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Abstract—Many interactive applications running in data cen- not want to wait beyond a few seconds.
ters such as web search, social networks, online gaming, and 3) Heterogeneity: Various characteristics of the jobs such
financial services are delay-sensitive, and often have a ddéiae. as their utility functions and their deadlines may all be

These deadlines vary across users and applications, whichakes

the job scheduling problem very challenging when the overél heterogeneous. Such heterogeneity is inherent in data

system performance needs to be optimized. In this paper, the centers as they support a variety of users (e.g., VIP
performance of interest is the total utility gain of multiple customers vs. free users) and applications.

interactive jobs, and our objective is to maximize the total 4) Concavity: Based on the the law of diminishing
utility gain. The interactive jobs arrive to the system over marginal utility (Gossen’s laws), most utility functions

time, and are allowed to be partially executed before their

deadlines. We focus on the preemptive scenario, where a jol i are concave. Studies on the Bing search engine [7],

service can be interrupted by other jobs, and its service can [8] have mapped this utility function and it has been
be resumed later. We propose a deadline agnostic scheduler, found to be concave on average. We have also made
called ISPEED (Interactive Services with Partial ExEcution and similar observations in our own experiments (see Section
Deadlines). Being deadline agnostic is an attractive props/ of VI). However, the utility functions are not necessarily

ISPEED because data center schedulers are often not privy to .
individual job deadlines, and thus schedulers that are dedihe concave for all the jobs.

dependent may not be amenable to implementation. We first ~ The comparison between the state-of-the-art schedulers an
prove that ISPEED achieves the maximum total utility when  qyr proposed ISPEED (Interactive Services with Partial £xE

jobs have homogeneous deadlines and their utility functiosn are . . . . .
non-decreasing and concave. Then, in the case of heterogens cution and Deadlines) scheduler is shown in Table I. In this

job deadlines we prove that ISPEED achieves a competitive tim  table, “Yes” means that related issues are considered in the
of 2+ a, where « is a shape parameter for a large class of non- literature, although the exact definitions and approacheaklc

decreasing utility functions. In the special case ofx =0, i.e., the pe different from our paper. More detailed discussion about
utility functions are concave, ISPEED has a competitive rdb of 2, the related work is provided in Section VII.
while no causal scheduler can achieve a competitive ratio satter

than @ Finally, we show through trace-driven simulations

that ISPEED outperforms the state-of-the-art schedulers i a Partial Time- | Hetero- Concave
wide range of scenarios. Scheduler | £y ocution| sensitive geneity and Non-
concave
|. INTRODUCTION (3], [4], [13] i Yes ) )
. . . _ 15]-[17
Most interactive services such as web search, social efl][ [1]1][ [1]2] - - Yes -
works, online gaming, and financial services now are heaviy—" :
. - [71, [8] Yes Yes - Concave
dependent on computations at data centers because their
. : . [2], [5] Yes Yes Yes -
demands for computing resource are both high and variahle. 91110 v v
Interactive services are time-sensitive as users expeettive ES]Isl[EEg) Y- Yes Yes 5 _th
a complete or possibly partial response within a short gerio es ABET es es 0

of time. The exact nature of the quality of the response angbumparison BETWEENSTATE-OF-THE-ART SCHEDULERS ANDISPEED
the allowed time-limit for completing a job may vary across

individual users and applications, but interactive jolEdslly In this paper, we study the problem of scheduling interactiv
have the following characteristics: jobs in a data center with the goal of maximizing the total

1) Partial Execution: Although fully completed jobs are utility of all jobs. This problem is particularly challeng-
mostly care about the top few search results which csgheduling decisions for jobs currently in the system. We
be obtained without completing the full job. assume that service preemption is allowed, and summarize

2) Time-Sensitive: Each job has its corresponding stricPur contributions as follows:
deadline, whose exact value may be difficult to deter- « First, we propose a deadline agnostic scheduler, called
mine a priori. For example, in a web search, users may ISPEED (Section Il), and prove that ISPEED maximizes



Utility Gain of Each Unit of Workload of Job |

the total utility when the jobs have homogeneous dead- g i Fetonotiebl L o
lines and their utility functions are non-decreasing and od ST
concave (Section III). od )
« Second, when the jobs have heterogeneous deadlines, we 3./ }
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prove that IPSEED achieves a competitive rati® &f «, o
where« is a shape parameter for a large class of non- Voo , | AR B
decreasing utility functions. In the special casexof 0, e e
i.e., the utility functions are non-decreasing and concave
the competitive ratio of ISPEED can be improved to 2
(Section 1V). the amount of workload scheduled for jabin time slot t.

« We discuss various challenges in practical implement&learly, w; ; is also the number of machines allocated to job
tions, and show the robustness of our proposed solutipnryerefore, we must havgnj w;y < N andw;, > 0 for all
in dealing with these issues (Section V). Finally, we L Ci=1 . . .
conduct extensive trace-driven simulations, and show tHat™0r €ach jobi, there is an associated arrival time and

ISPEED outperforms three other widely used scheduletsd€adlined;. The workload of the job cannot be scheduled
(Section V). after the deadline. In this paper, we focus on the preemptive

The design of our solution is grounded on a rigoro sscenarlo, where a job that is being served can be interrupted

; . . . her j nd i rvi n resumed later.
mathematical foundation. Since our solution does not requi y other jobs, and its service can be resumed late

L d; . iol
the knowledge of deadlines, it is suitable for real dataeent Let w; = Zt:ai Wiz be th_e amount of workload that job
. L L : -~ completes before its deadline. Clearly, we have< W; for

Indeed, in practice it is non-trivial to obtain the exactonf

X U : all i € {1,2,...,n}. Then, the utility maximization problem
mation about individual user deadlines. The performange ga A

. . consider in this paper can be formulated as follows.
between our solution and the best causal scheduler is sma

in terms of the competitive ratio (2 v@), which shows n

that there is a limited space for further improvement upon'}}2% ZUi (wi)

our solution. We also show how this basic solution based =t

on theor.etlcal foundations can be enhgncgd to work well in st Zwi.t <N, wiy >0, Vi,
real settings when a number of practical issues need to be — '

(a) A utility function (b) Marginal utility gain
Fig. 1. Example Utility Function

)
addressed. d;
The remainder of the paper is organized as follows. In Z wip =w; <W;, Vie{l,..,n}
Section I, we describe the system model that we consider for P
our analytical results, and propose our ISPEED scheduler. | w; =0 fort < a; andt > d;, Vi€ {1,---,n}.

Sections Il and IV, we analyze the performance of ISPEED in

the scenarios where the job deadlines are homogeneous arl@ the next section we consider a simplified version of the
heterogeneous, respectively. Performance evaluaticesimn above model in which jobs are constrained by homogeneous
simulations are provided in Section VI. Finally, we discusd€adlines, i.e., all the deadlines are the same. In Section |
the related work in Section VII, and conclude our paper i¥e Study the above problem (with heterogeneous deadlimes fo

Section VIII. each job).

II. SYSTEM MODEL AND ISPEED SHEDULER B. ISPEED scheduler

In this section, we describe the system model that weWe present a deadline agnostic scheduler, call§el
consider for our analytical results, and propose our sdeeduPEED Scheduler:In each time-slot, repeatedly schedule the
ISPEED. In Section V, we will discuss various practical &su first unit of workload from the list of waiting jobs that haweet
and how our proposed solution can be adapted to deal witighest marginal utility gain in this time slot, until theiseno

these issues. machine available to schedule, or no waiting job. Obserae th
multiple units of workload of a single job can be scheduled
A. System Model within a time slot. Upon arrival, a job is added to the queue

Consider a data center wifii machines. Let there bejobs of waiting jobs and is deleted when it is completely served or
arriving into the system within a specific period of time. Leits deadline expires. The detailed operations of ISPEED are
W, denote the total workload of joh and letU;(z) denote described in Algorithm 1.
the utility function for jobi, where the argument denotes
the amount of completed workload for jabWe assume that
each machine can process one unit of workload in each time
slot. We define the marginal utility gain as the increase & th We show that ISPEED is an optimal solution in the scenario
total utility when one additional unit of workload is servedwhen the utility functions are non-decreasing and concave,
In Fig. 1, we provide an example of the utility function anénd there are homogeneous deadlines, i.e., deadlines of all
the marginal utility gain for each workload. Let; ; denote jobs are the same. Note that if there is no deadline for jobs,

[1l. PERFORMANCEANALYSIS OF ISPEEDWITH
HOMOGENEOUSDEADLINES



Algorlthm 1 Interactive Services with Partial ExEcution anqhe firstp_ 1 positions have the exact same units of workload
Deadlines ISPEED) in both schedules, and at least one of the two scheddles (
Input: List of unfinished jobs (including new arrivals in the cutrenandG) has more thap — 1 units. Now, there are three cases:

time slot) J whose deadlines have not expired in each time slot.
Output: Scheduled machines for jobs, and updated remaining jobs
list J in each time slot.
1: Sort J in a non-increasing order of the marginal utility gains;
2: d + N; Il d is the number of available machines; N is the total
number of machines.
3: while J is not empty andl # 0 // There are available machines
do
4 i is the first job inJ;
5 Allocate a machine to the first unit of workload of J&h
6: Delete the allocated unit of workload fro#;
7: if All the workload of Johi* is scheduledhen
8:
9
0

1)

Delete Jobi* from J,;

. else
10: Update Joli™ in J corresponding to its new marginal utility
gain;
11:  endif
122 d<+d-1;
13: end while

14: for Each Jobi in J do

15:  if Jobi will expire by the end of this time slahen
16: Delete Jobi from J;

17:  endif

18: end for

but a stopping time for the system, then it is equivalent to
homogeneous deadlines for all the jobs. Later in the next
section, we show that ISPEED can achieve a competitive
ratio of 2 + « for non-decreasing utility functions while no
other causal scheduler can achieve a competitive ratio less
than @ Also note that our proposed ISPEED scheduler is
deadline agnostic, i.e., it makes scheduling decisionsowit
having the information of job deadlines. 2)

For a schedules, let S(t) be the schedule in time slat
(a list of units of workload), and lef(¢,p) be the unit of
workload in time slott and positionp within the list.

The proof proceeds as follows. We start with an optimal
(and feasible) schedule and at each step the schedulerisdalte
to another feasible schedule which matches one more element
of the ISPEED schedule without reducing the total utilitynga
By repeating the above operations, we end up with a schedule
that matches with the ISPEED schedule and has a total utility
gain that is no smaller than the total utility gain of the opi
schedule. This implies that ISPEED also produces an optimal
solution.

Theorem 1: Under the assumptions that the utility functions
are non-decreasing and concave, and that the jobs have homo-
geneous deadlines, ISPEED achieves the optimal totatyutili

Proof: Let O be an optimal schedule with total utility 3)
U(O) and letG be the schedule computed by ISPEED with
total utility U(G). Let 7 be the first time-slot when the two
schedules differ. For bot®h and G, within each time-slot we
sort the units of workload in a non-decreasing order acogrdi
to their utility gains, respectively. While going throudtettwo
sorted lists in time-slot in both schedules, we arrive at the
first position (say) where there is a difference. It implies that

Both O(r) and G(7) have more thanp —1 units: Let
o= O(r,p) andg = G(r,p) be the workload scheduled
in positionp in time slot+ under schedule® and G,
respectively. We know that # g. Also, it is easy to
see that the utility gain ofy is no smaller than that
of o, by the concavity of the utility functions and the
greedy operations of ISPEED. Suppose that there exists
a position(7’,p’") beyond(r,p) (a later position in slot

T Or a position in a later slot) in which the same ugit
is scheduled ir0. Then, we obtain another schedudé
from O by swappingo andg. This swapping operation
is feasible due to the following reason: 1) clearly it is
feasible to move to a later position tharir, p) in O/,
because all the jobs have the same deadlines; 2) it is
feasible to schedulg in position (7, p) in O’ asO and

G have the same schedule by positipnp — 1) and

g is scheduled in positiofir, p) in G. As a result,0’
matches one more position with than O does, while
keeping the total utility unchanged.

Alternately, if g is not scheduled i beyond position
(1,p), then we obtairD’ from O by replacing the unit
in position (7, p) with g. This operation is feasible as
O and G have the same schedule by positiohp — 1)
andg is scheduled in positiofr, p) in G (by ISPEED).
Further, this operation does not reduce the total utility
as the utility ofg is no smaller than that oé. So O’
will have a total utility no smaller than that @ and
will match with G in one more position.

O(r) has p — 1 units and G(r) has more than

p — 1 units: Consider jobg = G(7,p). The number of
machines in the system is at leastWe obtainO’ from

O by scheduling uniy in positionp, i.e.,O'(r,p) = g.

If ¢ is not scheduled in slots after in O, then this
operation does not reduce the total utility @f Hence,
we haveU (0O') > U(O).

If g is scheduled in a slot afterin O, sayg = O(7',p’),
then we obtainO’ from O by switching unitg from
position (7/,p’) to position (,p). This operation is
feasible ag) andG have the same schedule by position
(r,p—1) andg is scheduled in positiogr, p) in G (by
ISPEED). It is also easy to see that this operation keeps
the total utility unchanged, i.ef/(O’) = U(O), and
that the new schedul®’ matches withG in one more
position.

O(r) has more thanp — 1 units and G(7) hasp — 1
units: We want to show that this case does not occur.
Consider the workload = O(7,p). Then,o must also
be available for scheduling under ISPEED in time slot
7, and thus in positionr,p) ISPEED must schedule
workloado or another workload with a larger marginal
utility gain thano. This contradicts with the assumption
that G(r) hasp — 1 units, which further implies that



case 3) does not occur. U,(G) U,(G) Us(G) U,(6) U,G) UrG) ||| U,G) U.6) U,(6)
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By repeating the abqve st_eps, we reach a final schedu S|y EraTy oleanl | |fanlenfen
that exactly matches witlki”. Since the total utility does not |1 {rs2)| @.2) R @42 ||| 2)][ea ] @2
decrease at any step, we end up with a schedule who:|[Z34|(3:3) (33| 3.3) (22|63

total utility is no smaller than that of). This implies that U(G) U(G) U(G)

U(G) > U(O). Due to the assumed optimality @, we U(S) US(S) UL(S) 0 U.9) U9 || 0s) .9 U.s)
N . . X : 3
have U(G) = U(0), i.e., G is also an optimal solutlo_n for oD olfenon — —
Eq. (1) with the assumptions of homogeneous deadlines ar|| (1,2) |35 e | [ [
non-decreasing and concave utility functions. [ | (1,3) || (1,4) [[33- 32 || [1(1,3) || (L.4)
U(S) E(S) R(S)

IV. PERFORMANCEANALYSIS OF ISPEEDWITH
HETEROGENOUSDEADLINES

In this section, we consider a more general scenario of het-
erogeneous job deadlines. It is known that no causal sceed@r equal to the summed utility gain @f(5) for an arbitrary
can achieve a competitive ratio less thé%ﬂ [6]. Then, we SchedulerS. Our proof has two steps.
prove that ISPEED has a competitive ratiodf o, whereaw  In the first step, we comparé(G) with U(S), and remove
is a shape parameter for a large class of non-decreasiity utihe units of workload with the same inde¥, j). In other
functions, and this competitive ratio can be improved2to Words, if some units of jobs are scheduled by both scheduler
when the utility functions are non-decreasing and concave.S and ISPEED, we pick them out and include them in a set
We now give a standard definition of the competitive raticalledE(S). We erase all such elements from béth) and
A schedulerS has acompetitive ratio ¢, if for any arrival U(S). This erasing process is illustrated in Fig. 2(a). Since

(a) The Erasing Method (b) Construction for Bound o2 + «
Fig. 2. An example to illustrate the proof of Theorem 2

pattern, the total utilityl/(S) of S satisfies that E(S) € U(G), we get
U<, @) Y. U< D Uiy 4)
U(S) (4,3) EE(S) (4,1)€V(G)

whereU™ is the maximal total utility over all possible sched- In the second step, we consider all the remaining elements
ulers (including non-causal schedulers) for the same sampi U(S) after the erasing process. L&{S) denote the set of
path. the remaining elements, and we hal¢S) = U(S)\E(S).

It has been shown in [6] that the lower bound on thpor the purpose of illustration, we provide an example of set
competitive ratio for all causal schedulers%@r 1.618, E(S) andR(S) in Fig. 2(b). Due to the way we construct set
which considers a single-server system, but the counterexar(s), we haveR(S) N U(G) = 0.
ple also applies in our system. The main idea of the proof isTo compareR(S) with U(G), we first show that the
as follows. For any given causal scheduler, one can alwagsheduled number of units i(G) is no less than that in
construct a special job arrival pattern such that the sdeedur s in each time slot. Then, we group all the units scheduled
cannot achieve a total utility that is larger thé@;—fraction in R(S) into disjoint pools, each of which corresponds to
of the maximal achievable total utility. Next, we prove ap different job. For each ach pool ilR(S), we also construct a
achievable competitive ratio of ISPEED for a large class @brresponding pool ifiJ(G). For each pair of such pools, we
non-decreasing utility functions. show that the marginal utility gain of each unit from the pool

Theorem 2: Assume that the utility functions are non+n T(@) is no less than that of the first unit from the pool in
decreasing for all jobs. Suppose that there exists a canstgns). Finally, we obtain our results by summing the utility
a > 0, such that the utility functio/; of any jobi satisfies gain over all the pools fob)(G) andR(S), respectively, and

Us(m) — U;(k comparing their summed utility.
Gilm) = 0l < (1+a) VU;i(k),Vk, ¥m >k, (3) " First, we want to show that in each time slot, the number
: . ... of scheduled units inU(G) is no less than that iR(S).
wh_erefvtij]]i (kktzl - .?(f) - Izi(kdi f1> E-tk_lreh malrggg:zgulrl]ty Let Ng(t) and Ng(t) be( th)e units of workload irﬁTG)(arzd
ga(':grg eti?ive r:g(l) ngJ\:or oad ot jobe. Then as R(S) in time slott, respectively. IfNg(¢t) = N, then clearly

P ) a we haveNg(t) < N = Ng(t). If Ng(t) < N, then we

Proof: We can describe a schedulegs follows. For each .

time slott, the schedule can be represented as d/s¢b) = must haveNR(t_) = 0. The reason is as follows. Suppose

T e b o . Npg(t) > 0. This means that there exists some units of a
{.(l’j)}’ it the j un_|t of vyt_)rkloa_ld Of,lo,bl. Is scheduled in job, sayu, which belongs toR(S). Then, the first unit of
time slot¢. The marginal utility gain ofz, j) is U; ;. Then, the w in R(S) must also belong t&)(G) because the unit of job
schedule can be represented by aies) = U t(5)- Let , is feasible for ISPEED to schedule and ISPEED has idle

U(G) be the representation of the schedule under the samechines (i.e. Ne(t) < N). However, this contradicts with
arrival pattern for ISPEED. We make a copy BfG) and the fact thatR(S) N U(G) = 0.
denote it byU(G). We want to show that the summed utility Let's assume that the workload iR(S) belongs to K
gain of bothU(G) andm times 1 + « is greater than jobs. Among theseK jobs, each job hasVi,....Nx units

m—k




of workload scheduled, respectively. We consider the first
scheduled unit of each job iR(S), whose utility gain is
denoted byFi,....Fx. Then, we obtain the following:

Utility Function
o
&

Setup
K 0.2 0.4 06 08
. . . . Percentage of Completed Workload

> Ui;=)_ Uity gain of the k" job in R(S)

i,5)ER(S k=1 " .
(BDERES) X (5) example to show that the competitive ratio cannot be less tha

<(1+a) Z Ny F, 2. We construct an arrival pattern to show that the competiti

Pt ratio of ISPEED cannot be less than 2. Let us consider two

h he | lity is f . ¢ arrivals in a data center with 1 machine. Let Job | arrive in
where the inequality is from our assumption of EQ. (3)  ime siot 1 with utility gaine (0 < ¢ < 1) and deadline the

Now, we constructi d_isjoint. pools of un_its in (G) time slot 1. Let Job Il also arrive in time slot 1 with utility
corresponding to the location of jobsR(.S). In time slott, if gain 1 and deadline 2.

there are some units of jobthat are scheduled iR(S5), then ™ 1t j5 easy to see that ISPEED will schedule Job Il in the

we choose the same number of unitslif), and put them ot time siot, and no job will be available in the following

into thek*" pool of U(G). We provide an example in Fig. 2(b).time slots. Then, the totaly utility of ISPEED is 1. However,
where 2 units and 1 unit of Job 1 are schedule®{®) in  congjder a schedules that schedules Job I in the first time
time slot1 and?, _respect!vel_y. Then, we arbitrarily ch_oose %lot, and Job Il in the second time slot, then the total wtilit
units and 1 unit inU(G) in time slot1 and 2, respectively, of 551 4. Thus, the competitive ratio of ISPEED is no less
and put them in the first pool d (). SinceNe(t) > Nr(f)  than1-+c. Sincec can be arbitrarily close to 1, the competitive

Fig. 3. Utility Function with Setup

hgl_dg for any time slot, it is feasible to construct th& . .4 of ISPEED is no less than 2. -
disjoint pools.
Let H;, be the minimal marginal utility gain in the*” pool V. PRACTICAL CONSIDERATIONS

of U(G). Then, we haveH, > Fi, Vk € 1,2,...K. This  So far, our discussion has been focused on the model that
is because 1) ISPEED always chooses the job whose fiégbports partial execution, heterogeneous customers @Ry
unscheduled unit has the largest utility gain, and 2) the firgs. free customers), and heterogeneous job deadlinesisin th
unit of each job inR(S) is feasible but does not belong tosection, we discuss a number of other critical implemeniati

U(G). Then, from Eq. (5) we have issues in practice and how our proposed solution can be
K adapted to deal with these issues.
Z Ui, < (1+O‘)ZNka « Initialization Cost: Some applications need a non-
(4,4) ER(S) k=1 negligible amount of preparation time before a job can
K 6) begin execution. The preparation time is needed for
<(1+a) Z NeHp < (14 ) Z Ui ;. various activities including building the virtual machjne
k=1 (i,/)€T(G) collecting necessary data from remote machines and

waking up physical devices from sleep. During the setup

By summing Eq. (4) and Eq. (6), we obtain time, the job may yield minimal or zero utility gain. So,

Z U < (24 a) Z Ui, 7) the utility function may have a shape as in Fig. 3. Since
(./)EU(S) (./)EV(G) the utility gain in the setup period is small, then the
o ) shape parameter in Section IV will be large, which
which is equivalent td/(S) < (2 + Q)U(G). u renders the theoretical performance guarantees shown in

In Theorem 2,«v can be viewed as a shape parameter, Theorem 2 loose. However, if the initialization time is a
which is determined by the shape of the utility functions.  gmg| fraction of the total processing time, we still expect

In particular, we havex = 0 when the utility functions are our solution to perform well.
non-decreasing and concave. Then, we can have the following \yitiple Tasks Per Job: Each job may contain mul-
theorem. tiple tasks and the utility of the job may increase in a

Theorem 3: If all the utility functions are non-decreasing  discrete fashion when a task is completed. For example,
and concave, thenis a Competltlve ratio of ISPEED, and no MapReduce jobs typ|ca||y have mu|t|p|e tasks. The ut|||ty
Competitive ratio smaller thaf can be achieved by ISPEED. function may become a Step function in such cases

Proof: Theorem 3 contains two parts: I) ISPEED has a  (Fig. 4). As the step size becomes small, the function
competitive ratio 2; Il) Any constant which is less than 2 is  is approximately continuous and possibly concave.

not a competitive ratio for ISPEED. « Cost of Parallelization and Interruption: When a job is
Since all the utility functions are non-decreasing and con- divided into multiple units which are executed in parallel,
cave, Eq. (3) is satisfied when= 0. By Theorem 2, we can there is an additional cost of parallelization. In addition
directly get that is a competitive ratio of ISPEED. The first when a job is interrupted, the state needs to be stored
part is proven. and when it is resumed, the state needs to be recovered.

To prove the second part, we only need to give a counter The costs for such actions have not been considered in
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is shown in Fig. 5(b). Both curves are close to concave, which
means that the performance guarantee is tight @ small.
Our evaluation is based on both datasets.
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(a) Based on Collected Data in (b) Based on Data in Bing from Next, we describe the default setting of our experimental e-
Google Search (10 Tas'_(_s Examp!e)MS_R (10 Tas‘ks Example) valuations. We consider a data center with= 100 machines.
Fig. 4. Utlity Function with Multiple Tasks There are 400 jobs arriving into the data center and their
arrival time slots are uniformly distributed within the fir20
time slots. Their deadlines are arrival time slot plus argdet
which is either 1 (tight) or 100 (loose). The workload of each
job is 50 units. There are two types of users: VIP users and
free users. For the 20 VIP users, each have 100 times larger
utility than a free user, for the same amount of completed
Fig. 5. Utility Function for Search Engine workload. To model the cost of interruption and paralldlza,

. . . e introduce a parameterto represent the time cost (whose
our model. Alternatively, we investigate the effect of Sucﬁlnit is time slot) of such operations. We assume thaction
costs in detail in our simulations (Section VI). If the cosB

f llelizati dint tion | ¢ v ih f the total workload is used to account for the cost of
ot parallelization and Interruption 1S extremely larges interruption and parallelization. The default valueca$ 0.05.
a job may need to run in a non-preemptive fashion.

; ) .~ Also, there are several units of workload used to build up
° _Robustness to Incomplete Informatlo_n:For_ a job armv- the environment for the job before the job can be executed.
N9 FO the da'Fa cent(_—:tr, ther_e are various important 'nfofhese units of workloads have zero utility gain. The default
mation as_souated W.'t.h the jot_), such as the total Workloqﬂitialization cost is% of the total workload. Unless otherwise
the deadline, the utility function, and so on. In gener"#nentioned, these default parameters are used throughout ou

!t IS very difficult, if not. |mp033|blg, to obtain theseevaluation. These parameters are also summarized in Table |
information upon the arrival of the job. However, these
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information are crucial to making scheduling decisions. Parameter Default Values
Our solution only requires the knowledge of the currently Number of Machinesv 100
available jobs and their utility gains in the next time slot, Number of Jobs 200
and is thus inherently robust to lack of the knowledge of Number of VIP Jobs 20
various information of the jobs. This is a unique strength Workload per Job 50

of our solution.
« System Overloading:When the traffic intensity exceeds
the capacity of the data center, some jobs have to be

Tight Deadline from Arrivals| 1 time slot
Loose Deadline from Arrivalg 100 time slots

abandoned or partially completed. Allowing partial ex- ICg_stl_Pat[ram(z;[ewt ?Z)
ecution has already been explicitly considered in our nitialization TAOB?_E m 0
model described in Section Il. As a result, our proposed DEFAULT PARAMETERS IN OUR EVALUATIONS

solution still works in an overloaded system. . .
Y We consider three other widely used schedulers and com-

VI. SIMULATION RESULTS pare their performance with our proposed ISPEED: FIFO

A. Understanding the Nature of Utility Function (First In First Out), EDF (Earliest Deadline First) and EP

Before evaluating the performance of different schedule Equal Partitioning, or called Fair Scheduler). The detni

we need to understand the utility function by coIIectingadat0 these sche@ulers ar_e as follows:
1) FIFO (First In First Out): Scheduler schedules the

from users. We ask 10 users to submiisearch jobs in the : ] : - - - !
Google search engine. For each such job, the user is required 10PS corresponding to their arrival times. The jobs with
earlier arrival times have a higher priority to schedule.

to give a score to show the utility gain of each search result v ¢ :
given by Google. Each user gives scores to at l8asesults ) EDF (Earliest Deadline First): Scheduler schedules

for each job to indicate the utility gain for this job. The e the jobs corresponding to their deadlines. The jobs with
keywords are chosen by the users. In total we have about €arlier deadlines have a higher priority to schedule.
1000 collected scores from the users. Based on these scores) EP (Equal Partitioning): Scheduler schedules the jobs
we create the average utility function as shown in Fig. 5(a).  With equal opportunity. All the jobs will obtain equal
For the utility functions, several jobs have non-concawéyit resources, except when the jobs do not have any avail-
functions. However, most of the jobs are close to concave able units to schedule. The EP Scheduler is a totally fair
functions. scheduler.

Microsoft Research (MSR) has also investigated the utility Different from [7], we assume that the job can be preempted
function for Microsoft's Bing search engine in [7], [8], wifi while incurring some additional cost.
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C. Homogeneous Deadlines schedulers, especially when the deadlines are not extyemel

We let the jobs uniformly arrive to the system from time sIofght or loose. For example, when the parameter of deadline

1 to time slot7y. All the jobs have homogeneous deadlined,0 1S 40 time slots, the performance of ISPEEDS, better
which is set to bel’. To keep homogeneity among all thdhan EP,195% better than EDF, and35% better than FIFO

jobs, all users in the homogeneous scenario are free ustrs Wi G00gle search engine.
the same utility function. Also, to verify the optimality of From Fig. 7, we observe that EP performs much worse
ISPEED, we ignore the cost of migration and initialization ithan ISPEED, especially when there is a large variation in
this part. Then, the performance of schedulers is sumneariZ8€ deadlines among different jobs. This is because when
in Fig. 6(a) (based on the collected data from Google seardf§ deadline is very tight for some jobs, and very loose for
and Fig. 6(b) (based on the data from Bing from MSR). ot ers, EP will I(_)se the opportunity of scheduling the newly
From these two figures, we observe that the performarfé@ived jobs, which may have an urgent deadline but large
of utility gain of ISPEED is consistently better than that of'tility gains. For example, suppose that there is a job with a
the others in the scenario of homogeneous job deadlink9se deadline, which arrived at the system before the ourre
without consideration of additional cost. For example, whes!0t @nd has a small marginal utility gain in this slot. Also,
the deadline is 50 time slots, the performance of ISPEED iére is @ newly arrived job, whose deadline is very tight.
172% better than EDF and FIFO, and8% better than EP in Ther_1 serving the latter one wiII_produce more utility gaianh
Google search engine. From Fig. 6, we can see that FIFO &ifdving the former one. EP gives them the same weight to
EDF perform similarly, and their total utility gains incsea Share the resource, while ISPEED prefers giving the resourc
almost linearly as the deadlifg increases. This is becausd® the jobs with more utility gain, and thus leads to a better
both FIFO and EDF schedule the jobs one by one and exec@g&formance.
the jobs completely if their deadlines have not expired y .
When the deadline increases and hence there is more ti eD|fferent Cost Parameters
available for scheduling the jobs, the number of jobs exatut We also study the impact of (cost parameter) when it
by FIFO and EDF increases and thus the obtained total utilithanges from O (equivalent to no parallelization and ini@sr
gain both increases proportionally. tion cost) to 1. When is 1, it means that the entire slot is used
We observe that the performance of ISPEED is better thttnprepare the machine for execution. The total utility gafin
EP, and both of them are much better than FIFO and EDF. Tlsishedulers with different is shown in Fig. 8. Since FIFO
is consistent with the results given in [7]. However, we wiland EDF greedily parallelize all the workload of a job, the
show later that the performance of ISPEED is much better thtgial utility gain of these two schedulers are very close whe
EP, FIFO and EDF in the scenario of heterogeneous deadline$s going to 1. As ¢ approaches 1, FIFO and EDF waste
This shows that ISPEED is more robust to uncertainty in joadmost all of the resources in parallelization and intetiarp

deadlines. cost, which leads to very small utility. On the other hand,
. ISPEED and EP work well in the scenario with higlelEP
D. Heterogeneous Deadlines gives equal chances to all jobs, which leads to a stable numbe

We now study the performance of different schedulenf allocation of machines for each job. Roughly speaking, th
under heterogeneous deadlines. For simplicity, we intedusystem behaves in a non-preemptive fashion, and the effect
a parameteffy. We let the arrival times of jobs to be uni-of the cost remains low. ISPEED prefers jobs with larger
formly distributed among the firsf;, time slots, and let their marginal utility gain. From Fig. 8, we see that the perforocen
heterogeneous deadlines to be their arrival times plus@oran of ISPEED is better than EP in most cases. Whas close
value, which shows how urgent the job is. We choose two typts 1, the performance of ISPEED is very close to EP. Also,
of jobs: one is very urgent, whose deadline is the very nettte performance of ISPEED is consistently better than FIFO
time slot after the jobs arrive; the other is not urgent, véhosind EDF, for all values ot. For example, whenr is equal
deadline isT, time slots after the jobs arrive. We introducdo 0.3, the utility gain of ISPEED i$53% better than EP, and
different types of customers (VIP vs. free users) and ch@pse29% better than FIFO and EDF for the Google dataset.
from 1 to 100. The performance of different schedulers with More simulation results of the heterogeneous scenario, dif
heterogeneous deadlines is summarized in Fig. 7(a) (Gpodkrent job initialization cost scenario, multiple tasksisario,
and Fig. 7(b) (Bing). From these two figures, we can semd fairness analysis of different schedulers can be foond i
that the performance of ISPEED is better than the other threer online technical report [14].



2 developed a greedy scheduler called ISPEED, and proved that
5. I ISPEED has guaranteed worst-case performance in terms of
2 i 2 so0nf—isPeED B total utility gain, which is characterized by the compeéti
o e 7 om-er ratio. Further, we evaluated the performance of ISPEED in

% costParameters * " costParameters various practical scenarios via trace-driven simulatjevisich
(a) Google (b) Bing show that ISPEED achieves a larger utility gain compared to
Fig. 8. Parallelization and Interruption Cost the state-of-the-art schedulers. For future works, it \@dog

interesting to consider a more general model that poténtial
accounts for multiple tasks, multiple resources, initiafion
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