
Applying machine learning to scientific computing problems 
 
Problem: 
 
Numerical algorithms approximate the solution to a continuous problem that is usually            
unsolvable in closed form. Due to the inherent limitations of finite precision arithmetic, these              
approximations are usually discrete in nature in that the continuous problem is approximated at              
certain (or using) discrete points in some space. For instance, time integration methods             
approximate the unknown solution to an initial value problem (eq 1.) at certain discrete time               
points in the interval of integration. 
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Time stepping methods to solve (eq 1.) start with the approximation known at a time and find                t0   
subsequent approximations at future time points by stepping through time. A straightforward            
example is the forward Euler method given below 
 

h f (y ),yn+1 = yn +  n  
 

which computes the future solution as a combination of the current known solution and the 
slope at the current time point scaled by a step size .  h  
 
Since these algorithms approximate the true solution, it is essential to both measure and control               
error to ensure that the approximation does not grow unbounded or in other words, deviate too                
much from the “true” solution. Several authors have addressed automatic step size control as a               
mechanism to control error for time integration methods . Each time a solution is computed                1 2 3

for a future time point, these methods build two separate estimates, each of a different accuracy                
level. Then they either accept or reject the solution at the future time step depending on the                 
norm of the difference between the two estimates. This works well in practice in order to control                 
the error. If the step is accepted, then future solutions are computed using the solution at the                 
recently computed time step. If a step is rejected, then recomputation of the solution with a                
smaller time step is needed.  
 
The drawback of these error control mechanisms is that they are built to be general and rely                 
only on immediate information to decide the step size for future time steps. In long running                
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simulations, rejected time steps constitute wasted computations and resources. On the other            
hand each step acceptance or rejection can give us valuable information about the problem              
being solved, and this can be used to construct more reliable estimates of step size schedule. 
 
In this project, I build a novel error control mechanism that fits a binarized error surface                
supported on time step size and a fraction of the states observed during the integration process.                
The new error control mechanism uses information from both accepted and rejected steps to              
implicitly estimate the largest possible safe step size that will increase the computational             
efficiency of the algorithm while reducing wasted computations due to rejected steps.  
 
In an earlier work, Snoek et al. have applied machine learning to model a duration function that                 
is trained alongside in a bayesian optimization framework. The model is subsequently used to              
predict expected improvement per second for each point in the search space and to select               
points in the exploration process that give the highest expected improvement per second .  4

 
Data/Algorithms: 
 
The data for fitting the error surface is that which is generated during the time integration                
process making it an online algorithm that trains alongside time integration. The idea is to make                
use of the error estimators that are already in use to control error and obtain the training signal                  
for the supervised learning process. As training happens in each timestep, the model is used to                
make a prediction about the acceptance or rejection of the future timestep. When the prediction               
accuracy surpasses a certain threshold over a window of past predictions, the model is              
repeatedly queried until the largest possible safe step size is determined. 
 
I implemented a well-known Runge-Kutta method as the time integration method. Also included             5

in my repository is a modified implementation that does the training of the machine learning               
model to fit the binarized error surface. A number of control variables were introduced in the                
process of building the modified implementation. These are described below: 
 

﹘ Number of Observations (o): This is the number of components of the state vector to               
observe while fitting the error surface, and is one less than the length of the feature                
vector. The observations are equally distributed across the state vector. 

﹘ Size of the Validation Window (w): In order to validate the model during training, we               
predict if a future step will be accepted or not by querying the model using the future                 
step size and the observations derived from the current state vector as the feature              
vector. The validation window is a collection of boolean entries indicating if the prediction              
turned out to be correct or not. The model’s prediction is regarded useful only when the                
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prediction accuracy exceeds a certain validation threshold, and in such a scenario, step             
size is shrunk if the prediction is a “reject”. 

﹘ Validation Threshold (p): The entries in the validation window are replaced in a circular              
fashion, thus taking into consideration only w-most recent predictions when validation           
accuracy is computed, where w is the size of the validation window. The validation              
threshold is the proportion of entries in the validation window that needs to be correct               
when using the model for prediction.  

﹘ Shrink Factor (f): A constant factor by which the step size is shrunk if the model is                 
deemed to be sufficiently accurate (validation accuracy > validation threshold) and the            
model predicts that the subsequent step will be a “reject”. 

﹘ Max number of Shrinks (m): The algorithm shrinks the step size by a shrink factor, f, a                 
maximum number of times, m, in a loop, querying the sufficiently accurate model in each               
iteration whether the new step size will be accepted or not starting at the current state. 

﹘ Number of Samples (k): The model is trained in each iteration using the observations              
and step sizes from k most recently successful and k most recently unsuccessful             
integration trials. This number k is one half the number of samples used in the training                
process. Currently, an equal proportion of successful and unsuccessful samples are           
used in training. 

 
By using the k most recently successful/unsuccessful observations in training, the model adapts             
to the region of integration under consideration. In order to make the model more relevant to the                 
region of integration, the entries in the validation window could be weighted with the most recent                
entries receiving a higher weight. This is, however, not being done at the moment, with               
validation accuracy computed as the mean of the validation window having 1 or 0 entries               
signifying a correct or incorrect prediction respectively. 
 
Evaluation: 
 
To evaluate the success of this strategy, I used a stiff partial differential equation as the test                 
case. Explicit methods face a number of rejected time steps, when dealing with stiff systems, as                
they try to track the stiffest modes in the solution. The expected outcome is that the number of                  
rejected time steps will be lesser with the new error estimator/step size predictor. It is possible,                
however, that the computation time may increase for problems that are not sufficiently big.  
 
Results: 
 
The test problem is the Allen-Cahn reaction diffusion equation  given as follows: 6
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The first term on the right hand-side is the diffusion term and the second, the reaction term. The                  
problem can be made stiff by increasing the resolution of the spatial grid. The spatial grid                
resolution was set to 128 x 128 making the total number of states equal 16384. The initial and                  
boundary conditions across all the experiments are kept the same.  
 
In the table below, I list the outcome of integrating the Allen-Cahn equation with a standard                
variable step-size Runge-Kutta method and with the modified Runge-Kutta method that trains            
an embedded machine learning model online. I used two different linear models and their              
default settings that come prepackaged with scikit-learn library: SGDClassifier and Perceptron. 
 
 

 Number of 
observed 

variables (o) 

Number of 
training 

samples (k) 

Number of 
accepted 

steps 

Number of 
rejected 

steps 

Total 
number of 

steps 

Runge-Kutta - - 10378 985 11363 

Runge-Kutta 
with 
SGDClassifier 

1% of 16384 ≈ 
163 

10 95425 7 95432 

25 10 11374 748 12122 

25 5 11064 813 11877 

Runge-Kutta 
with 
Perceptron 

25 10 10402 971 11373 

25 5 10491 1004 11495 

 
The following observations can be made from the table above: 

1. The row in red corresponds to observing 163 components of the entire system, spread              
evenly across the state vector. Although it shows significantly lesser number of rejected             
steps, I had to terminate the execution because it hadn’t finished integrating the system              
after ~10 hours of computing. Even though only about 1% of the total number of               
variables were being observed (feature size - 1), large feature vectors significantly            
hamper the performance. The time integration method presumably spent a lot of time             
fitting the model. Furthermore, the model turned out to be quite pessimistic, shrinking the              
step size every time, resulting in a large number of accepted steps and significantly              
lesser number of rejected steps when compared to the baseline Runge-Kutta method. 

2. All of the other experiments had fewer rejected time steps than the baseline Runge-Kutta              
method, excluding Runge-Kutta with Perceptron as the training model and a sample size             
of 5, which had a higher number of rejected steps. 

3. All experiments which included a training model inside the method, took more total             
number of steps to integrate the model than the baseline Runge-Kutta integrator. This             
could be attributed to the fact that the model is, currently, only used to shrink the step                 



size leading to a larger number of accepted time steps. This could possibly be alleviated               
by allowing the integrator to also grow the step size if the model predicts that the future                 
step may be accepted. 

 
Plots: 
 
Unfortunately, I didn’t save the solutions from the different methods to compute the error norm               
relative to the baseline Runge-Kutta method. I do, however, have a plot of the first two variables                 
of the state vector that suggest that the integrators agree to a large extent on the evolution of                  
the first two variables, on visual inspection. 
 

 
Plot of evolution of first two variables using baseline Runge-Kutta method  



 
Plot of evolution of first two variables of state vector using Runge-Kutta 
with SGDClassifier, when observing 25 components of state vector and 
using 10 training samples in each training phase. 

 
Plots for other integrators are quite similar to the ones shown above and I am not including them 
in the interest of brevity. 
 
 
Conclusion: 
 
Novel error control mechanisms were developed for time integration methods where a machine             
learning model is trained alongside the time integration process. Trained model is used to              
predict step acceptance or rejection. A window of validity of past predictions is maintained to               



compute validation accuracy. When the validation accuracy of trained model exceeds a            
validation threshold, the model is used to shrink future step size if the model predicts that the                 
future step may be rejected by the time integration process. Experiments reveal that fewer steps               
are rejected with the model in place as against the baseline method. Since the model is,                
currently, only used to shrink step sizes, the total number of steps increases. This could be                
alleviated by allowing the integration method to also grow step sizes if the model predicts that                
the future step will be accepted. It is then possible that fewer total number of steps may be                  
required to perform time integration when compared to baseline method. 
 
More experiments are required to arrive at conclusive results. This was not possible because of               
the number of control variables involved; and each execution was taking between 60 to 120               
minutes due to the size of the problem. Reducing the size of the problem will result in simpler                  
systems that may involve significantly fewer rejected (or even total) time steps making them less               
interesting to study.  
 
 
Repository url: https://github.com/mod0/optml 
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