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Abstract— With tremendous research growth in machine
learning domains and specifically deep learning models, there
has been a lot of advancements pertaining to this field in the
recent times. Convolutional Neural Networks (CNNs) have had
a huge impact on the Deep Learning field in recent times
because of the complex problems it solves and its wide-range
applications. We know that CNNs perform incredibly well on
classifying images like the ones in the dataset; however, they
fail to explore the spatial relationship between features and fail
to classify different variants of the same image. Hinton et al
proposed the Capsule Network with Dynamic Routing; which
specifically addresses these issues with CNNs. This network
utilizes Capsules; which detects the likeliness of a feature in
an image and the orientation of the feature in that image.
Hinton et al also proposed an enhanced Capsule network;
Matrix Capsules with EM Routing. A Matrix Capsule contains
a logistic unit to describe the likeliness of a feature and a 4*4
pose matrix to describe the relationship between that feature
and the pose.

In this research, we attempt to analyze the differences
between CNN, Capsule Network with Dynamic Routing and
Matrix Capsules with EM Routing from an optimization,
convergence perspective where we analyze the performance of
all the three models on different optimizers and configuration
hyperparameters. We perform this experiment on different
datasets like smallNORB, CIFAR10, and Tiny ImageNet.

INTRODUCTION

Machine Learning techniques have been very popular in
recent times with the growing number of datasets and com-
putation capabilities. Deep Learning Models have become
very popular and are used in most of the image processing,
computer vision problems, disease classification and NLP
based problems like text classification, recommender sys-
tems. With its high impact on such critical applications;
it is easily understandable that Neural Networks attracts
many researchers. A lot of research is being carried out to
increase the performance of these models and compute the
best optimizers and hyperparameters for different datasets so
that these models (when customized) deliver best results for
all kinds of data.

Convolutional Neural Networks (CNNs) have been around
for a long time with many innovations being carried out
related to them. AlexNet, a recent improvement to Con-
volutional Neural Network has performed much better on
the ImageNet dataset than any other previous CNN method.
Even with such performances, CNNs have a couple of major
issues surrounding them because CNNs just look for the
existence of a feature in an image to classify it and not
for the relative spatial location of the feature. This implies
that CNN considers the cases where a feature isnt correctly

aligned with respect to the other features in the image and a
feature being correctly aligned to other features as the same
classification. CNNs fail to explore the spatial relationship
between features and fail to classify different variants of the
same image. This deficiency is mainly because CNNs pass
information across layers utilizing max pooling [7].

Capsule Networks introduced by Hilton et al in their paper
titled Dynamic Routing Between Capsules has attempted to
solve the deficiencies of CNNs. A capsule consists of a group
of neurons whose output is a vector to signify the existence
of an entity. This vector contains all the characteristics of
the entity and its length signifies the probability that the
entity exists. Each lower level capsule sends its output to
all the higher-level capsules by multiplying the vector with
a weight matrix which signifies its relationship with the
higher level. The parent capsule that obtains the larger scalar
product is activated. This Dynamic Routing wherein routing-
by-mechanism is used; achieves state of the art performance
[4], [5], [9], [10].

Hilton et al also described an enhanced version of Capsule
Networks [8] where each capsule is described using a logistic
unit to represent the presence of the entity and a matrix to
describe the properties of the entity (pose matrix), which is
a 4x4 matrix to represent different characteristics like spatial
coordinates, orientation of the object and other characteristics
of a feature. The connection between the lower capsule and
parent capsule is a transformation matrix (also 4x4). They
use the Expectation Maximization (EM) routing to group
appropriate capsules in a lower layer to the higher layer to
form a part-whole relationship [6], [8].

In this research, we perform an empirical study on the con-
vergence of Matrix Capsules with EM Routing with various
hyperparameters. We study the convergence of this model
for different Optimizers like Adam, Adadelta, Adagrad and
Rmsprop and vary different hyperparameters like number of
channels in the first convolution layer (A), number of primary
capsule layers (B), number of capsules in convolution layers
following primary layer (C), number of capsules in the
last convolution layer (D) and number of routing iterations
(r). We perform this computation on different datasets like
Cifar-10, smallNORB, TinyImageNet, and MNIST. We try
to compute the best set of configurations which performs
efficiently [11], [12].

We compare those results with the initial variant of
Capsule Network which utilizes Dynamic Routing and the
baseline CNN model for smallNorb with Adam, Adadelta,
Adagrad, and Rmsprop optimizers to study the effect of



different optimizers. The Capsule Networks is the latest
innovation in Neural Networks and there would be a lot
of future research; so, this can be a great starting point
for the research community. Researchers would have a
better understanding of the optimizers that are suitable for
different datasets and understand the impact of different
hyperparameters. Our results deliver the best combination of
hyperparameters which will lead to better convergence and
accuracy. This is a vital study for future research on this
model with different optimizers.

Our comparison with the baseline models like CNN and
Capsule Networks with Dynamic Routing can help people
understand the impact of different optimizers which leads to
building up efficient optimizer parameters for these models.

BACKGROUND

In this section, we provide an overview of how a Convolu-
tional Neural Networks work [3]. We discuss the shortcom-
ings of CNNs which provide motivation to develop Capsule
Networks. We will then discuss the functioning of a capsule
network.

A. Convolutional Neural Network

Convolutional Neural Networks are a category of neural
networks which has been proven very effective in image
recognition and classification. CNNs are very popular be-
cause use relatively very little pre-processing as compared to
other image classification algorithms. CNNs learn the filter
that in other image classification algorithms are engineered
manually. Each image is represented as a matrix of pixel
values. A colour image will have three channels red, green,
blue and the image will be represented in terms of 2d
matrices for each of the channels containing values ranging
from 0 to 255 according to each pixel. A grayscale image
will have only channel which will a single 2d matrix and
value of each pixel will range from 0 to 255. In this section,
we will provide a basic overview of the functioning of a
CNN. CNNs have four major operations:

1) Convolution Step: The primary function of the convo-
lution step is the extraction of features from the input image.
CNNs use a matrix called the filter which is slid across the
input image matrix to compute the dot product between the
two matrices to form the feature map. This feature map is
what the CNN learns from the image. Different values of
the filter matrix produce different feature maps and it is
essential to define different filters to capture various features
of the input image. A CNN learns the filter values themselves
during the training process but we can specify the number
of filters, filter size etc. before the training process.

2) Non-Linearity: After the convolution step, a Rectified
Linear Unit step is performed which an element-wise oper-
ation to replace all the negative pixel values with zero. This
is to introduce non-linearity since the real-world data will
mostly be non-linear. There are other non-linear functions
which can be used in this step but Rectified Linear Unit is
found to perform well in most situations.

3) Pooling: Pooling is a process which reduces the di-
mensionality of the feature maps while retaining the relevant
information. It is done on multiple ways: max, average, sum
etc. Spatial pooling helps in making the feature representa-
tion smaller and manageable. It also reduces the parameters
and computations to avoid the overfitting problem. It makes
the CNN invariant to small transformation, distortions and
translations.

4) Fully Connected Network: The fully connected layer
is a traditional Multi-Layer Perceptron with the activation
function in its output layer being a softmax function. Every
neuron in the previous layer is connected to every neuron in
the next layer. The output after the pooling step is a high
level information about the features of the input image. The
fully connected layer uses this information to classify the
input images into corresponding classes based on the training
dataset.

Training: Once the initial parameters are defined, the CNN
takes the input image from the training dataset and goes
through the forward propagation step (all the steps listed
above). At the end, it computes the output probabilities for
each of the input classes and the total error at the output
step. Then it uses backpropagation to calculate the gradients
of the error and use gradient descent to minimize the error
by updating the filter matrix and initial parameters of the
model. This is repeated for all the images in the training
dataset to obtain the optimal value of all the weights and the
parameters. Once this is obtained, the CNN will be able to
classify any unseen image.

B. Capsule Networks

Convolutional Neural Networks works very well for image
classification. However, CNNs perform exceptionally great
when the classifying images are similar to the images in
the training dataset. If there are translations, rotations to the
images from the training dataset, the CNNs have a very poor
performance. As mentioned in the section earlier, pooling
helps in creating positional invariance to avoid overfitting.
Pooling leads to false classifications of images which only
have components of the original image but not the actual
image itself. Equivariance is a process through which a
CNN understands the rotation or translation of an image
and adapt itself to classify accordingly. The effort to achieve
equivariance led to the development of capsule networks. In
this work, we have performed an empirical study based on
the work of Hinton et. al [8] on capsule networks.

A capsule is a group of neurons whose outputs represent
different properties of the same entity in the image. Each
layer in the capsule network consists of many capsules. So
capsule networks can be viewed nested neural networks. On
a high level, the capsule networks,as described by Hinton
et. al [8], works as follows: each capsule in a layer consists
of a 4 × 4 pose matrix and an activation probability. In
between each capsule in one layer to another capsule in the
next layer is another 4 × 4 matrix which is the trainable
transformation matrix. These matrices are learned by the net-
work automatically and these are the only stored parameters.



The pose matrix of a capsule in one layer is transformed by
this transformation matrix to cast a vote on the pose matrix
of a capsule in the adjacent layer. This voting process for
each of the capsules in a layer is determined by a non-linear
dynamic routing procedure. In fact, the effectiveness of the
capsule networks is greatly attributed to the dynamic routing
process which captures the part-whole relationship between
different entities in the image. The authors use a version
of the Expectation-Maximization algorithm which iteratively
updates the activation probabilities of capsules in the next
layers and the assignment probabilities of the capsules in
the previous layers.

Dynamic Routing: As mentioned before, dynamic routing
is the process of routing outputs from layer L to a layer
L+ 1 and this process replaces the concept of max pooling
used in CNNs. The capsule network learns the transformation
matrix corresponding to a connection a capsule from layer
L to all the capsules in layer L + 1. In addition to these
transformation matrices, each connection is also multiplied
by a dynamically computed routing co-efficient. A capsule in
one layer of the network represents one entity in the image
and this entity is part of a larger entity of the image in the
capsule in the next layer. Part of the dynamic routing process
is to figure out the probability with which a capsule in one
layer is activated because of the entity in the next layer. Since
the pose matrix captures all the spatial information related
to all the features, a layer is able to agree with significant
confidence that the activated capsules belong to one class of
images. This is called routing by agreement. The routing
co-efficient, which is used along with the transformation
matrices to route outputs between layers, is not fixed and
they learned with every forward pass of the algorithm.

EM for Routing by Agreement: Hilton et. al [8] look at
the routing process between capsules of two layers as fitting
a mixture of Gaussian using the EM algorithm. The higher
level capsules act like the Gaussians and the pose matrix of
each active capsules in the lower layer act as the datapoints.
Given a capsule at level L, we have a choice to activate or
not activate a capsule at the next level L + 1. If we do not
activate it, we incur a cost for each capsule at the lower level.
And if we do activate a capsule at the higher level, we have
a cost for coding its mean and variance. This works exactly
like the EM algorithm, where the E-step is used to determine
the probability of a datapoint to be assigned to a Gaussian
and the M-step calculates the means of each Gaussian and
the variance around the mean. The pose matrices and the
activations of the capsules in layer L + 1 is computed by
running this algorithm for a few iterations. The authors called
this process EM Routing.

ARCHITECTURE & IMPLEMENTATION

Our focus with this work was to analyze the behavior
of the modern adaptive optimization algorithms on recently
proposed CapsNet architectures and contrast them with CNN
architectures. For comparison, we compare to 3 different
architectures:

a) CNN Architecture:: For baseline CNN architecture,
we use 2 layer convolution model of 32, 64 channels. First
channel has 5×5 kernel and stride of 1. The last convolution
layer is followed by one fully connected layer which maps
the kernel to the output class probabilities.

Fig. 1. Architecture of the Network

b) CapsuleNet-(Dynamic Routing):: For Dynamic
Routing-based CapsNet architecture , we use a the archi-
tecture followed by the original paper. It consists of 2
convolution layers and one fully connected layer. The first
convolution acts like a initial feature extractor and are passed
as inputs to the primary capsules. The first convolution layer
has 9 × 9 convolution kernels with a stride of 1 followed
by ReLU activation. The primary capsules is a 32 channels
of 8D convolution capsules and generate [32 × 6 × 6]
capsule output vectors of 8 dimensions. Dynamic Routing
mechanism is introduced between the primary and secondary
capsules. Each capsule vector of the lower layer is connected
to the capsules on the higher layer. The final DigitCaps
layer is mapped to the 16D capsule per class and trained
on reconstruction loss and l2 logits loss.

c) Matrix Capsules:: We used the same architecture
as described by Hinton et. al [8] as depicted the figure .1
The model starts with a 5 × 5 convolutional layer with A
number of layers and 2 strides with a ReLU non-linearity.
The other layers are all capsule layers. The first among them
has B number of capsule types. This is the primary capsule
layer and the pose matrix of these capsules are learned
transformations of outputs of the previous layer. This primary
capsule layer is followed by one capsule layer which has C
number of capsule types with stride 2 and a layer following
this containing D number of capsule types with stride 1.
After this is the final layer of our network which has one
capsule type per output class.

CHALLENGES

During this course of our implementation of the models,
We encountered multiple issues:

• Sensitivity to hyperparameters : Hinton et.al [8] have
not released their official code base for Matrix Cap-
sules. Any open-source implementation [1], [2], we
tried and implemented ourselves suffered from severe
hyper-parameter sensitivity. The sensitivity affected the
convergence and overall accuracy of the model. We
suspect this might be due to some underlying design
decisions which were not mentioned in their paper.



• Computationally expensive : CapsNet and Matrix Cap-
sules are quite computationally expensive and slow.
We were forced to curtail the number of epochs for
convergence.

EVALUATION

We used Tesla P-100 GPU cluster from Advance Research
Computing at Virginia Tech for our evaluation. We evaluated
Matrix capsule networks with EM routing for various dataset
shown in table I. These datasets corresponds to small , large
and big work load. MNIST is the smallest training work load,
SmallNORB and Cifar-10 corresponds to medium training
work load. While TinyImageNet corresponds to considerably
large training work load. The logs for analysis can be found
here

DataSet Dimensions Channels Category Num Images
Cifar-10 32X32 3 10 60K

SmallNORB - 4 5 46.6K
TinyImageNet 64X64 3 200 1M

MNIST 28X28 2 10 60K

TABLE I
TABLE TO SHOW DIFFERENT DATASET

We tried our best to train Tiny ImageNet and cifar 10
dataset by varying A,B,C,D, r and optimizer for Matrix
Capsule with EM routing. But for all combinations, we tried
we never got a convergence on these datasets. We show one
such run in fig 2 and fig 3.

Fig. 2. Accuracy for cifar 10 training

Our next experiment goal is to understand convergence
behavior with variation in hyper parameters like A,B,C,D
and EM step (r) for Matrix capsule networks [8].

Variation in A
This experiment correspond to varying A which represents

the number of channels in the first convolution layer. We
fixed other hyperparameters like B,C,D, optimizer and r to
8,16,16,adam and 2 respectively. We evaluated A for three

Fig. 3. Accuracy for Tiny ImageNet training

values of 16, 32 and 64 as shown in fig 4. As the capacity
of network has increased it converges must faster for A with
higher values in fig 4. This experiment was conducted with
smallNORB dataset.

Fig. 4. Varying A for Matrix Capsule Network for smallNORB dataset

Variation in B
This experiment correspond to varying B which represents

the number of primary capsule layers. We fixed other hyper-
parameters like A,C,D, optimizer and r to 32,16,16,adam
and 2 respectively. We evaluated B for three values of 4, 8
and 32 as shown in fig 5. As the capacity of network has
increased it converges must faster for B with higher values
in fig 5. This experiment was conducted using smallNORB
dataset.

We conducted similar experiments using MNIST dataset.
We varied A for 8,16,32,64 and kept B,C,D, r and optimizer
constant at 8,16,16, 1 and adam respectively as shown in fig
6. In another experiment, we varied B for 8,16,32 and kept
A,C,D, r and optimizer constant at 8,16,16, 1 and adam
respectively as shown in fig 7. In both the experiments, we

https://bitbucket.org/cs6804vtamns/logscs6804


Fig. 5. Varying B for Matrix Capsule Network for smallNORB dataset

Fig. 6. Varying A for Matrix Capsule Network for MNIST dataset

did not find a very discernible difference in convergence
across variation in A and B. We believe that as MNIST
dataset is simple with less features, the model is able to
learn it quickly in all the settings. Hence, we decided not
to continue with further experiments on this dataset. For all
future evaluation, we will use smallNORB dataset.

Variation in C

This experiment correspond to varying C which represents
the number of capsule in convolution layer following pri-
mary capsule. We fixed other hyper-parameters like A,B,D,
optimizer and r to 64,8,16,adam and 2 respectively. We
evaluated C for four values of 4, 8, 16 and 32 as shown in
fig 8. As the capacity of network has increased it converges
must faster for C with higher values in fig 8.

Variation in D

This experiment correspond to varying D which represents
the number of capsule in the last convolution layer. We
fixed other hyper-parameters like A,B,C, optimizer and r
to 32,8,16,adam and 2 respectively. We evaluated D for four
values of 4, 8, 16 and 32 as shown in fig 9. As the capacity

Fig. 7. Varying B for Matrix Capsule Network for MNIST dataset

Fig. 8. Varying C for Matrix Capsule Network for smallNORB dataset

of network has increased it converges must faster for D with
higher values in fig 9.

Fig. 9. Varying D for Matrix Capsule Network for smallNORB dataset

Variation in r
The goal of this experiment is to understand convergence

behavior with varying EM routing steps. We have fixed other



hyper-parameters like A,B,C,D and optimizers to 31,8,16,16
and adam respectively for this experiment. We varied r across
4 values of 1,2,3 and 4 as shown in fig 10. We observe that
the network only converged for r=2. For r=1, the network
has achieved the accuracy of 0.6. While for r=3 and 4,
the network is stuck at accuracy of 0.2. We suspect that
for r=3,4 the network needs lot more number of epochs to
converge and that might the reason for slow progress. We
think that r=1, is insufficient number of steps of routing step
for converging such complex network, hence the network is
stuck at accuracy of 0.6.

Fig. 10. Routing Step Variation for Matrix Capsule Network for small-
NORB dataset

Fig. 11. Optimizers for Capsule Networks with Dynamic Routing for
smallNORB dataset

Variation in Optimizers

We performed this evaluation across a cnn model, capsule
network with dynamic routing and matrix capsule network
with EM routing. The goal is to study rate of convergence
across different complexity of network with different opti-
mizers like Adam, Adagrad, Adadelta and RMSprop. We
consider CNN to be least complex, capsule net with dynamic

routing to be medium complex and matrix capsule net with
EM routing as most complex network in our experiment.
We are using an exponentially decaying common learning
rate for our training. We expect that Adam and RMSprop to
converge much faster than Adagrad and Adadelta as general
studies show that Adadelta and Adagrad generally converges
much slowly for same learning rate.

Fig. 12. Optimizers for CNN on smallNORB dataset

For CNN, we observe that RMSProp and Adam has almost
similar performance as shown in fig 12. We observe that
Agagrad is training much faster than AdaDelta for same
learning rate. But both Adagrad and AdaDelta is much slower
than Adam and RmsProp.

For capsule networks with dynamic routing [9], we ob-
serve that adam and RMSprop performance is almost similar
as shown in fig 11 . On the other hand, the network using
adagrad and adadelta are training very slow as shown in fig
11.

Fig. 13. Optimizers for Matrix Capsule Networks with EM for smallNORB
dataset

For matrix capsule network with EM routing, we observe
that adam performs best with fastest convergence as shown
in fig 13. RMSprop on the other hand, is learning slightly
slower and has reached till 52 % accuracy for the same
number of iterations. There is no significant training observed
for Adagrad and Adadelta for same number of iterations in
fig 13.

We observe that with increase in complexity of network,
RMSprop does not scale as well as Adam for optimization



for same learning rate. We did not get any good results for
Adagrad and Adadelta to perform training of complex net-
work. For less complex networks we find AdaGrad performs
better than AdaDelta for same learning rate.

Fig. 14. Loss for Matrix Capsule Network for smallNORB dataset

Loss Behavior

This experiment is designed to understand the behavior
of loss function across optimization. We are using the ex-
periment designed for varying D in previous section for this
evaluation. The behavior of loss function across optimization
is shown in fig 14. We observe that initially the loss increases
which might be due to convergence of transformation matrix
to learn part whole relationship [8]. Later, the loss decreases
once the optimizer dominates over the training.

CONCLUSION

We observed that higher A,B,C,D leads to faster training
and convergence for matrix capsule networks with EM
routing. We found that convergence is very sensitive to
number of routing step r. For lower routing step, there is
not enough iterations for convergence. While higher routing
steps increases the complexity of learning leading to need of
much more epochs to learn. Our evaluation with optimizers
suggested that Adam is the best choice for complex networks,
followed by RMSProp. We found that for a given learning
rate, Adagrad and Adadelta does not perform as good as
Adam and RMSProp. We also observed that the loss of
Matrix Capsule Network with EM routing, initially increases
due to learning of part whole relationship for transformation
matrix and then decreases when the optimizer starts reducing
loss.

FUTURE WORK

Due to the lack of computation capabilities, we couldnt
perform the Grid Search to obtain hyperparameter optimiza-
tion, which would have been the optimal way to obtain
efficient hyperparameters to train bigger datasets like Tiny
ImageNet. We would like to perform that in the future. We
would also like to provide a framework which can compute

the best hyperparameters and optimizers for the Capsule
Networks on a given dataset. Also, we would like to extend
our work to the ImageNet dataset. We are also interested in
investigating the Routing step of the Capsule Networks to
see if we can optimize it further.
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