Applying TAF to generate efficient derivative code of
Fortran 77-95 programs. Proc. Appl. Math. Mech. 2, 1, 54–57.

Griesse, R. and Walther, A. 2003. Parametric sensitivities for optimal control problems using
automatic differentiation. Optim. Control Appl. Meth. 28, 297–314.

Griewank, A. 2000. Evaluating derivatives: principles and techniques of algorithmic differenti-
ation. SIAM, Philadelphia, PA, USA.

Hager, W. W. 2000. Runge-Kutta methods in optimal control and the transformed adjoint
system. Numer. Math. 87, 2, 247–282.

Hairer, E., Nørsett, S. P., and Wanner, G. 1993. Solving Ordinary Differential Equations:
Nonstiff Problems. Computational Mathematics, vol. I. Springer-Verlag.

Hairer, E. and Wanner, G. 1994. Solving Ordinary Differential Equations: Stiff and
Differential-Algebraic Problems. Computational Mathematics, vol. II. Springer-Verlag.

Hascöet, L. and Pascual, V. 2004. TAPENADE 2.1 user’s guide. Tech. Rep. 0300, INRIA,
Sophia Antipolis, France.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,
and Woodward, C. S. 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers. ACM Trans. Math. Softw. 31, 3, 363–396.

Hindmarsh, A. C. and Serban, R. 2006a. Example Programs for CVODES v.2.5.0. Lawrence
Livermore National Laboratory, Livermore, CA, USA.

Hindmarsh, A. C. and Serban, R. 2006b. User documentation for CVODES v 2.5.0. Lawrence
Livermore National Laboratory, Livermore, CA, USA.

Kalnay, E. 2002. Atmospheric modeling, data assimilation and predictability. Cambridge Uni-
versity Press.

LeDimet, F. X., Navon, I. M., and Daescu, D. 2002. Second order information in data assimi-
lation. Mon. Weather Rev. 130, 3, 629–648.

Li, S. and Petzold, L. 1999. Design of new DASPK for sensitivity analysis. Tech. Rep. TRCS99-
28, University of California at Santa-Barbara, Santa Barbara, CA, USA.

Navon, I. M. 1997. Practical and theoretical aspects of adjoint parameter estimation and iden-
tifiability in meteorology and oceanography. Dyn. Atmos. Oceans 27, 55–79.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

DENSERKS · 27

Nocedal, J. and Wright, S. J. 2006. Numerical optimization, 2nd ed. Springer Series in
Operations Research. Springer-Verlag.

Özyurt, D. B. and Barton, P. I. 2005a. Cheap second order directional derivatives of stiff ODE
embedded functionals. SIAM J. Sci. Comput. 26, 5, 1725–1743.

Özyurt, D. B. and Barton, P. I. 2005b. Large-scale dynamic optimization using the directional
second-order adjoint method. Ind. Eng. Chem. Res. 44, 1804–1811.

Prince, P. J. and Dormand, J. R. 1981. High order embedded Runge-Kutta formulae. J.
Comput. Appl. Math. 7, 67–76.

Sandu, A. 2006. On the properties of Runge-Kutta discrete adjoints. In International Conference
on Computational Science (4). 550–557.

Sandu, A., Daescu, D., and Carmichael, G. R. 2003. Direct and adjoint sensitivity analysis
of chemical kinetic systems with KPP: Part I—theory and software tools. Atm. Env. 37, 36,
5083–5096.

Sandu, A., Daescu, D., Carmichael, G. R., and Chai, T. 2005. Adjoint sensitivity analysis of
regional air quality models. J. Comput. Phys. 204, 1, 222–252.

Sandu, A. and Miehe, P. 2006. Forward, tangent linear, and adjoint Runge-Kutta methods
in KPP–2.2 for efficient chemical kinetic simulations. Tech. Rep. TR-06-17, Virginia Tech,
Blacksburg, VA, USA.

Sandu, A. and Zhang, L. 2007. Discrete second order adjoints in chemistry transport modeling:
Computational aspects and applications. Tech. Rep. TR-07-27, Virginia Tech, Blacksburg, VA,
USA.

Serban, R. and Hindmarsh, A. C. 2003. CVODES: the sensitivity-enabled ODE solver in SUN-
DIALS. Tech. Rep. UCRL-JP-200037, Lawrence Livermore National Laboratory, Livermore,
CA, USA.

Sharp, P. W. and Verner, J. H. 1998. Generation of high-order interpolants for explicit Runge-
Kutta pairs. ACM Trans. Math. Softw. 24, 1, 13–29.

Verner, J. H. 1993. Differentiable interpolants for high-order Runge-Kutta methods. SIAM J.
Numer. Anal. 30, 5, 1446–1466.

Walther, A. 2007. Automatic differentiation of explicit Runge-Kutta methods for optimal con-
trol. Comput. Optim. Appl. 36, 1, 83–108.

Wang, Z., Navon, I. M., LeDimet, F. X., and Zou, X. 1992. The second order adjoint analysis:
Theory and applications. Meteorol. Atmos. Phys. 50, 1-3, 3–20.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. 1997. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 4,
550–560.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

