
Privacy-Secure Stochastic Gradient Descent

Reid M. Bixler
Computer Science Dept.

Virginia Tech
Blacksburg, VA 24060

Abstract

The modern Stochastic Gradient Descent
(SGD) algorithm is an optimization method
used to minimize an objective function.
Stochastic Gradient Descent typically gets to
this minimization by iteratively passing over all
the training examples until the algorithm will
eventually converge. However, in the context
when said training examples are based off of
potentially personally identifiable information
(PII), there is a risk that data may end up be-
ing leaked through the algorithm. For instances
when one might like to learn on such data, I
propose a modification to the Stochastic Gra-
dient Descent method that is privacy-secure in
order to minimize the amount of data leakage
while still being able to achieve convergence
close enough to the original algorithm.

1 INTRODUCTION

The general descent algorithm is a fairly straightforward
method that relies on the basis of taking the gradient of
the objective function such that each update should be
less than the previous (Boyd and Vandenberghe, 2004)
such that:

f
(
x(k+1)

)
≤ f

(
x(k)

)
(1)

The general descent method’s update step relies on the
fact that the function f is convex, such that it is possible
to consistently find the gradient of the function without
the possibility of having the updated step be larger than
the previous. Specifically, the basic update step can be
defined as:

x(k+1) = x(k) + t(k)∆x(k), (2)

where t(k) is a scalar value called the step size or step
length at iteration k and ∆x(k) can be seen as the step or
search direction (Boyd and Vandenberghe, 2004). Gen-
erally, the step size is often a user-chosen value that will
determine how far down the gradient the method will go
with each update step. If the step size is too small, then
the gradient descent algorithm will often take too long to
converge towards the minimum while if the step size is too
large then it may not converge due to overcompensation.

The general descent method can then be defined as 3 basic
steps:

1. Determine the descent direction ∆x

2. Line search. Choose a step size t > 0

3. Update. x := x+ t∆x

With basic intuition on the convexity of our objective
function, we can therefore presume that a good search
direction will be the case when ∆x = −∇f(x). This
widely used instance of the general descent algorithm is
otherwise known as the gradient algorithm or the gradient
descent method (Boyd and Vandenberghe, 2004). In this
case, we modify our steps of the algorithm to update
our search direction to be this gradient of the objective
function:

1. ∆x := −∇f(x)

2. Line search. Choose step size t via exact or back-
tracking line search.

3. Update. x := x+ t∆x

In an alternative case of the gradient descent method, it
is possible to stochastically update our algorithm by in-
crementally updating the search direction based off of the
gradient of a single point in the given training examples
rather than calculating the gradient of the whole dataset.



The reasoning behind this is that it may be possible to con-
verge quicker by relying on the idea that each individual
data point in the example set would be relatively similar to
the whole dataset. This method would then be known as
stochastic gradient descent (SGD) (Fletcher and Powell,
1963). A potentially better modification to this algorithm
would be to ’mini-batch’ a few training examples together
to get a better gradient step (Saad, 1998). Regardless, by
modifying the gradient descent method to stochastically
update the search direction based off of a subset of the
values tends to result in significantly fewer update steps
required to achieve convergence towards a global minima
(Bottou, 2010).

The goal of this work is then to modify this stochastic
gradient descent method with the intention of maintaining
the privacy of the information available within the training
examples, as the previous method must look at individual
data points (or batches of these points) to calculate the
gradient of said points.

1.1 RELATED WORK

There have been a few instances of trying to design a
privacy-secure algorithm for gradient descent and gen-
eral optimization methods. There is a version of privacy-
preserved stochastic gradient descent, but this approach
relies on modifying the algorithm of SGD by sharing
the weight parameters instead of the gradients, as well
as using symmetric encryption to protect the weight pa-
rameters against an honest-but-curious server used as a
common place for storage (Song et al., 2013).

Similarly, by introducing differentially private updates
to the stochastic gradient descent it would be possible to
realize privacy-preserving logistic regression in a cryp-
tographic notion (Wu et al., 2013). This approach fo-
cuses on preserving the privacy of logistic regression
between two parties by implementing a Pailliar cryptosys-
tem which is different than modifying the update steps of
the stochastic gradient descent method itself to preserve
privacy.

Another example of a similar vector of research is a design
of differentially private stochastic gradient descent for
multiplarty classification which is developed for privacy
preserving machine learning algorithms in a distributed
multiplarty setting (Rajkumar and Agarwal, 2012). This
research focuses on a similar approach as that of this
paper, but instead focuses on a multiparty approach reliant
on not actually modifying the algorithm itself but rather
perturb the gradients themselves.

Finally, yet another similar work utilizes a two-party pro-
tocol for differentially private gradient descent (Wan et al.,
2007) instead formulates gradient descent as a composi-

tion of functions and utilizes data partitions to guarantee
the security of the data.

Looking at these previous research vectors, one can see
that instead of modifying the most basic update step they
have instead decided to implement some sort of overhead
to SGD in order to allow for privacy. Instead, the focus of
this research paper is to randomly fuzz/perturb each indi-
vidual data point before the algorithm uses it for learning
in an attempt to preserve privacy of the data while also
still resulting in a generally good approximation of the
model.

2 BACKGROUND

The dataset being used by stochastic gradient descent can
be simply defined as a set of training examples Z where
each individual example z is itself a pair of values (x, y)
such that x is the input and y is some scalar output. The
gradient descent algorithm itself must have some parame-
terized weight vector w such that we can define a function
fw(x). We must define a loss function L where L(ỹ, y)
calculates the cost differential between the guessed out-
put ỹ and the actual output y. Our goal therefore is to
find a function f that satisfies the case where we min-
imize the loss function L(fw(x), y). This itself can be
simplified to be some function E that can be defined as
E(zi, wi) = L(fw(xi), yi), where this calculates the er-
ror given example zi and weight vector wi. We can then
modify our original gradient descent method to estimate
the gradient based off of a randomly selected example zi
(or batch of examples zi to zj):

w(k+1) = w(k) − t(k)∇wE(z(k), w(k)), (3)

where t(k) is the learning rate evaluated for iteration k
that should be sufficiently small enough calculated via
exact or backtracking line search (assuming a convex
space). In this case, we are also taking the gradient of our
function E based off of the single example zi in order to
incrementally move towards a minima.

In the case of the batch version of stochastic gradient
descent, we must define a batch Bk which is itself a
subset of the total training examples Z at iteration k. The
algorithm can then be modified like so:

w(k+1) = w(k) − t(k) 1

b

∑
zi∈Bk

∇wE(z(k), w(k)), (4)

where b is the size of the subset Bk such that the sum
ends up being normalized.



The noticeable problem with this formulation, in regards
to privacy, is simply the fact that the examples zi must
be itself viewed by the stochastic gradient descent algo-
rithm in order to evaluate the gradient. This can result in
a serious data leakage of personally identifiable informa-
tion assuming that the example zi were to contain such
information.

3 FORMULATION

The goal of our method must be then to ensure that the
stochastic gradient descent algorithm cannot calculate the
gradients on the original examples z. Therefore we must
take 2 things into account. Firstly, we must ensure that our
initial set of weight vectors w0 must be independent of
our set of examples Z. This is to ensure that any sensitive
data could not be potentially leaked because of where the
algorithm itself is initialized to. A valid initialization of
this set of weight vectors would be to initialize all of the
weights within w0 to be randomly distributed between
[−1, 1]. Secondly, a the key to this modification of SGD,
is to randomly fuzz the examples z before they are being
used within the algorithm such that the privacy remains.

A simplistic approach to this formulation would be to
simply add some noise vector Nk at each iteration k to
guarantee that the examples z never leak data. This ap-
proach could be seen as:

w(k+1) = w(k) − t(k)∇wE(z(k), w(k)) +N (k), (5)

where N (k) is drawn from some basic distribution that
ensures an even amount of noise is being added such that
the eventual convergence is relatively within the actual
minima (Song et al., 2013).

However, this would only offer a slight amount of differ-
entiable privacy at the end of every update step, which
could prove useful in some use cases, but still has poten-
tial to leak data within the method itself. The end goal of
having a privacy-secure modification to SGD relies on the
fact that the example z itself must not be visible by the
update step when calculating the loss using the function
E. The reason I suggest this is that were a malicious
entity to have visibility of the innards of the SGD method,
the entity must not be able to see the example z be used
as a singular parameter within the method.

Therefore, we must formulate an alternative such that our
random noise vector Nk modifies the values of z before
the update step can potentially leak the data. As such, the
proposed alternative is defining a noise function that can
be seen as the following:

N(x) = x+R ∗ n, (6)

where the value R can be considered to be a pseudo-
random number generated from the set {−1, 1} in order to
ensure an even distribution. The value n is simply a scalar
value drawn independently from the density function:

ρ(x) ∝ e−α
2/2,where α > 0 (7)

In this case, we can see that our value α is similar to that
seen in Song et al., which can be defined as a privacy pa-
rameter discerning how much noise ends up being added
to the given value x. Similarly, this privacy parameter can
quantify how much privacy risk is being taken, where the
closer that α is to 0 the more privacy-secure the modified
SGD algorithm will be. For the case when x is a vector of
dimension RX , then n will similarly be drawn from the
same density function ρ(x) for an equally sized vector of
dimension X .

With this noise function defined we can therefore finally
formulate the privacy-secure stochastic gradient descent
method as:

w(k+1) = w(k) − t(k)∇wE(N(z(k)), w(k)), (8)

For this case, we must ensure that whatever value calcu-
lates the result of N(z(k)) is secure from any malicious
entity that could leak or view the original values of z. In
the case where we are doing batches of size b we must
similarly normalize our resulting values such that:

w(k+1) = w(k) − t(k) 1

b

∑
zi∈Bk

∇wE(
1

b
N(z(k)), w(k)),

(9)

From this, we can ensure that the stochastic gradient
descent method should be calculating an extremely sim-
ilar gradient to that of the actual example z while still
maintaining the privacy of this example using the noise
function.

4 EMPIRICAL EVALUATION

In order to maintain that the privacy-secure modification
to SGD calculates generally the same resulting loss than
that of SGD, both algorithms were implemented in a basic
Python program that relied upon a synthetic dataset. In
these cases, both algorithms were implemented using the
Python package numpy. Note that due to the inherent
functionality of the stochastic gradient descent method, it
is not possible to have both methods randomly draw the
same examples at every iteration k, however as long as
both methods converge to a point when the loss is past a



certain threshold (in this case, t = 10−5) within relatively
the same number of iterations then the methods are within
a tolerable distance of one another.

The generated synthetic dataset has a total number of
samples N = 5000 that drawn uniformly from a basic
normal distribution. Both algorithms were run with batch
size of 1 for sake of not having to implement the batched
version of both SGD algorithms. As stated previously,
both algorithms were run until the calculated gradient was
below the tolerable threshold of 10−5.

From these rudimentary experiments, it was seen that the
privacy-secure modification to SGD resulted in the same
convergence within a tolerable amount of extra iterations
(5%), with the original SGD algorithm requiring a total of
approximately 3000 iterations until convergence. When
looking at the output of each epoch between the two
algorithms, it is noticeable that while both loss functions
are resulting in not the exact same values, they are within
an average of 2.4% of one another. These disparities
can be more likely attributed to the fact that stochastic
gradient descent must randomly draw each sample 1 at a
time, which could potentially be different than the other
method’s at the same iteration. Regardless, these results
show that the privacy-secure modification to SGD seems
to result in a similar convergence to that of SGD.

Analytically looking at this privacy-secure SGD, it be-
comes apparent that all the modification is doing is
slightly fuzzing the example z within a value that tends to-
wards 0 depending on the given value of α. When running
with a value of α much larger than 0, then it becomes ap-
parent that the privacy-secure SGD requires more than the
tolerable extra iterations (5%) but still tends to calculate
generally to the same minima.

5 CONCLUSION

In this paper, a privacy-secure modification to stochas-
tic gradient descent was formulated that should result in
essentially similar results that would be obtained by the
non-modified SGD algorithm while still ensuring the pri-
vacy of the data within the given example set Z. This
privacy-secure modification can be used for both the basic
stochastic method that looks at each individual example
zi as well as allows for running on the mini-batch stochas-
tic method that looks at examples zi to zj (all randomly
drawn from the set Z).

This modified stochastic gradient descent algorithm
should prove useful for cases when the user does not
wish to have data leakage while still relying on the basic
formula and steps of the normal SGD method with slight
variation. The noise function itself can be substituted
for similar noise functions which could prove to be an

interesting research vector that was not analyzed within
this work.

Similarly, it would be interesting to see the effects of
the α value for instances when the number of iterations
well past the tolerable 5% margin and how the sacrifice
of iteration time would weigh against the benefits of the
privacy provided. Another potential future work off of
this work would be to look at alternative optimization
algorithms and look for ways to ensure the privacy of the
examples provided.

References

Bottou, L. (2010). Large-scale machine learning with
stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer.

Boyd, S. and Vandenberghe, L. (2004). Convex optimiza-
tion. Cambridge university press.

Fletcher, R. and Powell, M. J. (1963). A rapidly conver-
gent descent method for minimization. The computer
journal, 6(2):163–168.

Rajkumar, A. and Agarwal, S. (2012). A differentially
private stochastic gradient descent algorithm for mul-
tiparty classification. In Artificial Intelligence and
Statistics, pages 933–941.

Saad, D. (1998). Online algorithms and stochastic ap-
proximations. Online Learning, 5.

Song, S., Chaudhuri, K., and Sarwate, A. D. (2013).
Stochastic gradient descent with differentially pri-
vate updates. In Global Conference on Signal and
Information Processing (GlobalSIP), 2013 IEEE,
pages 245–248. IEEE.

Wan, L., Ng, W. K., Han, S., and Lee, V. (2007). Privacy-
preservation for gradient descent methods. In Pro-
ceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 775–783. ACM.

Wu, S., Teruya, T., Kawamoto, J., Sakuma, J., and
Kikuchi, H. (2013). Privacy-preservation for stochas-
tic gradient descent application to secure logistic re-
gression. In 27th Annual Conference of the Japanese
Society for Artificial Intelligence, 3L1-OS-06a-3.


