
Forget the Deadline: Scheduling Interactive
Applications in Data Centers

Yousi Zheng∗, Bo Ji†, Ness B. Shroff∗‡, Prasun Sinha‡
∗Dept. of ECE, The Ohio State University, Columbus, OH 43210
‡Dept. of CSE, The Ohio State University, Columbus, OH 43210

†Dept of CIS, Temple University, Philadelphia, PA 19122

Abstract—Many interactive applications running in data cen-
ters such as web search, social networks, online gaming, and
financial services are delay-sensitive, and often have a deadline.
These deadlines vary across users and applications, which makes
the job scheduling problem very challenging when the overall
system performance needs to be optimized. In this paper, the
performance of interest is the total utility gain of multipl e
interactive jobs, and our objective is to maximize the total
utility gain. The interactive jobs arrive to the system over
time, and are allowed to be partially executed before their
deadlines. We focus on the preemptive scenario, where a job in
service can be interrupted by other jobs, and its service can
be resumed later. We propose a deadline agnostic scheduler,
called ISPEED (Interactive Services with Partial ExEcution and
Deadlines). Being deadline agnostic is an attractive property of
ISPEED because data center schedulers are often not privy to
individual job deadlines, and thus schedulers that are deadline
dependent may not be amenable to implementation. We first
prove that ISPEED achieves the maximum total utility when
jobs have homogeneous deadlines and their utility functions are
non-decreasing and concave. Then, in the case of heterogeneous
job deadlines we prove that ISPEED achieves a competitive ratio
of 2+α, where α is a shape parameter for a large class of non-
decreasing utility functions. In the special case ofα = 0, i.e., the
utility functions are concave, ISPEED has a competitive ratio of 2,
while no causal scheduler can achieve a competitive ratio smaller
than

√
5+1

2
. Finally, we show through trace-driven simulations

that ISPEED outperforms the state-of-the-art schedulers in a
wide range of scenarios.

I. I NTRODUCTION

Most interactive services such as web search, social net-
works, online gaming, and financial services now are heavily
dependent on computations at data centers because their
demands for computing resource are both high and variable.
Interactive services are time-sensitive as users expect toreceive
a complete or possibly partial response within a short period
of time. The exact nature of the quality of the response and
the allowed time-limit for completing a job may vary across
individual users and applications, but interactive jobs typically
have the following characteristics:

1) Partial Execution: Although fully completed jobs are
preferred, partially completed jobs are also acceptable
to the end user. For example, in a web search, users
mostly care about the top few search results which can
be obtained without completing the full job.

2) Time-Sensitive: Each job has its corresponding strict
deadline, whose exact value may be difficult to deter-
mine a priori. For example, in a web search, users may

not want to wait beyond a few seconds.
3) Heterogeneity:Various characteristics of the jobs such

as their utility functions and their deadlines may all be
heterogeneous. Such heterogeneity is inherent in data
centers as they support a variety of users (e.g., VIP
customers vs. free users) and applications.

4) Concavity: Based on the the law of diminishing
marginal utility (Gossen’s laws), most utility functions
are concave. Studies on the Bing search engine [7],
[8] have mapped this utility function and it has been
found to be concave on average. We have also made
similar observations in our own experiments (see Section
VI). However, the utility functions are not necessarily
concave for all the jobs.

The comparison between the state-of-the-art schedulers and
our proposed ISPEED (Interactive Services with Partial ExE-
cution and Deadlines) scheduler is shown in Table I. In this
table, “Yes” means that related issues are considered in the
literature, although the exact definitions and approaches could
be different from our paper. More detailed discussion about
the related work is provided in Section VII.

Scheduler
Partial

Execution
Time-

sensitive
Hetero-
geneity

Concave
and Non-
concave

[3], [4], [13]
[15]–[17]

- Yes - -

[1], [11], [12] - - Yes -
[7], [8] Yes Yes - Concave
[2], [5] Yes Yes Yes -
[9], [10] - Yes Yes -
ISPEED Yes Yes Yes Both

TABLE I
COMPARISON BETWEENSTATE-OF-THE-ART SCHEDULERS AND ISPEED

In this paper, we study the problem of scheduling interactive
jobs in a data center with the goal of maximizing the total
utility of all jobs. This problem is particularly challeng-
ing because future arrivals of jobs and their requirements
are unknown, which renders it difficult to make the right
scheduling decisions for jobs currently in the system. We
assume that service preemption is allowed, and summarize
our contributions as follows:

• First, we propose a deadline agnostic scheduler, called
ISPEED (Section II), and prove that ISPEED maximizes



the total utility when the jobs have homogeneous dead-
lines and their utility functions are non-decreasing and
concave (Section III).

• Second, when the jobs have heterogeneous deadlines, we
prove that IPSEED achieves a competitive ratio of2+α,
whereα is a shape parameter for a large class of non-
decreasing utility functions. In the special case ofα = 0,
i.e., the utility functions are non-decreasing and concave,
the competitive ratio of ISPEED can be improved to 2
(Section IV).

• We discuss various challenges in practical implementa-
tions, and show the robustness of our proposed solution
in dealing with these issues (Section V). Finally, we
conduct extensive trace-driven simulations, and show that
ISPEED outperforms three other widely used schedulers
(Section VI).

The design of our solution is grounded on a rigorous
mathematical foundation. Since our solution does not require
the knowledge of deadlines, it is suitable for real data centers.
Indeed, in practice it is non-trivial to obtain the exact infor-
mation about individual user deadlines. The performance gap
between our solution and the best causal scheduler is small
in terms of the competitive ratio (2 vs.

√
5+1
2 ), which shows

that there is a limited space for further improvement upon
our solution. We also show how this basic solution based
on theoretical foundations can be enhanced to work well in
real settings when a number of practical issues need to be
addressed.

The remainder of the paper is organized as follows. In
Section II, we describe the system model that we consider for
our analytical results, and propose our ISPEED scheduler. In
Sections III and IV, we analyze the performance of ISPEED in
the scenarios where the job deadlines are homogeneous and
heterogeneous, respectively. Performance evaluations based on
simulations are provided in Section VI. Finally, we discuss
the related work in Section VII, and conclude our paper in
Section VIII.

II. SYSTEM MODEL AND ISPEED SCHEDULER

In this section, we describe the system model that we
consider for our analytical results, and propose our scheduler
ISPEED. In Section V, we will discuss various practical issues
and how our proposed solution can be adapted to deal with
these issues.

A. System Model

Consider a data center withN machines. Let there ben jobs
arriving into the system within a specific period of time. Let
Wi denote the total workload of jobi, and letUi(x) denote
the utility function for job i, where the argumentx denotes
the amount of completed workload for jobi. We assume that
each machine can process one unit of workload in each time
slot. We define the marginal utility gain as the increase in the
total utility when one additional unit of workload is served.
In Fig. 1, we provide an example of the utility function and
the marginal utility gain for each workload. Letwi,t denote

(a) A utility function

1 2 3
0

0.1

0.2

0.3

0.4

0.5
Utility Gain of Each Unit of Workload of Job I

Workload

U
til

ity
 G

ai
n

(b) Marginal utility gain

Fig. 1. Example Utility Function

the amount of workload scheduled for jobi in time slot t.
Clearly,wi,t is also the number of machines allocated to job

i. Therefore, we must have
n∑

i=1

wi,t ≤ N andwi,t ≥ 0 for all

t. For each jobi, there is an associated arrival timeai and
a deadlinedi. The workload of the job cannot be scheduled
after the deadline. In this paper, we focus on the preemptive
scenario, where a job that is being served can be interrupted
by other jobs, and its service can be resumed later.

Let wi ,
∑di

t=ai
wi,t be the amount of workload that jobi

completes before its deadline. Clearly, we havewi ≤ Wi for
all i ∈ {1, 2, . . . , n}. Then, the utility maximization problem
we consider in this paper can be formulated as follows.

max
wi,t

n∑

i=1

Ui (wi)

s.t.

n∑

i=1

wi,t ≤ N, wi,t ≥ 0, ∀t,

di∑

t=ai

wi,t = wi ≤ Wi, ∀i ∈ {1, ..., n}

wi,t = 0 for t < ai and t > di, ∀i ∈ {1, · · · , n}.

(1)

In the next section we consider a simplified version of the
above model in which jobs are constrained by homogeneous
deadlines, i.e., all the deadlines are the same. In Section IV,
we study the above problem (with heterogeneous deadlines for
each job).

B. ISPEED scheduler

We present a deadline agnostic scheduler, calledIS-
PEED Scheduler: In each time-slot, repeatedly schedule the
first unit of workload from the list of waiting jobs that have the
highest marginal utility gain in this time slot, until thereis no
machine available to schedule, or no waiting job. Observe that
multiple units of workload of a single job can be scheduled
within a time slot. Upon arrival, a job is added to the queue
of waiting jobs and is deleted when it is completely served or
its deadline expires. The detailed operations of ISPEED are
described in Algorithm 1.

III. PERFORMANCEANALYSIS OF ISPEEDWITH

HOMOGENEOUSDEADLINES

We show that ISPEED is an optimal solution in the scenario
when the utility functions are non-decreasing and concave,
and there are homogeneous deadlines, i.e., deadlines of all
jobs are the same. Note that if there is no deadline for jobs,



Algorithm 1 Interactive Services with Partial ExEcution and
Deadlines (ISPEED)
Input: List of unfinished jobs (including new arrivals in the current

time slot)J whose deadlines have not expired in each time slot.
Output: Scheduled machines for jobs, and updated remaining jobs

list J in each time slot.
1: Sort J in a non-increasing order of the marginal utility gains;
2: d← N ; // d is the number of available machines; N is the total

number of machines.
3: while J is not empty andd 6= 0 // There are available machines

do
4: i

∗ is the first job inJ ;
5: Allocate a machine to the first unit of workload of Jobi∗;
6: Delete the allocated unit of workload fromi∗;
7: if All the workload of Jobi∗ is scheduledthen
8: Delete Jobi∗ from J ;
9: else

10: Update Jobi∗ in J corresponding to its new marginal utility
gain;

11: end if
12: d← d− 1;
13: end while
14: for Each Jobi in J do
15: if Job i will expire by the end of this time slotthen
16: Delete Jobi from J ;
17: end if
18: end for

but a stopping time for the system, then it is equivalent to
homogeneous deadlines for all the jobs. Later in the next
section, we show that ISPEED can achieve a competitive
ratio of 2 + α for non-decreasing utility functions while no
other causal scheduler can achieve a competitive ratio less
than

√
5+1
2 . Also note that our proposed ISPEED scheduler is

deadline agnostic, i.e., it makes scheduling decisions without
having the information of job deadlines.

For a scheduleS, let S(t) be the schedule in time slott
(a list of units of workload), and letS(t, p) be the unit of
workload in time slott and positionp within the list.

The proof proceeds as follows. We start with an optimal
(and feasible) schedule and at each step the schedule is altered
to another feasible schedule which matches one more element
of the ISPEED schedule without reducing the total utility gain.
By repeating the above operations, we end up with a schedule
that matches with the ISPEED schedule and has a total utility
gain that is no smaller than the total utility gain of the optimal
schedule. This implies that ISPEED also produces an optimal
solution.

Theorem 1: Under the assumptions that the utility functions
are non-decreasing and concave, and that the jobs have homo-
geneous deadlines, ISPEED achieves the optimal total utility.

Proof: Let O be an optimal schedule with total utility
U(O) and letG be the schedule computed by ISPEED with
total utility U(G). Let τ be the first time-slot when the two
schedules differ. For bothO andG, within each time-slot we
sort the units of workload in a non-decreasing order according
to their utility gains, respectively. While going through the two
sorted lists in time-slotτ in both schedules, we arrive at the
first position (sayp) where there is a difference. It implies that

the firstp−1 positions have the exact same units of workload
in both schedules, and at least one of the two schedules (O

andG) has more thanp− 1 units. Now, there are three cases:

1) Both O(τ) and G(τ) have more thanp− 1 units: Let
o = O(τ, p) andg = G(τ, p) be the workload scheduled
in positionp in time slot τ under schedulesO andG,
respectively. We know thato 6= g. Also, it is easy to
see that the utility gain ofg is no smaller than that
of o, by the concavity of the utility functions and the
greedy operations of ISPEED. Suppose that there exists
a position(τ ′, p′) beyond(τ, p) (a later position in slot
τ or a position in a later slot) in which the same unitg

is scheduled inO. Then, we obtain another scheduleO′

from O by swappingo andg. This swapping operation
is feasible due to the following reason: 1) clearly it is
feasible to moveo to a later position than(τ, p) in O′,
because all the jobs have the same deadlines; 2) it is
feasible to scheduleg in position(τ, p) in O′ asO and
G have the same schedule by position(τ, p − 1) and
g is scheduled in position(τ, p) in G. As a result,O′

matches one more position withG thanO does, while
keeping the total utility unchanged.
Alternately, if g is not scheduled inO beyond position
(τ, p), then we obtainO′ from O by replacing the unit
in position (τ, p) with g. This operation is feasible as
O andG have the same schedule by position(τ, p− 1)
andg is scheduled in position(τ, p) in G (by ISPEED).
Further, this operation does not reduce the total utility
as the utility ofg is no smaller than that ofo. So O′

will have a total utility no smaller than that ofO and
will match with G in one more position.

2) O(τ) has p − 1 units and G(τ) has more than
p− 1 units: Consider jobg = G(τ, p). The number of
machines in the system is at leastp. We obtainO′ from
O by scheduling unitg in positionp, i.e.,O′(τ, p) = g.
If g is not scheduled in slots afterτ in O, then this
operation does not reduce the total utility ofO. Hence,
we haveU(O′) ≥ U(O).
If g is scheduled in a slot afterτ in O, sayg = O(τ ′, p′),
then we obtainO′ from O by switching unitg from
position (τ ′, p′) to position (τ, p). This operation is
feasible asO andG have the same schedule by position
(τ, p− 1) andg is scheduled in position(τ, p) in G (by
ISPEED). It is also easy to see that this operation keeps
the total utility unchanged, i.e.,U(O′) = U(O), and
that the new scheduleO′ matches withG in one more
position.

3) O(τ) has more thanp− 1 units and G(τ) has p− 1
units: We want to show that this case does not occur.
Consider the workloado = O(τ, p). Then,o must also
be available for scheduling under ISPEED in time slot
τ , and thus in position(τ, p) ISPEED must schedule
workloado or another workload with a larger marginal
utility gain thano. This contradicts with the assumption
that G(τ) has p − 1 units, which further implies that



case 3) does not occur.
By repeating the above steps, we reach a final schedule

that exactly matches withG. Since the total utility does not
decrease at any step, we end up with a schedule whose
total utility is no smaller than that ofO. This implies that
U(G) ≥ U(O). Due to the assumed optimality ofO, we
haveU(G) = U(O), i.e., G is also an optimal solution for
Eq. (1) with the assumptions of homogeneous deadlines and
non-decreasing and concave utility functions.

IV. PERFORMANCEANALYSIS OF ISPEEDWITH

HETEROGENOUSDEADLINES

In this section, we consider a more general scenario of het-
erogeneous job deadlines. It is known that no causal scheduler
can achieve a competitive ratio less than

√
5+1
2 [6]. Then, we

prove that ISPEED has a competitive ratio of2+α, whereα
is a shape parameter for a large class of non-decreasing utility
functions, and this competitive ratio can be improved to2
when the utility functions are non-decreasing and concave.

We now give a standard definition of the competitive ratio.
A schedulerS has acompetitive ratio c, if for any arrival
pattern, the total utilityU(S) of S satisfies that

U∗

U(S)
≤ c, (2)

whereU∗ is the maximal total utility over all possible sched-
ulers (including non-causal schedulers) for the same sample
path.

It has been shown in [6] that the lower bound on the
competitive ratio for all causal schedulers is

√
5+1
2 ≈ 1.618,

which considers a single-server system, but the counterexam-
ple also applies in our system. The main idea of the proof is
as follows. For any given causal scheduler, one can always
construct a special job arrival pattern such that the scheduler
cannot achieve a total utility that is larger than

√
5−1
2 -fraction

of the maximal achievable total utility. Next, we prove an
achievable competitive ratio of ISPEED for a large class of
non-decreasing utility functions.

Theorem 2: Assume that the utility functions are non-
decreasing for all jobs. Suppose that there exists a constant
α ≥ 0, such that the utility functionUi of any job i satisfies

Ui(m)− Ui(k)

m− k
≤ (1 + α)∇Ui(k), ∀k, ∀m > k, (3)

where∇Ui(k) = Ui(k) − Ui(k − 1) is the marginal utility
gain of thekth unit of workload of jobi. Then ISPEED has
a competitive ratio of2 + α.

Proof: We can describe a schedulerS as follows. For each
time slott, the schedule can be represented as a set

−→
U t(S) =

{(i, j)}, if the jth unit of workload of jobi is scheduled in
time slott. The marginal utility gain of(i, j) is Ui,j . Then, the
schedule can be represented by a setU(S) =

⋃
t

−→
U t(S). Let

U(G) be the representation of the schedule under the same
arrival pattern for ISPEED. We make a copy ofU(G) and
denote it byU(G). We want to show that the summed utility
gain of bothU(G) and U(G) times 1 + α is greater than

(a) The Erasing Method (b) Construction for Bound of2 + α

Fig. 2. An example to illustrate the proof of Theorem 2

or equal to the summed utility gain ofU(S) for an arbitrary
schedulerS. Our proof has two steps.

In the first step, we compareU(G) with U(S), and remove
the units of workload with the same index(i, j). In other
words, if some units of jobs are scheduled by both scheduler
S and ISPEED, we pick them out and include them in a set
calledE(S). We erase all such elements from bothU(G) and
U(S). This erasing process is illustrated in Fig. 2(a). Since
E(S) ⊆ U(G), we get

∑

(i,j)∈E(S)

Ui,j ≤
∑

(i,j)∈U(G)

Ui,j . (4)

In the second step, we consider all the remaining elements
in U(S) after the erasing process. LetR(S) denote the set of
the remaining elements, and we haveR(S) = U(S)\E(S).
For the purpose of illustration, we provide an example of set
E(S) andR(S) in Fig. 2(b). Due to the way we construct set
R(S), we haveR(S) ∩ U(G) = ∅.

To compareR(S) with U(G), we first show that the
scheduled number of units inU(G) is no less than that in
R(S) in each time slot. Then, we group all the units scheduled
in R(S) into disjoint pools, each of which corresponds to
a different job. For each pool inR(S), we also construct a
corresponding pool inU(G). For each pair of such pools, we
show that the marginal utility gain of each unit from the pool
in U(G) is no less than that of the first unit from the pool in
R(S). Finally, we obtain our results by summing the utility
gain over all the pools forU(G) andR(S), respectively, and
comparing their summed utility.

First, we want to show that in each time slot, the number
of scheduled units inU(G) is no less than that inR(S).
Let NG(t) andNR(t) be the units of workload inU(G) and
R(S) in time slot t, respectively. IfNG(t) = N , then clearly
we haveNR(t) ≤ N = NG(t). If NG(t) < N , then we
must haveNR(t) = 0. The reason is as follows. Suppose
NR(t) > 0. This means that there exists some units of a
job, sayu, which belongs toR(S). Then, the first unit of
u in R(S) must also belong toU(G) because the unit of job
u is feasible for ISPEED to schedule and ISPEED has idle
machines (i.e.,NG(t) < N ). However, this contradicts with
the fact thatR(S) ∩ U(G) = ∅.

Let’s assume that the workload inR(S) belongs toK
jobs. Among theseK jobs, each job hasN1,...,NK units



of workload scheduled, respectively. We consider the first
scheduled unit of each job inR(S), whose utility gain is
denoted byF1,...,FK . Then, we obtain the following:

∑

(i,j)∈R(S)

Ui,j =

K∑

k=1

Utility gain of the kth job in R(S)

≤ (1 + α)
K∑

k=1

NkFk,

(5)

where the inequality is from our assumption of Eq. (3).
Now, we constructK disjoint pools of units inU(G)

corresponding to the location of jobs inR(S). In time slott, if
there are some units of jobk that are scheduled inR(S), then
we choose the same number of units inU(G), and put them
into thekth pool ofU(G). We provide an example in Fig. 2(b),
where 2 units and 1 unit of Job 1 are scheduled inR(S) in
time slot1 and2, respectively. Then, we arbitrarily choose 2
units and 1 unit inU(G) in time slot 1 and 2, respectively,
and put them in the first pool ofU(G). SinceNG(t) ≥ NR(t)
holds for any time slott, it is feasible to construct theK
disjoint pools.

Let Hk be the minimal marginal utility gain in thekth pool
of U(G). Then, we haveHk ≥ Fk, ∀k ∈ 1, 2, ...K. This
is because 1) ISPEED always chooses the job whose first
unscheduled unit has the largest utility gain, and 2) the first
unit of each job inR(S) is feasible but does not belong to
U(G). Then, from Eq. (5) we have

∑

(i,j)∈R(S)

Ui,j ≤ (1 + α)

K∑

k=1

NkFk

≤ (1 + α)
K∑

k=1

NkHk ≤ (1 + α)
∑

(i,j)∈U(G)

Ui,j .

(6)

By summing Eq. (4) and Eq. (6), we obtain
∑

(i,j)∈U(S)

Ui,j ≤ (2 + α)
∑

(i,j)∈U(G)

Ui,j , (7)

which is equivalent toU(S) ≤ (2 + α)U(G).
In Theorem 2,α can be viewed as a shape parameter,

which is determined by the shape of the utility functions.
In particular, we haveα = 0 when the utility functions are
non-decreasing and concave. Then, we can have the following
theorem.

Theorem 3: If all the utility functions are non-decreasing
and concave, then2 is a competitive ratio of ISPEED, and no
competitive ratio smaller than2 can be achieved by ISPEED.

Proof: Theorem 3 contains two parts: I) ISPEED has a
competitive ratio 2; II) Any constant which is less than 2 is
not a competitive ratio for ISPEED.

Since all the utility functions are non-decreasing and con-
cave, Eq. (3) is satisfied whenα = 0. By Theorem 2, we can
directly get that2 is a competitive ratio of ISPEED. The first
part is proven.

To prove the second part, we only need to give a counter

Fig. 3. Utility Function with Setup

example to show that the competitive ratio cannot be less than
2. We construct an arrival pattern to show that the competitive
ratio of ISPEED cannot be less than 2. Let us consider two
arrivals in a data center with 1 machine. Let Job I arrive in
time slot 1 with utility gainc (0 ≤ c < 1) and deadline the
time slot 1. Let Job II also arrive in time slot 1 with utility
gain 1 and deadline 2.

It is easy to see that ISPEED will schedule Job II in the
first time slot, and no job will be available in the following
time slots. Then, the totaly utility of ISPEED is 1. However,
consider a schedulerS that schedules Job I in the first time
slot, and Job II in the second time slot, then the total utility
of S is1+c. Thus, the competitive ratio of ISPEED is no less
than1+c. Sincec can be arbitrarily close to 1, the competitive
ratio of ISPEED is no less than 2.

V. PRACTICAL CONSIDERATIONS

So far, our discussion has been focused on the model that
supports partial execution, heterogeneous customers (e.g., VIP
vs. free customers), and heterogeneous job deadlines. In this
section, we discuss a number of other critical implementation
issues in practice and how our proposed solution can be
adapted to deal with these issues.

• Initialization Cost: Some applications need a non-
negligible amount of preparation time before a job can
begin execution. The preparation time is needed for
various activities including building the virtual machine,
collecting necessary data from remote machines and
waking up physical devices from sleep. During the setup
time, the job may yield minimal or zero utility gain. So,
the utility function may have a shape as in Fig. 3. Since
the utility gain in the setup period is small, then the
shape parameterα in Section IV will be large, which
renders the theoretical performance guarantees shown in
Theorem 2 loose. However, if the initialization time is a
small fraction of the total processing time, we still expect
our solution to perform well.

• Multiple Tasks Per Job: Each job may contain mul-
tiple tasks and the utility of the job may increase in a
discrete fashion when a task is completed. For example,
MapReduce jobs typically have multiple tasks. The utility
function may become a step function in such cases
(Fig. 4). As the step size becomes small, the function
is approximately continuous and possibly concave.

• Cost of Parallelization and Interruption: When a job is
divided into multiple units which are executed in parallel,
there is an additional cost of parallelization. In addition,
when a job is interrupted, the state needs to be stored
and when it is resumed, the state needs to be recovered.
The costs for such actions have not been considered in



0 10 20 30 40 50
0

500

1000

1500

Workload

U
til

ity
 F

un
ct

io
n

 

 

(a) Based on Collected Data in
Google Search (10 Tasks Example)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of Completed Workload

U
til

ity
 F

un
ct

io
n

(b) Based on Data in Bing from
MSR (10 Tasks Example)

Fig. 4. Utility Function with Multiple Tasks

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Workload

U
til

ity
 F

un
ct

io
n

 

 

(a) Google (Based on Collected
Data from Users)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of Completed Workload

U
til

ity
 F

un
ct

io
n

(b) Bing [7], [8]

Fig. 5. Utility Function for Search Engine

our model. Alternatively, we investigate the effect of such
costs in detail in our simulations (Section VI). If the cost
of parallelization and interruption is extremely large, then
a job may need to run in a non-preemptive fashion.

• Robustness to Incomplete Information:For a job arriv-
ing to the data center, there are various important infor-
mation associated with the job, such as the total workload,
the deadline, the utility function, and so on. In general,
it is very difficult, if not impossible, to obtain these
information upon the arrival of the job. However, these
information are crucial to making scheduling decisions.
Our solution only requires the knowledge of the currently
available jobs and their utility gains in the next time slot,
and is thus inherently robust to lack of the knowledge of
various information of the jobs. This is a unique strength
of our solution.

• System Overloading:When the traffic intensity exceeds
the capacity of the data center, some jobs have to be
abandoned or partially completed. Allowing partial ex-
ecution has already been explicitly considered in our
model described in Section II. As a result, our proposed
solution still works in an overloaded system.

VI. SIMULATION RESULTS

A. Understanding the Nature of Utility Function

Before evaluating the performance of different schedulers,
we need to understand the utility function by collecting data
from users. We ask 10 users to submit3 search jobs in the
Google search engine. For each such job, the user is required
to give a score to show the utility gain of each search result
given by Google. Each user gives scores to at least30 results
for each job to indicate the utility gain for this job. The search
keywords are chosen by the users. In total we have about
1000 collected scores from the users. Based on these scores,
we create the average utility function as shown in Fig. 5(a).
For the utility functions, several jobs have non-concave utility
functions. However, most of the jobs are close to concave
functions.

Microsoft Research (MSR) has also investigated the utility
function for Microsoft’s Bing search engine in [7], [8], which

is shown in Fig. 5(b). Both curves are close to concave, which
means that the performance guarantee is tight asα is small.
Our evaluation is based on both datasets.

B. Evaluation Setup

Next, we describe the default setting of our experimental e-
valuations. We consider a data center withN = 100 machines.
There are 400 jobs arriving into the data center and their
arrival time slots are uniformly distributed within the first 20
time slots. Their deadlines are arrival time slot plus an integer
which is either 1 (tight) or 100 (loose). The workload of each
job is 50 units. There are two types of users: VIP users and
free users. For the 20 VIP users, each have 100 times larger
utility than a free user, for the same amount of completed
workload. To model the cost of interruption and parallelization,
we introduce a parameterǫ to represent the time cost (whose
unit is time slot) of such operations. We assume thatǫ-fraction
of the total workload is used to account for the cost of
interruption and parallelization. The default value ofǫ is 0.05.
Also, there are several units of workload used to build up
the environment for the job before the job can be executed.
These units of workloads have zero utility gain. The default
initialization cost is5% of the total workload. Unless otherwise
mentioned, these default parameters are used throughout our
evaluation. These parameters are also summarized in Table II.

Parameter Default Values
Number of MachinesN 100

Number of Jobs 400
Number of VIP Jobs 20

Workload per Job 50
Tight Deadline from Arrivals 1 time slot
Loose Deadline from Arrivals 100 time slots

Cost Parameterǫ 5%
Initialization Cost 5%

TABLE II
DEFAULT PARAMETERS IN OUR EVALUATIONS

We consider three other widely used schedulers and com-
pare their performance with our proposed ISPEED: FIFO
(First In First Out), EDF (Earliest Deadline First) and EP
(Equal Partitioning, or called Fair Scheduler). The definitions
of these schedulers are as follows:

1) FIFO (First In First Out): Scheduler schedules the
jobs corresponding to their arrival times. The jobs with
earlier arrival times have a higher priority to schedule.

2) EDF (Earliest Deadline First): Scheduler schedules
the jobs corresponding to their deadlines. The jobs with
earlier deadlines have a higher priority to schedule.

3) EP (Equal Partitioning): Scheduler schedules the jobs
with equal opportunity. All the jobs will obtain equal
resources, except when the jobs do not have any avail-
able units to schedule. The EP Scheduler is a totally fair
scheduler.

Different from [7], we assume that the job can be preempted
while incurring some additional cost.



0 20 40 60 80 100
0

1

2

3

4x 10
5

Deadline Parameter T
1

U
til

ity
 G

ai
n

 

 

ISPEED
FIFO
EDF
EP

(a) Google

0 20 40 60 80 100
0

100

200

300

400

Deadline Parameter T
1

U
til

ity
 G

ai
n

 

 

ISPEED
FIFO
EDF
EP

(b) Bing

Fig. 6. Homogeneous Deadlines

C. Homogeneous Deadlines

We let the jobs uniformly arrive to the system from time slot
1 to time slotT1. All the jobs have homogeneous deadlines,
which is set to beT1. To keep homogeneity among all the
jobs, all users in the homogeneous scenario are free users with
the same utility function. Also, to verify the optimality of
ISPEED, we ignore the cost of migration and initialization in
this part. Then, the performance of schedulers is summarized
in Fig. 6(a) (based on the collected data from Google search)
and Fig. 6(b) (based on the data from Bing from MSR).

From these two figures, we observe that the performance
of utility gain of ISPEED is consistently better than that of
the others in the scenario of homogeneous job deadlines,
without consideration of additional cost. For example, when
the deadline is 50 time slots, the performance of ISPEED is
172% better than EDF and FIFO, and is22% better than EP in
Google search engine. From Fig. 6, we can see that FIFO and
EDF perform similarly, and their total utility gains increase
almost linearly as the deadlineT1 increases. This is because
both FIFO and EDF schedule the jobs one by one and execute
the jobs completely if their deadlines have not expired yet.
When the deadline increases and hence there is more time
available for scheduling the jobs, the number of jobs executed
by FIFO and EDF increases and thus the obtained total utility
gain both increases proportionally.

We observe that the performance of ISPEED is better than
EP, and both of them are much better than FIFO and EDF. This
is consistent with the results given in [7]. However, we will
show later that the performance of ISPEED is much better than
EP, FIFO and EDF in the scenario of heterogeneous deadlines.
This shows that ISPEED is more robust to uncertainty in job
deadlines.

D. Heterogeneous Deadlines

We now study the performance of different schedulers
under heterogeneous deadlines. For simplicity, we introduce
a parameterT0. We let the arrival times of jobs to be uni-
formly distributed among the firstT0 time slots, and let their
heterogeneous deadlines to be their arrival times plus a random
value, which shows how urgent the job is. We choose two types
of jobs: one is very urgent, whose deadline is the very next
time slot after the jobs arrive; the other is not urgent, whose
deadline isT0 time slots after the jobs arrive. We introduce
different types of customers (VIP vs. free users) and chooseT0

from 1 to 100. The performance of different schedulers with
heterogeneous deadlines is summarized in Fig. 7(a) (Google)
and Fig. 7(b) (Bing). From these two figures, we can see
that the performance of ISPEED is better than the other three

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5x 10
6

Deadlines Parameter T
0

U
til

ity
 G

ai
n

 

 

ISPEED
FIFO
EDF
EP

(a) Google

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Deadlines Parameter T
0

U
til

ity
 G

ai
n

 

 

ISPEED
FIFO
EDF
EP

(b) Bing

Fig. 7. Heterogeneous Customers and Deadlines

schedulers, especially when the deadlines are not extremely
tight or loose. For example, when the parameter of deadline
T0 is 40 time slots, the performance of ISPEED is80% better
than EP,195% better than EDF, and135% better than FIFO
in Google search engine.

From Fig. 7, we observe that EP performs much worse
than ISPEED, especially when there is a large variation in
the deadlines among different jobs. This is because when
the deadline is very tight for some jobs, and very loose for
others, EP will lose the opportunity of scheduling the newly
arrived jobs, which may have an urgent deadline but large
utility gains. For example, suppose that there is a job with a
loose deadline, which arrived at the system before the current
slot and has a small marginal utility gain in this slot. Also,
there is a newly arrived job, whose deadline is very tight.
Then serving the latter one will produce more utility gain than
serving the former one. EP gives them the same weight to
share the resource, while ISPEED prefers giving the resource
to the jobs with more utility gain, and thus leads to a better
performance.

E. Different Cost Parameters

We also study the impact ofǫ (cost parameter) when it
changes from 0 (equivalent to no parallelization and interrup-
tion cost) to 1. Whenǫ is 1, it means that the entire slot is used
to prepare the machine for execution. The total utility gainof
schedulers with differentǫ is shown in Fig. 8. Since FIFO
and EDF greedily parallelize all the workload of a job, the
total utility gain of these two schedulers are very close when
ǫ is going to 1. As ǫ approaches 1, FIFO and EDF waste
almost all of the resources in parallelization and interruption
cost, which leads to very small utility. On the other hand,
ISPEED and EP work well in the scenario with higherǫ. EP
gives equal chances to all jobs, which leads to a stable number
of allocation of machines for each job. Roughly speaking, the
system behaves in a non-preemptive fashion, and the effect
of the cost remains low. ISPEED prefers jobs with larger
marginal utility gain. From Fig. 8, we see that the performance
of ISPEED is better than EP in most cases. Whenǫ is close
to 1, the performance of ISPEED is very close to EP. Also,
the performance of ISPEED is consistently better than FIFO
and EDF, for all values ofǫ. For example, whenǫ is equal
to 0.3, the utility gain of ISPEED is53% better than EP, and
29% better than FIFO and EDF for the Google dataset.

More simulation results of the heterogeneous scenario, dif-
ferent job initialization cost scenario, multiple tasks scenario,
and fairness analysis of different schedulers can be found in
our online technical report [14].



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5x 10
6

Cost Parameter ε

U
til

ity
 G

ai
n

 

 

ISPEED
FIFO
EDF
EP

(a) Google

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

Cost Parameter ε

U
til

ity
 G

ai
n

 

 

ISPEED
FIFO
EDF
EP

(b) Bing

Fig. 8. Parallelization and Interruption Cost

VII. R ELATED WORK

In [3], [4], [13], [15]–[17], different schedulers for data
centers under the MapReduce framework are proposed. In [3],
the authors design a scheduler for minimizing the weighted
sum of the job completion times, and propose approximation
algorithms that work within a factor of 3 of the optimal. Based
on the work of [3], the authors in [4] consider the effect of
the Shuffle phase between the Map and Reduce tasks. In [15]–
[17], the authors consider the problem of minimizing total flow
time, where no constant competitive ratio can be achieved
under some general assumptions. The authors proposed a
new metric called efficiency ratio, and under this new metric
proposed schedulers with provable performance guarantees.
However, these schedulers consider the scenario where the
entire workload needs to be completed. Partial execution is
not considered in these works.

In [1], [11], [12], the problem is analyzed based on clas-
sification of QoS. QoS-adaptive systems are proposed for
supporting different QoS levels in [1], [11], [12]. However,
they assume homogeneous utility gain in the same QoS level
or assume that the utility gain is directly determined by the
current allocation regardless of previously allocated workload.
Moreover, they do not consider job deadlines.

In [7], [8], both deadlines and concavity of the utility func-
tions are studied. However, their analytical results are based
on the assumption of homogeneity and strict concavity. For
example, homogeneity of all the deadlines and utility functions
is necessary in the proof of Lemma 1 in [7]. For heterogeneous
or non-concave scenarios, no performance guarantee is given.

In [2], [5], different schedulers and corresponding per-
formance guarantees are studied with the partial execution
property. However, these works are limited to the (weighted)
linear utility functions assumption. In our work, we study both
concave and non-concave utility functions. Thus, the linear
scenario can be viewed as a subcase of our study.

Authors in [9], [10] propose another mechanism to ex-
plore the utility maximization problem, although the original
problems in their work are to study how to provide QoS to
maximize utility for wireless clients. In their work, the utility
is determined by stochastic parameters, e.g., the deliveryratio
guarantee with probability1. Different from the stochastic
study, our work focuses on the worst-case guarantee, which
is stronger and can be characterized by the competitive ratio.

VIII. C ONCLUSION

This paper explored the problem of scheduling interactive
jobs in data centers which have four distinct properties:
partial execution, deadlines, heterogeneity and concavity. We

developed a greedy scheduler called ISPEED, and proved that
ISPEED has guaranteed worst-case performance in terms of
total utility gain, which is characterized by the competitive
ratio. Further, we evaluated the performance of ISPEED in
various practical scenarios via trace-driven simulations, which
show that ISPEED achieves a larger utility gain compared to
the state-of-the-art schedulers. For future works, it would be
interesting to consider a more general model that potentially
accounts for multiple tasks, multiple resources, initialization
cost, and parallelization and interruption cost. The key chal-
lenge will be to design an efficient and simple scheduler with
provable performance guarantees.

REFERENCES

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. User-Level QoS-Adaptive
Resource Management in Server End-Systems.IEEE Transactions on
Computers, 52(5):678–685, 2003.

[2] E.-C. Chang and C. Yap. Competitive Online Scheduling with Level of
Service.Computing and Combinatorics, 2108:453–462, 2001.

[3] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee, and
S. Mukherjee. Scheduling in mapreduce-like systems for fast completion
time. In Proceedings of IEEE Infocom, pages 3074–3082, March 2011.

[4] F. Chen, M. Kodialam, and T. Lakshman. Joint scheduling of processing
and shuffle phases in mapreduce systems. InProceedings of IEEE
Infocom, March 2012.

[5] F. Y. L. Chin and S. P. Y. Fung. Improved Competitive Algorithms for
Online Scheduling with Partial Job Values.Computing and Combina-
torics, 2697:425–434, 2003.

[6] B. Hajek. On the competitiveness of on-line scheduling of unit-
length packets with hard deadlines in slotted time. InConference on
Information Sciences and Systems, Johns Hopkins University, pages
434–439, March 2001.

[7] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: Schedulinginteractive
services with partial execution. InProceedings of the Third ACM
Symposium on Cloud Computing (SoCC’12), 2012.

[8] Y. He, Z. Ye, Q. Fu, and S. Elnikety. Budget-based controlfor
interactive services with adaptive execution. InProceedings of the 9th
ACM International Conference on Autonomic Computing (ICAC’12),
September 2012.

[9] I.-H. Hou and P. R. Kumar. Utility maximization for delayconstrained
qos in wireless. InProceedings of IEEE International Conference on
Computer Communications (Infocom’10), pages 1–9, March 2010.

[10] I.-H. Hou and P. R. Kumar. Packets with Deadlines: A Framework
for Real-Time Wireless Networks. Mongan & Claypool Publishers, San
Rafael, California, USA, 2013.

[11] J. Huang, P.-J. Wan, and D.-Z. Du. Criticality and QoS-Based Multire-
source Negotiation and Adaptation.Real-Time Systems, 15(3):249–273,
November 1998.

[12] F. Yu, Q. Zhang, W. Zhu, and Y.-Q. Zhang. QoS-Adaptive Proxy
Caching for Multimedia Streaming Over the Internet.IEEE Transactions
on Circuits and Systems for Video Technology, 13(3):257–269, March
2003.

[13] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. InProceedings of the 5th European
conference on Computer systems, EuroSys, pages 265–278, April 2010.

[14] Y. Zheng, B. Ji, N. Shroff, and P. Sinha. Forget the Deadline: Scheduling
Interactive Applications in Data Centers. Technical report, June 2014.
http://www2.ece.ohio-state.edu/∼zhengy/TR4.pdf.

[15] Y. Zheng, N. Shroff, and P. Sinha. Performance analysisof work-
conserving schedulers in minimizing the total flow-time with phase
precedence. InProceedings of 50th Annual Allerton Conference on
Communication, Control, and Computing (Allerton’12), October 2012.

[16] Y. Zheng, N. Shroff, and P. Sinha. A new analytical technique for
designing provably efficient mapreduce schedulers. InProceedings of
IEEE INFOCOM, pages 1600–1608, March 2013.

[17] Y. Zheng, N. Shroff, R. Srikant, and P. Sinha. Exploiting large system
dynamics for designing simple data center schedulers. InProceedings
of IEEE INFOCOM, April 2015.


