
CS 6804 Optimization in Machine Learning Final Project:

Improve performance of Atomistic Machine Learning Package
Jiamin Wang, Chemical Engineering Department

Background and Motivation
In computational chemistry field, the feed-forward class of artificial neural networks has seen the

greatest application, especially in case of large training datasets. In this Atomistic Machine

Learning package, it also employ the neural network model. Training is basically adjusting the

model parameters to fit experimental data, like the energy, interatomic forces calculated from

conventional quantum mechanics DFT. The process of fitting is carried out by minimizing a loss

function. Here the loss function defined in this package is shown below:

{ } Γ = 2
1 ∑
M

j=1
(Ej

︿

N j
−
Ej
N j

)
2

+ α
3N j

∑
3

k=1
∑
N j

i=1
F(︿

ik − F ik)2

Where the atom-normalized residuals of the machine-learned energies are compared to the Ej
︿

training(electronic structure) energies . The parameter is the number of energy data points Ej M

or atomic configurations(one energy data point per atomic configuration) and is the number N j

of atoms in the atomic configuration . The squared error loss function can be minimized by j

adjusting model parameters. The interatomic forces are gradients of the potential energy

surface, which provide more information than the energy points. For example the system I used

to benchmark include 14 atoms which are two oxygen atoms on 12 Ru surface, this system will

have 14*3 = 42 unique force values, whereas it will only have a single potential energy. In the

loss function, and are the quantum mechanics and machine-learned forces for atom in F ik F ik
︿

 i

the direction , and is the learning rate, which determine the path of convergence, ideally k α

should be chosen such that both energy convergence and force convergence happen together.

For the neural network model, the backpropagation method can be used to efficiently calculate

the gradient of the loss function with respect to the parameters. Compared with a variety of

gradient-based optimization algorithm, this can be used to find optimal model parameters by

minimizing the loss function. But the loss function for a neural network mode is not convex and

has multiple minima, so the gradient-descent procedure is dependent upon the initial guess of

parameters, when starting with a random set of initial model parameters.

Strategies to Improve the Amp training and preliminary results
1) The gradient-based optimizer might get trapped in a local minimum which is not deep enough

to yield a satisfactory small value of loss function.

Solution: Global search scheme simulated annealing is implemented to skip from the current

local basin to a nearby deeper basin. It has been also suggested that preprocessing of the input

data to the neural network can significantly improve the training.

Simulated annealing is a probabilistic technique for approximating the global optimum of a given

function. It is inspired by the metallurgic process of annealing whereby metals must be cooled at

a regular schedule in order to settle into their lower energy state. As the loss function hold a

non-convex form, it is desirable to perform a global search in parameter space before the

gradient descent optimization.

The procedure is firstly random searching in parameter space, which contains multiple local

minimum. Then the parameters corresponding to the minimum loss function were found and the

gradient-descent optimization is performed to find the minimum basin found in the first step. The

simulated-annealing function is used from open-source code of Wagner and Perry[1], the

process involves:

1. Randomly move or alter the state

2. Assess the energy of new state using an objective function

3. Compare the energy to the previous state and decide whether to accept the new solution

or reject it based on the current temperature.

4. Repeat until you have converged on an acceptable answer.

Simulated annealing parameters are shown below. How to tune the parameters heavily depend

on your real problem, the objective function and parameter space.

: # max starting temperature Tmax

 # min ending temperature Tmin

teps # number of iterations s

pdates # number of updates u

Starting temperature should be able to accept 98% of the moves, If takes a small Tmax Tmax

value (greater than zero), then the algorithm reduces to the simple random-walk search. The

ending temperature should be low enough such that the final solution will not be improved. The

iteration steps might affect the results, which should be large enough to adequately explore the

parameter space to guarantee to find the global minima. The number of updates are useful to

exam the annealing process. The default setup can print out all the information includes the

current temperature, state energy, the percentage of moves accepted and improved and

remaining time. All these four simulated annealing parameters implemented in Amp are listed as

below:

000.0 Tmax = 2

.5 Tmin = 2

 steps 10000=

 updates teps/200 0= s = 5

The training datasets are ab initio molecular dynamics ~200 trajectories, the neural network
architecture is two hidden layers, and each layer contain 20 nodes. The simulated annealing
model was implemented in the utilities.py. The way to import annealer is shown below:

From amp.utilities import Annealer
Annealer(calc=calc, images=train_images, Tmax=2000, Tmin=1, steps=4000)

I only use 300 trajectories training energy to test the performance, smaller training datasets

might cause the training results not stable. If simulated annealing was used before training, the

time used for training to reach the criteria is 2.6min, while without the simulated annealing, it will

take 2.7 min to accomplish.

2) Optimizer L-BFGS is implemented to deal with larger size datasets

Amp implemented different gradient descent optimizers, such as steepest descent, conjugate

gradient, and the Broyden- Fletcher-Goldfarb-Shanno(BFGS) algorithm.

However, Urban A et al.[3] proved that Levenberg-Marquardt(LM) method is more efficient for

small ANN architectures than other algorithms. But this method is computationally demanding

for the larger ANN architectures and training sets, the reason is that the dimension of the

Hessian matrix that has to be inverted at each LM step is determined by the number of weight

parameters and reference structures. While the L-BFGS can be parallelized when in reference

structure space, so L-BFGS is the method of choice for larger reference sets and architectures.

The Amp call the optimizer from the open-source software library scipy for the loss-function

minimization, so the implementation of L-BFGS optimizer in Amp is very straightforward, just

switch from BFGS to L-BFGS-B.

if optimizer == 'BFGS':
 from scipy.optimize import fmin_bfgs as optimizer
 optimizer_kwargs = {'gtol': 1e-15, }
elif optimizer == 'L-BFGS':
 from scipy.optimize import fmin_l_bfgs_b as optimizer
 optimizer_kwargs = {'pgtol': 1e-08,}

Here, I used 3000 trajectories, approximated 126,000 data points. The training results are in the

following two figures, left figure is the results from optimizer BFGS and right is from L-BFGS-B.

L-BFGS has the lower rmse for both training and testing datasets compared to BFGS. L-BFGS

takes more iterations and each iteration takes less time compared to BFGS. Besides, L-BFGS

take less space to store the training parameters.

https://paperpile.com/c/SLGohB/R2eb

Fig. L-BFGS optimizer used for training Fig. BFGS optimizer used for training

