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Abstract—Scheduling is a critical and challenging resource
allocation mechanism for multi-hop wireless networks. It is well
known that scheduling schemes that give a higher priority to
the link with larger queue length can achieve high throughput
performance. However, this queue-length-based approach could
potentially suffer from large (even infinite) packet delaysdue to
the well-known last packet problem, whereby packets may get
excessively delayed due to lack of subsequent packet arrivals.
Delay-based schemes have the potential to resolve this lastpacket
problem by scheduling the link based on the delay for the packet
has encountered. However, the throughput performance of delay-
based schemes has largely been an open problem except in limited
cases of single-hop networks. In this paper, we investigatedelay-
based scheduling schemes for multi-hop traffic scenarios. We
view packet delays from a different perspective, and develop
a scheduling scheme based on a new delay metric. Through
rigorous analysis, we show that the proposed scheme achieves the
optimal throughput performance. Finally, we conduct extensive
simulations to support our analytical results, and show that
the delay-based scheduler successfully removes excessivepacket
delays, while it achieves the same throughput region as the queue-
length-based scheme.

I. I NTRODUCTION

Link scheduling is a critical resource allocation com-
ponent in multi-hop wireless networks, and also perhaps
the most challenging. The celebrated Queue-length-based
Back-Pressure (Q-BP) scheduler [1] has been shown to be
throughput-optimal and can stabilize the network under any
feasible load. Since the development of Q-BP, there have
been numerous extensions that have integrated it in an over-
all optimal cross-layer solution. Further, easier-to-implement
queue-length-based scheduling schemes have been developed
and shown to be throughput-efficient (see [2] and references
therein). Some recent attempts [3], [4] focus on designing
real-world wireless protocols using the ideas behind these
algorithms.

While these queue-length-based schedulers have been
shown to achieve excellent throughput performance, they are
usually evaluated under the assumption that flows have an
infinite amount of data and keep injecting packets into the
network. However, in practice accounting for multiple time
scales [5]–[7], there also exist other types of flows that have
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a finite number of packets to transmit, which can result in the
well-known last packetproblem: consider a queue that holds
the last packet of a flow, then the packet does not see any
subsequent packet arrivals, and thus the queue length remains
very small and the link may be starved for a long time, since
the queue-length-based schemes give a higher priority to links
with a larger queue length. In such a scenario, it has also
been shown in [5] that the queue-length-based schemes may
not even be throughput-optimal.

Recent works in [8]–[13] have studied the performance of
delay-based scheduling algorithms that use the Head-of-Line
(HOL) delay instead of queue length as link weight. One
desirable property of the delay-based approach is that they
provide an intuitive way around the last packet problem. The
schedulers give a higher priority to the links with a larger
weight as before, but the weight (i.e., the HOL delay) of a
link increases with time until the link gets scheduled. Hence,
if the link with the last packet is not scheduled at this moment,
it is more likely to be scheduled in the next time. However,
the throughput performance of the delay-based scheduling
schemes is not fully understood, and has merely been shown
for limited cases of single-hop networks.

The delay-based approach was introduced in [8] for schedul-
ing in Input-Queued switches. The results have been ex-
tended to wireless networks for single-hop traffic, providing
throughput-optimal delay-based MaxWeight scheduling algo-
rithms [10], [11], [14]. It is also shown that delay-based
schemes with appropriately chosen weight parameters also
provide good Quality of Service (QoS) [9], and can be used as
an important component in a cross-layer protocol design [13].
The performance of the delay-based MaxWeight scheduler has
been further investigated in a single-hop network with flow
dynamics [12]. The results show that, when flows arrive at
the base station carrying a finite amount of data, the delay-
based MaxWeight scheduler achieves the optimal throughput
performance while its queue-length-based counterpart does
not.

However, in multi-hop wireless networks, the throughput
performance of these delay-based schemes has largely been
an open problem. To the best of our knowledge, there are no
prior works that employ delay-based algorithms to address the
important issue of throughput-optimal scheduling in wireless
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networks with multi-hop traffic. The problem turns out to be
far more challenging in the multi-hop scenario due to the
following reason. In [11], the key idea in showing throughput
optimality of the delay-based MaxWeight scheduler is to
exploit the following property: after a finite time, there exists a
linear relation between queue lengths and HOL delays, where
the ratio is the mean arrival rate. Hence, the delay-based
MaxWeight scheme is basically equivalent to its queue-length-
based counterpart, and thus achieves the optimal throughput.
This property holds for the single-hop traffic, since given that
the exogenous arrival processes follow the Strong Law of
Large Numbers (SLLN) and the fluid limits exist, the arrival
processes turn out to be deterministic processes with constant
rates in the fluid limits. However, such a linear relation does
not necessarily hold for the multi-hop traffic, since the packet
arrival rate at a non-source node (or a relay node) is not a
constant and depends on the underlying scheduler’s dynamics.
To this end, we investigate delay-based scheduling schemes
that achieve the optimal throughput performance in multi-hop
wireless networks.

Unlike previous delay-based schemes, we view packet delay
as a sojourn time in the network, and re-design the delay
metric of a queue as the delay difference between the queue’s
HOL packet and the HOL packet of its previous hop (see
Eq. (34) for the formal definition). Using this new metric,
we can establish a linear relation between queue lengths and
delays in the fluid limit model. Then the linear relation plays
the key role in showing that the proposed Delay-based Back-
Pressure (D-BP) scheduling scheme is throughput-optimal in
multi-hop networks.

In summary, the main contributions of our paper are as
follows:

• We re-visit throughput optimality of Q-BP using fluid
limit techniques. Throughput optimality of Q-BP has
been originally shown using the standard Lyapunov tech-
nique in a stochastic sense. We re-derive throughput
optimality of Q-BP itself using fluid limit techniques so
that we can extend the analysis to D-BP using the linear
relation between queue lengths and delays in the fluid
limit model.

• We devise a new delay metric for D-BP and show that it
achieves the optimal throughput performance in multi-
hop wireless networks. Calculating a link weight as
sojourn time difference of the HOL packet, we establish
a linear relation between queue lengths and delays in the
fluid limit model, which leads to throughput-optimality of
D-BP following the same analytical procedure of Q-BP.

• We conduct extensive simulations to evaluate the perfor-
mance of delay-based schedulers. Through simulations,
we observe that the last packet problem can cause ex-
cessive delays for certain flows under Q-BP, while the
problem is eliminated under D-BP. Further, in the case
of Q-BP, even though the average delays experienced in
the network may be similar to D-BP, the tail of the delay
distribution could be substantially longer. We also show
that, D-BP can not only achieve the same throughput

region as Q-BP, but also guarantee better fairness by
scheduling the links based on delays and not starving
certain flows that lack subsequent packet arrivals (or have
very large inter-arrival times between groups of packet
arrivals).

The remainder of the paper is organized as follows. In
Section II, we present a detailed description of our system
model. In Section III, we show throughput optimality of Q-
BP using fluid limit techniques, and extend the analysis to D-
BP in Section IV. We evaluate the performance of delay-based
schedulers through simulations in Section V, and conclude our
paper in Section VI.

II. SYSTEM MODEL

We consider a multi-hop wireless network described by
a directed graphG = (V , E), where V denotes the set of
nodes andE denotes the set of links. Nodes are wireless
transmitters/receivers and links are wireless channels between
two nodes if they can directly communicate with each other.
We assume a time-slotted system with a single frequency
channel. During a single time slot, multiple links that do
not interfere can be active at the same time, and each active
link transmits one packet during the time slot if its queue
is not empty. LetS denote the set of flows in the network.
We assume that each flow has a single, fixed, and loop-free
route. The route of flows has anH(s)-hop length from
the source to the destination, where eachk-th hop link is
denoted by(s, k). Note that the assumption of single route
and unit capacity is for ease of exposition, and one can easily
extend the results to more general networks with multiple
fixed routes and heterogeneous capacities. To specify wireless
interference, we consider thek-th hop of each flows or link-
flow-pair (s, k). Let P denote the set of all link-flow-pairs,
i.e., P , {(s, k) | s ∈ S, 1 ≤ k ≤ H(s)}. The set of link-
flow-pairs that interfere with(s, k) can be described as

I(s, k) , {(r, j) ∈ P | (s, k) interferes with(r, j),

or (r, j) = (s, k)}.
(1)

Note that the interference model we adopt is general. A
schedule is a set of (active or inactive) link-flow-pairs, and
can be represented by a vector~M ∈ {0, 1}|P|, where each
link-flow-pair is set to 1 if it is active, and 0 if it is inactive,
and | · | denotes the cardinality of a set. A schedule~M is
said to befeasible if no two link-flow-pairs of ~M interfere
with each other, i.e.,(r, j) /∈ I(s, k) for all (r, j), (s, k) with
Mr,j = 1 andMs,k = 1. LetMP denote the set of all feasible
schedules inP , and letCo(MP) denote its convex hull.

LetAs(t) denote the number of packet arrivals at the source
node of flows at time slott. We assume that the packet arrival
processes satisfy the Strong Law of Large Numbers (SLLN):
with probability 1,

limt→∞

∑t−1

τ=0
As(τ)

t
= λs, (2)

for all flow s ∈ S, and their fluid limits exist [15]. We call
λs the arrival rate of flows, and let~λ , [λ1, λ2, · · · , λ|S|]
denote its vector.
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Let Qs,k(t) denote the number of packets at the queue of
(s, k) at the beginning of time slott. Slightly abusing the
notation, we also useQs,k to denote the queue. We denote the
queue length vector at time slott by ~Q(t) , [Qs,k(t), (s, k) ∈
P ], and use‖ · ‖ to denote theL1-norm of a vector, e.g.,
‖ ~Q(t)‖ =

∑

(s,k)∈P Qs,k(t). Let Πs,k(t) denote the service
of Qs,k at time slott, which takes either 1 if link-flow-pair
(s, k) is active, or 0, otherwise, in our settings. We denote the
actual number of packets transmitted fromQs,k at time slot
t by Ψs,k(t). Clearly, we haveΨs,k(t) ≤ Πs,k(t) for all time
slots t ≥ 0. Let Ps,k(t) ,

∑k
i=1Qs,i(t) denote the summed

queue length of queues up to thek-th hop for flow s. By
settingQs,H(s)+1 = 0, we havePs,H(s)+1 = Ps,H(s). The
queue length evolves according to the following equations:

Qs,k(t+ 1) = Qs,k(t) + Ψs,k−1(t)−Ψs,k(t), (3)

where we setΨs,0(t) = As(t).
Let Fs(t) be the total number of packets that arrive at the

source node of flows until time slot t ≥ 0, including those
present at time slot 0, and let̂Fs,k(t) be the total number of
packets that are served atQs,k until time slot t ≥ 0. We by
convention setF̂s,k(0) = 0 for all link-flow-pairs (s, k) ∈ P .
We letZs,k,i(t) denote the sojourn time of thei-th packet of
Qs,k in the network at time slott, where the time is measured
from when the packet arrives in the network (i.e., when the
packet arrives at the source node), and letWs,k(t) denote the
sojourn time of the Head-of-Line (HOL) packet ofQs,k in
the network at time slott, i.e., Ws,k(t) = Zs,k,1(t). We set
Ws,0(t) = 0 andWs,H(s)+1(t) = Ws,H(s)(t), for all s ∈ S.
Further, ifQs,k(t) = 0, we setWs,k(t) =Ws,k−1(t). Letting
Us,k(t) , t−Ws,k(t) denote the time when the HOL packet
of Qs,k arrives in the network, we have that

Us,k(t) = inf{τ ≤ t | Fs(τ) > F̂s,k(t)}, for all t ≥ 0. (4)

We next define the stability of a network as follows.
Definition 1: A network of queues is said to bestable if,

lim supt→∞
1
t

∑t−1
τ=0 E[‖ ~Q(τ)‖] <∞. (5)

We define thethroughput regionof a scheduling policy as
the set of rates, for which the network remains stable under
this policy. Further, we define theoptimal throughput region
(or stability region) as the union of the throughput regions of
all possible scheduling policies. The optimal throughput region
Λ∗ can be presented as

Λ∗ , {~λ | ∃~φ ∈ Co(MP ) s.t.λs ≤ φs,k, for all (s, k) ∈ P}.
(6)

An arrival rate vector is strictly insideΛ∗, if the inequalities
above are all strict.

III. T HROUGHPUTOPTIMALITY OF Q-BP USING FLUID

L IMITS

It has been shown in [1] that Q-BP stabilizes the network
for any feasible arrival rate vector using stochastic Lyapunov
techniques. Specifically, we can use a quadratic-form Lya-
punov function to show that the function has a negative

drift under Q-BP when queue lengths are large enough. In
this section, we re-visit throughput optimality of Q-BP using
fluid limit techniques. The analysis will be extended later to
prove throughput optimality of the delay-based back-pressure
algorithm.

To begin with, we define thequeue differential∆Qs,k(t) as

∆Qs,k(t) , Qs,k(t)−Qs,k+1(t), (7)

and specify the back-pressure algorithm based on queue
lengths as follows.
Queue-length-based Back-Pressure (Q-BP) algorithm:

~M∗ ∈ argmax ~M∈MP

∑

(s,k)∈P ∆Qs,k(t) ·Ms,k. (8)

The algorithm needs to solve a MaxWeight problem with
weights as queue differentials, and ties can be broken arbitrar-
ily if there are more than one schedules that have the largest
weight sum.

We establish the fluid limits of the system and prove
throughput optimality of Q-BP using fluid limit techniques.

A. Fluid limits

We define the process describing the behavior of the under-
lying system asX = (X (t), t = 0, 1, 2, · · · ), where

X (t) ,
(

(Zs,k,1(t), · · · , Zs,k,Qs,k(t)(t)), (s, k) ∈ P
)

. (9)

The processX forms a discrete time Markov chain, if a
scheduling decision is based on the information of the current
time slot only. Clearly,X forms a Markov chain under Q-BP.
Motivated by Definition 1, we define the norm ofX (t) as

‖X (t)‖ , ‖ ~Q(t)‖. (10)

Let X (xn) denote a processX with an initial configuration
such that

‖X (xn)(0)‖ = xn. (11)

All the processes ofX (xn) satisfy the properties in the original
systemX .

The following Lemma was derived in [16] for continuous
time countable Markov chains, and it follows from more
general results in [17] for discrete time countable Markov
chains.

Lemma 1:Suppose there exists an integerT > 0 such that,
for any sequence of processes{X (xn)}, we have that,

limxn→∞ E

[

1
xn

‖X (xn)(xnT )‖
]

= 0, (12)

then the system is stable.
A stability criteria of (12) leads to a fluid limit approach [15]

to the stability problem of queueing systems. Hence, we start
our analysis by establishing thefluid limit modelas in [11],
[15]. We define the processY , (A,F, F̂ , Q, P,Π,Ψ,W,U),
and it is clear that, a sample path ofY uniquely defines the
sample path ofX . We then extend the definition ofY = A,
F , F̂ , Q, P , Π, Ψ, W and U to continuous time domain
as Y (t) , Y (⌊t⌋) for time t ≥ 0. Note that,Y (t) is right
continuous having left limits.
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As in [11], we extend the definition ofF (xn)
s (t) to the

negative intervalt ∈ [−xn, 0) by assuming that the packets
present in the initial stateX (xn)(0) arrived in the past at some
of the time instants−(xn − 1),−(xn − 2), · · · , 0, according
to their delays in the stateX (xn)(0). By this convention,
F

(xn)
s (−xn) = 0 for all s ∈ S andxn, and

∑

s∈S F
(xn)
s (0) =

xn, for all xn.
Then, using the techniques of Theorem 4.1 of [15], we can

show that, for almost all sample paths and for all positive
sequencexn → ∞, there exists a subsequencexnj

with
xnj

→ ∞ such that, for alls ∈ S and all (s, k) ∈ P , the
following convergences holduniformly over compact (u.o.c)
interval:

1
xnj

∫ xnj
t

0 A
(xnj

)
s (τ)dτ → λst, (13)

1
xnj

F
(xnj

)
s (xnj

t) → fs(t), (14)

1
xnj

F̂
(xnj

)

s,k (xnj
t) → f̂s,k(t), (15)

1
xnj

Q
(xnj

)

s,k (xnj
t) → qs,k(t), (16)

1
xnj

P
(xnj

)

s,k (xnj
t) → ps,k(t), (17)

1
xnj

∫ xnj
t

0 Π
(xnj

)

s,k (τ)dτ →
∫ t

0
πs,k(τ)dτ, (18)

1
xnj

∫ xnj
t

0 Ψ
(xnj

)

s,k (τ)dτ →
∫ t

0 ψs,k(τ)dτ, (19)

and similarly, the following convergences (which are denoted
by “⇒”) hold at every continuous point of the limit function:

1
xnj

W
(xnj

)

s,k (xnj
t) ⇒ ws,k(t), (20)

1
xnj

U
(xnj

)

s,k (xnj
t) ⇒ us,k(t). (21)

At almost all pointst ∈ [0,∞), the derivatives of these limit
functions exist. We call such pointsregular time. Moreover,
the limits satisfy that

∑

s∈S fs(0) = 1, (22)

ps,k(t) =
∑k

i=1 qs,i(t), (23)

ps,k(t) = fs(t)− f̂s,k(t), (24)

fs(t) = fs(0) + λst, (25)

us,k(t) = t− ws,k(t), (26)

ψs,k(t) ≤ πs,k(t), (27)

∆qs,k(t) = qs,k(t)− qs,k+1(t), (28)

d
dt
qs,k(t) =

{

ψs,k−1(t)− πs,k(t), qs,k(t) > 0,
[ψs,k−1(t)− πs,k(t)]

+, qs,k(t) = 0,
(29)

where[z]+ , max(z, 0), and we setψs,0 = πs,0 = λs.
It is clear from (8) that Q-BP will not schedule link-flow-

pair (s, k) if Qs,k(t)−Qs,k+1(t) < 0. This implies that, if

Qs,k(t) ≥ Qs,k+1(t)− 2 (30)

initially holds for all (s, k) at time slot 0, then the inequality
holds for every time slott ≥ 0. This further implies that

qs,k(t) ≥ qs,k+1(t), i.e., ∆qs,k(t) ≥ 0, (31)

for all (scaled) timet ≥ 0. Without loss of generality, we
assume that, at time slot 0, all queues on each route are empty,
except for the first queue, then it follows that (30) holds for
all (scaled) timet ≥ 0, and thus,∆qs,k(t) ≥ 0 holds, for all
t ≥ 0.

B. Throughput optimality of Q-BP

Proposition 2: Q-BP can support any traffic with arrival
rate vector that is strictly insideΛ∗.

Proof: We prove the stability using the standard Lyapunov
technique. We consider a quadratic-form Lyapunov function
in the fluid limit model of the system, and show that it has
a negative drift, which implies that the fluid limit model and
thus the original system is stable.

Let V (~q(t)) denote the Lyapunov function defined as

V (~q(t)) , 1
2

∑

(s,k)∈P (qs,k(t))
2 . (32)

Suppose~λ is strictly insideΛ∗, then there exists a vector
~φ ∈ Co(MP) such that~λ < ~φ, i.e.,λs < φs,k for all (s, k) ∈
P . Since~q(t) is differentiable, for any regular timet ≥ 0 such
thatV (~q(t)) > 0, we can obtain the derivative ofV (~q(t)) as

D+

dt+
V (~q(t))

=
∑

(s,k)∈P

qs,k(t) · (ψs,k−1(t)− πs,k(t))

≤
∑

(s,k)∈P

qs,k(t) · (πs,k−1(t)− πs,k(t))

=
∑

(s,k)∈P

∆qs,k(t) · λs −
∑

(s,k)∈P

∆qs,k(t) · πs,k(t)

=
∑

(s,k)∈P

∆qs,k(t) · (λs − φs,k)

+
∑

(s,k)∈P

∆qs,k(t) · (φs,k − πs,k(t)),

(33)

where D+

dt+
V (~q(t)) = limδ↓0

V (~q(t+δ))−V (~q(t))
δ

, and the first
equality and the inequality are from (29) and (27), respectively.

Note that in the final result of (33), we obtain that i) the
first term is negative because i)~λ < ~φ, and ∆qs,k(t) ≥ 0
for all (s, k) ∈ P and∆qs′,k′ (t) > 0 for at least one link-
flow-pair (s′, k′) sinceV (~q(t)) > 0, and that ii) the second
term becomes non-positive since Q-BP chooses schedules that
maximize the queue differential weight sum (8), its fluid limit
~π(t) satisfies that

~π(t) ∈ argmax~φ∈Co(MP)

∑

(s,k)∈P ∆qs,k(t) · φs,k,

which implies that
∑

(s,k)∈P ∆qs,k(t) · φs,k ≤
∑

(s,k)∈P ∆qs,k(t) · πs,k(t),

for all ~φ ∈ Co(MP). Therefore, we haveD
+

dt+
V (~q(t)) < 0 and

the fluid limit model of the system is stable, which implies that
the original system is also stable by Theorem 4.2 of [15].
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IV. T HROUGHPUTOPTIMALITY OF D-BP

A. Algorithm description

Next, we develop Delay-based Back-Pressure (D-BP) policy
that can establish a linear relation between queue lengths
and delays in the fluid limit model. The idea has appeared
first in [11] for single-hop networks. However, when packets
travel multiple hops before leaving the system, the analytical
approach in [11] (i.e., using HOL delay in the queue as the
metric) cannot capture queueing dynamics of multi-hop traffic
and the resultant solutions cannot guarantee the linear relation.
This is because the arrival rate of a relay node is not a constant
and depends on the system dynamics (i.e., depends on the
underlying scheduling policies). In this section, we carefully
design link weights using a new delay metric, and re-establish
the linear relation between queue lengths and delays under
multi-hop traffic.

Recall thatWs,k(t) denotes the sojourn time of the HOL
packet of queueQs,k(t) in the network, where the time is
measured from when the packet arrives in the network. We
define the delay metriĉWs,k(t) as

Ŵs,k(t) ,Ws,k(t)−Ws,k−1(t), (34)

and also define thedelay differentialas

∆Ŵs,k(t) , Ŵs,k(t)− Ŵs,k+1(t). (35)

The relations between these delay metrics are illustrated in
Fig. 1. We specify the back-pressure algorithm with the new
delay metric as follows.
Delay-based Back-Pressure (D-BP) algorithm:

~M∗ ∈ argmax ~M∈MP

∑

(s,k)∈P ∆Ŵs,k(t) ·Ms,k. (36)

D-BP computes the weight of(s, k) as the delay differential
∆Ŵs,k(t) and solves the MaxWeight problem, i.e., finds a
set of non-interfering link-flow-pairs that maximizes weight
sum. Ties can be broken arbitrarily if there are more than
one schedules that have the largest weight sum. An intuitive
interpretation of the new delay metriĉWs,k(t) is as follows.
Note that the queue lengthQs,k(t) is roughly the number
of packets arriving at the source of flows during the time
slots between[Us,k(t), Us,k(t) + Ŵs,k(t)), andQs,k(t) is in
the order ofλsŴs,k(t) whenŴs,k(t) is large. Hence, a large
Ŵs,k(t) implies a large queue lengthQs,k(t), and similarly, a
large delay differential∆Ŵs,k(t) implies a large queue length
differential∆Qs,k(t). Therefore, being favorable to the delay
weight sum in (36) is in some sense “equivalent” to being
favorable to the queue length weight sum in (8) as Q-BP. We
later formally establish the linear relation between the fluid
limits of queue lengths and delays in Section IV-B.

Clearly, D-BP also will not schedule link-flow-pair(s, k) if
Ŵs,k(t)− Ŵs,k+1(t) < 0. Let Bs,k(t) denote the inter-arrival
time between the HOL packet ofQs,k(t) and the packet that
arrives immediately after it. The aforementioned operation of
D-BP implies that, if inequality

Ŵs,k(t) ≥ Ŵs,k+1(t)− 2Bs,k(t), (37)

Flow s
(s,k-1) (s,k) (s,k+1)

W�����(t) W���(t) W�����(t)
Ŵ���(t) = W���(t) - W�����(t)

Ŵ�����(t) = W�����(t) - W���(t)
∆Ŵ���(t) = Ŵ���(t) - Ŵ�����(t)

Fig. 1. Delay differentials using new delay metric.

,
ˆ ( )s kf t

( )sf t

t, ( )s ku t

, ( )s kw t

, ,( ) ( )s k s s kp t w tλ=

0 ,s kt

Fig. 2. Linear relation between queue lengths and delays in the fluid limits.

initially holds for all (s, k) at time slot 0, then the inequality
holds for all time slott ≥ 0. This further leads to

ŵs,k(t) ≥ ŵs,k+1(t), i.e., ∆ŵs,k(t) ≥ 0, (38)

for all (scaled) time t ≥ 0, in the fluid limits, since
1

xnj

B
(xnj

)

s,k (xnj
t) → 0, asxnj

→ ∞, otherwise we will arrive
a contradiction to the fact that the arrival process satisfies the
Strong Law of Large Numbers. Recall that we assume that all
queues on each route are empty, except for the first queue at
time slot 0, then (37) and (38) follow.

B. Analysis of throughput performance

We first establish the linear relation between the fluid limits
of queue lengths and delays in the following lemma. We will
use the lemma later to show that D-BP achieves the optimal
throughput.

Lemma 3:For any fixedts,k > 0, for any link-flow-pair
(s, k) ∈ P , the two conditionsus,k(ts,k) > 0 and f̂s,k(ts,k)
> fs(0) are equivalent. Further, if these conditions hold, we
have

ps,k(t) = λsws,k(t), (39)

qs,k(t) = λsŵs,k(t), (40)

for all t ≥ ts,k, with probability 1.
Fig. 2 describes the relations between the variables.

Proof: Since the first part, i.e., the two conditions are
equivalent, is straightforward from the definition of fluid limits
and (4), we focus on the second part, i.e., iff̂s,k(ts,k) > fs(0),
then (39) and (40) follow.

Suppose that
f̂s,k(ts,k) > fs(0). (41)
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Then, by definition ofus,k(t), we have

f̂s,k(t) = fs(us,k(t)), (42)

for all t ≥ ts,k. Hence, we obtain that

ps,k(t) = fs(t)− f̂s,k(t)

(a)
= (fs(0) + λst)− (fs(0) + λsus,k(t))

(b)
= λsws,k(t),

(43)

where (a) is from (42) and (25), and (b) is from (26). Further,
(40) follows from (23) and the fluid limit version of (34).

We emphasize the importance of Lemma 3. Lemma 3
implies that after a finite time (i.e.,max(s,k)∈P ts,k), queue
lengths areλs times delays in the fluid limit model. Then the
schedules of D-BP are very similar to those of Q-BP, which
implies that D-BP achieves the optimal throughput regionΛ∗.
In the following, we show that such a finite time exists.

Lemma 4:Consider a system under the D-BP policy. For
~λ strictly insideΛ∗, there exists a timeT > 0 such that the
fluid limits satisfy the following property with probability 1,

f̂s,k(T ) > fs(0), (44)

for all link-flow-pairs (s, k) ∈ P .
We can prove Lemma 4 by induction following the tech-

niques described in Lemma 7 of [11]. We omit the proof
and refer readers to our online technical report [18]. We next
outline an informal discussion, which highlights the main idea
of the proof. First, we consider the base case. D-BP chooses
one of the feasible schedules inMP (we omit the term
“feasible” in the following, whenever there is no confusion) at
each time slot. Each schedule receives a fraction of the total
time and there must exist a schedule that gets at least1

|MP |
fraction of the total time. Thus, after a large enough time
T1 > 0, there must exist a schedule~M∗ that is chosen for
at least T1

|MP | amount of time. The amount of initial packets

of ~M∗ is bounded from (22), thus, for a large enoughT1,
all initial packets of at least one link-flow-pair of~M∗ must
be completely served, i.e.,̂fs,k(T1) > fs(0), for at least one
(s, k) with M∗

s,k = 1.
Next, we consider the inductive step. Suppose there exists a

Tl > 0, such that for at least one subsetSl ⊂ P of cardinality
l, we have

f̂s,k(Tl) > fs(0), (45)

for all (s, k) ∈ Sl. Then there existsTl+1 ≥ Tl such that

f̂s,k(Tl+1) > fs(0), (46)

holds for all link-flow-pairs(s, k) within at least one subset
Sl+1 ⊂ P of cardinality l + 1. Note that, if(s, k) ∈ Sl, then
(s, i) ∈ Sl for 1 ≤ i ≤ k. Let

S∗
l , {(r, j) | (r, j) /∈ Sl, (r, j − 1) ∈ Sl, for j > 1;

or (r, j) /∈ Sl, for j = 1}
(47)

denote the set of link-flow-pairs(r, j) such that(r, j) ∈ P\Sl

is the closest hop to the source ofr. To avoid unnecessary

complications, we discuss the induction step forl = 1. The
generalization forl > 1 is straightforward. We show that for
givenS1 andT1, there exists a finiteT2 ≥ T1 such that (46)
with T2 holds for at least two different link-flow-pairs.

Let (ŝ, k̂) denote the link-flow-pair that satisfies (45) with
T1. Since(ŝ, k̂) ∈ Sl implies (ŝ, i) ∈ Sl for all 1 ≤ i ≤ k̂, we
must havêk = 1 andS1 = {(ŝ, 1)}. From (47), we have that

S∗
1 = {(r, 1) | r ∈ S\{ŝ}} ∪Nŝ, (48)

whereNŝ = {(ŝ, 2)} if H(ŝ) > 1, andNŝ = ∅ if H(ŝ) = 1.
We discuss only the case thatH(ŝ) > 1, and the other case
can be easily shown following the same line of analysis. Now
suppose that

f̂r,j(t) ≤ fr(0), for all (r, j) ∈ P\S1, and all t ≥ 0, (49)

i.e., for all the link-flow-pairs except those ofS1, the total
amount of service up to timet is no greater than the amount of
the initial packets for allt ≥ 0. We show that this assumption
leads to a contradiction, which completes the inductive step,
and we prove the lemma.

From the base case and Lemma 3, we haveqŝ,1(t) =
λŝŵŝ,1(t) for all t ≥ T1. We view the subset of linksS1 as a
generalized system, and consider the time slots when there is
at least one packet transmission from the outside ofS1, i.e.,
(r, j) ∈ P\S1. For each of such time slot, we say that the
time slot isunavailableto S1.

1) The number of such unavailable time slots is bounded
from the above byxnj

, since at every such time slot, at
least one initial packet will be transmitted and the total
number of initial packets is bounded by‖ ~Q(0)‖ = xnj

from (11). Hence, the amount of (scaled) time unavail-
able toS1 is bounded by‖~q(0)‖ = 1.

2) Since the amount of (scaled) time unavailable toS1 is
bounded, there exists a sufficiently larget ≥ T1 such
that the fraction of time that is given to(r, j) ∈ P\S1

is negligible, and we must havêwr̂,ĵ(t) = Θ(1)1 and
∆ŵr̂,ĵ(t) = Θ(1) for (r̂, ĵ) ∈ P\(S1

⋃

S∗
1).

3) Then, we can restrict our focus on the generalized
systemS1 to time t ≥ T1, and ignore the time that is
unavailable toS1. Then Q-BP and D-BP are in some
sense “equivalent” in the generalized systemS1 for
t ≥ T1 with the following properties: First, Q-BP will
stabilize the system if the arrival rate vector is strictly
insideΛ∗. Second, since the linear relation (40) holds
for all link-flow-pairs in S1 from Lemma 3, D-BP will
schedule links similar to Q-BP and also stabilizes the
generalized systemS1.

4) Now let us focus onS∗
1 . Link-flow-pairs inS∗

1 must have
some initial packets att ≥ T1 becauseS1 ∩S∗

1 = ∅. On
the other hand, the generalized networkS1 is stable.
This implies that the delay metrics of link-flow-pairs in
S∗
1 should increase at the same order as we increaset,

1We use the standard order notation:g(n) = o(f(n)) implies
limn→∞(g(n)/f(n)) = 0; and g(n) = Θ(f(n)) implies c1 ≤
limn→∞(g(n)/f(n)) ≤ c2 for some constantsc1 andc2.
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i.e., ŵr∗,j∗(t) = Θ(t) for (r∗, j∗) ∈ S∗
1 . Then we have

∆ŵr∗,j∗(t) = Θ(t), since ŵr∗,j∗+1(t) = Θ(1) from
(r∗, j∗ + 1) ∈ P\(S1

⋃

S∗
1 ) and 2). Since the delay

differentials∆ŵs,k(t) for all (s, k) ∈ S1 and∆ŵr̂,ĵ(t)

for all (r̂, ĵ) ∈ P\(S1 ∪ S∗
1 ) are bounded above from

stability of S1 and 2), respectively, D-BP will choose
some of the link-flow-pairs inS∗

1 for most of time for
a sufficiently larget. This implies that the amount of
time unavailable toS1 is Θ(t), which conflicts with our
previous statement that the fraction of time that is given
to (r, j) ∈ P\S1 is negligible.

As mentioned earlier, we omit the detailed proof here and
refer readers to our online technical report [18].

The following proposition shows throughput optimality of
D-BP.

Proposition 5: D-BP can support any traffic with arrival
rate vector that is strictly insideΛ∗.

Proof: We show the stability using fluid limits and
standard Lyapunov techniques. From Lemmas 3 and 4, we
obtain the key property for proving throughput optimality of
D-BP in Eq. (40), i.e., after a finite time, there is a linear
relation between queue lengths and delays in the fluid limit
model. We start with the following quadratic-form Lyapunov
function,

V (~q(t)) , 1
2

∑

(s,k)∈P
(qs,k(t))

2

λs
. (50)

Following the line of analysis in the proof of Proposition 2,
we can show that the Lyapunov function has a negative drift
if the underlying scheduler maximizes

∑

s,k

∆qs,k(t)
λs

· πs,k(t).
Now applying the linear relation (40), we can observe that D-
BP satisfies such a condition, and obtain the results. We omit
the detailed proof.

Although D-BP operates efficiently and achieves the optimal
throughput region, it is difficult to implement in practice due
to centralized operations and high computational complexity.
Therefore, we are interested in simpler approximations to D-
BP that can achieve a guaranteed fraction of the optimal
performance. The delay-based greedy maximal algorithm2 is a
good candidate algorithm. We can characterize the throughput
performance of the delay-based greedy scheme combining our
results along with the techniques used in [19], [20], and show
that it is as efficient as its queue-length-based counterpart, i.e.,
the queue-length-based greedy maximal algorithm.

V. NUMERICAL RESULTS

In this section, we first highlight thelast packetproblem
of the queue-length-based back-pressure algorithm. The last
packet problem implies that flows that lack packet arrivals at
subsequent times may experience excessive delay under Q-
BP, which is later confirmed in the simulations. We compare

2A greedy maximal algorithm finds its schedule in a decreasingorder of
weight (e.g., queue length or delay) conforming to the underlying interference
constraints.
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(b) HOL delay of short flow(2 → 4 → 6) whenλ = 3

Fig. 3. Illustration of the last packet problem under Q-BP.

throughput and delay performance of Q-BP and D-BP in a
grid network topology under the 2-hop3 interference model.

We first show the last packet problem of Q-BP through
simulations. We observe that several last packets of a short
flow that carry a finite amount of data may get stuck, which
could cause excessive delay. We consider a scenario consisting
of 7 nodes and 6 links as shown in Fig. 3(a), where nodes
are represented by circles and links are represented by dashed
lines with link capacity4. We assume a time-slotted system.
We establish three flows: one short flow (2 → 4 → 6)
and two long flows (1 → 2 → 3) and (5 → 6 → 7).
The short flow arrives at the network with a finite amount
of packets at time 0, and the number of packets follows
Poisson distribution with mean rate 10. The long flows have
an infinite amount of data and keep injecting packets at the
source nodes following Poisson distribution with mean rateλ
at each time slot. Numerical calculation shows that the feasible
rate under the 2-hop interference should satisfy thatλ ≤ 4.44.
We conduct our simulation for106 time slots, and plot time
traces of HOL delay of the short flow whenλ = 3. Fig. 3(b)
illustrates the results that the delay linearly increases with time
under Q-BP, which implies that several last packets of the

3In the 2-hop interference model, two links within a 2-hop “distance”
interfere with each other. Note that the interference model(Eq. (1)) in the
problem setup is general. We consider the 2-hop interference model in the
simulations, as it is often used to model the ubiquitous IEEE802.11 DCF
(Distributed Coordination Function) wireless networks [21]–[23].

4Unit of link capacity is packets per time slot.
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(a) Grid network topology
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Fig. 4. Performance of scheduling algorithms for multi-hoptraffic following
Poisson distribution.

short flow get excessively delayed. On the other hand, D-BP
succeeds in serving the short flow and keeps the delay close to
0. This also implies that certain flows whose queue lengths do
not increase because of lack of future arrivals (or whose inter-
arrival times between groups of packets are very large) may
experience a large delay under Q-BP, which will be confirmed
in the following simulations.

Next, we evaluate the throughput of different schedulers
in a grid network that consists of 16 nodes and 24 links as
shown in Fig. 4(a), where nodes and links are represented by
circles and dashed lines, respectively, with link capacity. We
establish 9 multi-hop flows that are represented by arrows.
Let λ1 = 0.1 and λ2 = 1. At each time slot, there is a file
arrival with probabilityp = 0.01 for flow (11 → 10 → 9)
(represented by the red thick arrow in Fig. 4(a)), and the file
size follows Poisson distribution with mean rate5 ρλ1/p. Note
that flow (11 → 10 → 9) has bursty arrivals with a small mean
rate (we simply call it the bursty flow in the following part).
All the other 8 flows have packet arrivals following Poisson

5Note that given the network topology, it is hard to find the exact boundary
of the optimal throughput region of scheduling policies in aclosed form.
Hence, we probe the boundary by scaling the amount of traffic.After we
choose~λ, which determines the direction of traffic load vector, we run our
simulations with traffic loadρ~λ changingρ, which scales the traffic loads.

Fig. 5. Delay distribution of the bursty flow underρ = 0.2.
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Fig. 6. Mean delay, top1% and top5% largest delay of the bursty flow
over offered loads.

distribution with mean rateρλ2 at each time slot. Although
these flows share the same stochastic property with an identical
mean arrival rateρλ2, uniform patterns of traffic are avoided
by carefully setting the link capacities differently and placing
the flows with different number of hops in an asymmetric
manner.

We evaluate the scheduling performance by measuring
average total queue lengths in the network over time. Fig. 4(b)
illustrates average queue lengths under different offeredloads
to examine the performance limits of scheduling schemes.
Each result represents an average of 10 simulation runs with
independent stochastic arrivals, where each run lasts for106

time slots. Since the optimal throughput region is defined as
the set of arrival rates under which queue lengths remain finite
(see Definition 1), we can consider the traffic load, under
which the queue length increases rapidly, as the boundary
of the optimal throughput region. Fig. 4(b) shows that D-BP
achieves the same throughput region as Q-BP, thus supports
the theoretical results of throughput optimality.

Although Q-BP and D-BP perform similarly in terms of
average queue length (or average delay) over the network, the
tail of the delay distribution of Q-BP could be substantially
longer because certain flows are starved. This could cause
enormous unfairness between flows, resulting in very poor



9

QoS for certain flows. Note that although a bursty flow is a
long flow that has an infinite amount of data, the arrivals occur
in a dispersed manner (i.e., the inter-arrival times between
groups of packets are very large) and we can view this bursty
flow as consisting of many short flows. Thus, we expect that
the bursty flow may experience a very large delay under Q-BP
due to lack of subsequent packet arrivals over long periods of
time that does not allow the queue-lengths to grow and thus
contributes to the long tail of the delay distribution. However,
this phenomenon may not manifest itself in terms of a higher
average delay for Q-BP, as can be observed in Fig. 4(b),
because the amount of data corresponding to the bursty flow
in the simulation is small compared to the other flows. On the
other hand, D-BP can achieve better fairness by scheduling
the links based on delays and not starving bursty or variable
flows. We confirm this in the following observations.

We now illustrate the effectiveness of using D-BP over Q-
BP in terms of how each scheme affects the delay distribution
of bursty flows. We plot the delay distribution of the bursty
flow in Fig. 5 underρ = 0.2. It reveals that the tail of the
delay distribution under D-BP vanishes much faster than Q-
BP. Further, we plot the mean delay, top6 1% and top5%
largest delays of the bursty flow over offered loads in Fig. 6.
All these delays under D-BP are substantially less than under
Q-BP, which implies that D-BP successfully eliminates the
excessive packet delays. The top0.1% largest delays of the
whole network demonstrate similar behaviors in Fig. 6 and
the results are omitted. This confirms that, Q-BP causes a
substantially long tail for the delay distribution of the network
due to the starvation of the bursty flow, while D-BP overcomes
this and achieves better fairness among the flows by scheduling
the links based on delays.

VI. CONCLUSION

In this paper, we develop a throughput-optimal delay-based
back-pressure scheme for multi-hop wireless networks. We
introduce a new delay metric suitable for multi-hop traffic
and establish a linear relation between queue lengths and
delays in the fluid limit model, which plays a key role in
the performance analysis and proof of throughput-optimality.
Delay-based schemes provide a simple way around the well-
known last packet problem that plagues the queue-length-
based schedulers, and avoid flow starvation. As a result, the
excessively long delays that could be experienced by certain
flows under the queue-length-based scheduling schemes are
eliminated without any loss of throughput.
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