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Abstract—Scheduling is a critical and challenging resource a finite number of packets to transmit, which can result in the
allocation mechanisr_n for multi-hop wirel_ess net\_/vorks. |t_ S_well well-known last packetproblem: consider a queue that holds
known that scheduling schemes that give a higher priority to the last packet of a flow, then the packet does not see any

the link with larger queue length can achieve high throughpu . .
performance. However, this queue-length-based approachoald subsequent packet arrivals, and thus the queue lengthnemai

potentially suffer from large (even infinite) packet delaysdue to Very small and the link may be starved for a long time, since
the well-known last packet problem, whereby packets may get the queue-length-based schemes give a higher priorityks li
excessively delayed due to lack of subsequent packet arriéa with a larger queue length. In such a scenario, it has also

Delay-based schemes have the potential to resolve this Igeticket ; _ .
problem by scheduling the link based on the delay for the paoit 23?2\,5;0\32 tlgrcgi]g:]hpastfgaiqn?;ue length-based schemes may

has encountered. However, the throughput performance of day- - .
based schemes has largely been an open problem except in liet Recent works in [8]-[13] have studied the performance of
cases of single-hop networks. In this paper, we investigatelay- delay-based scheduling algorithms that use the Head+uwd-Li
based scheduling schemes for multi-hop traffic scenarios. &/ (HOL) delay instead of queue length as link weight. One
view packet delays from a different perspective, and devepp yagirable property of the delay-based approach is that they

a scheduling scheme based on a new delay metric. Through . L
rigorous analysis, we show that the proposed scheme achievthe provide an intuitive way around the last packet problem. The

optimal throughput performance. Finally, we conduct extersive Schedulers give a higher priority to the links with a larger
simulations to support our analytical results, and show tha weight as before, but the weight (i.e., the HOL delay) of a
the delay-based scheduler successfully removes excesgiaeket |ink increases with time until the link gets scheduled. Henc
delays, while it achieves the same throughput region as thesgue- it the |ink with the last packet is not scheduled at this motnen
length-based scheme. o . . .
it is more likely to be scheduled in the next time. However,

. INTRODUCTION the throughput performance of the delay-based scheduling
. . . . . schemes is not fully understood, and has merely been shown
Link scheduling is a critical resource allocation com;

. . . for limited cases of single-hop networks.
ponent in multi-hop wireless networks, and also perhaps g P

the most challenging. The celebrated Queue-length-ba? éhe delay-based approach was introduced in [8] for schedul-

in Input-Queued switches. The results have been ex-
Back-Pressure (Q-BP) scheduler [1] has been shown to : . i ) -
throughput-optimal and can stabilize the network under at ded to wireless networks for single-hop traffic, pravgli

X . rtWroughput—optimaI delay-based MaxWeight scheduling-alg
Leasmle load. Smcte the det\f/]eltoEmenF ?f Q-th’,_tthere havt ms [10], [11], [14]. It is also shown that delay-based

€en humerous extensions that have integrated 1t In an ovglpe nes with appropriately chosen weight parameters also
all optimal cross-layer solution. Further, easier-to-iempent

gueue-length-based scheduling schemes have been dei/elgorgylde good Quality of S_erwce (QoS) [9], and can be_used as

d sh o be th hput-efficient 1 and ref N important component in a cross-layer protocol desigh [13
and shown fo be throughput-etiicien (see [2] and re eren e performance of the delay-based MaxWeight scheduler has
therein). Some recent attempts [3], [4] focus on demgmr&

real-world wireless protocols using the ideas behind the een further investigated in a single-hop network with flow
algo:i\;hms Wi P using ! ! aynamics [12]. The results show that, when flows arrive at

) the base station carrying a finite amount of data, the delay-
While these queue-length-based schedulers have b @ed MaxWeight scheduler achieves the optimal throughput

shown to achieve excellent throughput_ performance, they erformance while its queue-length-based counterpars doe
usually evaluated under the assumption that flows have

infinite amount of data and keep injecting packets into the However, in multi-hop wireless networks, the throughput

network. However, in practlpe accounting for multiple tlm(?.‘Jerformance of these delay-based schemes has largely been
scales [5]-[7], there also exist other types of flows thateha\én open problem. To the best of our knowledge, there are no

This work was supported in part by NSF award CNS-0721236 aR® A Prior WOI‘k§ that employ delay'based algorithm§ to ?.ddl‘!ﬂﬁSt
MURI project W911NF-08-1-0238. important issue of throughput-optimal scheduling in wassl



networks with multi-hop traffic. The problem turns out to be  region as Q-BP, but also guarantee better fairness by
far more challenging in the multi-hop scenario due to the scheduling the links based on delays and not starving
following reason. In [11], the key idea in showing throughpu  certain flows that lack subsequent packet arrivals (or have
optimality of the delay-based MaxWeight scheduler is to very large inter-arrival times between groups of packet
exploit the following property: after a finite time, thereigs a arrivals).
linear relation between queue lengths and HOL delays, whereThe remainder of the paper is organized as follows. In
the ratio is the mean arrival rate. Hence, the delay-basgdction I, we present a detailed description of our system
MaxWeight scheme is basically equivalent to its queuetteng model. In Section IIl, we show throughput optimality of Q-
based counterpart, and thus achieves the optimal throagh@p using fluid limit techniques, and extend the analysis to D-
This property holds for the single-hop traffic, since giveatt BP in Section IV. We evaluate the performance of delay-based
the exogenous arrival processes follow the Strong Law e&hedulers through simulations in Section V, and conclude o
Large Numbers (SLLN) and the fluid limits exist, the arrivapaper in Section VI.
processes turn out to be deterministic processes with a@onst
rates in the fluid limits. However, such a linear relation sloe
not necessarily hold for the multi-hop traffic, since thekmc ~ We consider a multi-hop wireless network described by
arrival rate at a non-source node (or a relay node) is notadirected graply = (V, &), where )V denotes the set of
constant and depends on the underlying scheduler's dysamitodes andé denotes the set of links. Nodes are wireless
To this end, we investigate delay-based scheduling scherff@gsmitters/receivers and links are wireless channeigdsn
that achieve the optimal throughput performance in mw-h two nodes if they can directly communicate with each other.
wireless networks. We assume a time-slotted system with a single frequency
Unlike previous delay-based schemes, we view packet deffjannel. During a single time slot, multiple links that do
as a sojourn time in the network, and re-design the del8gt interfere can be active at the same time, and each active
metric of a queue as the delay difference between the quedil transmits one packet during the time slot if its queue
HOL packet and the HOL packet of its previous hop (sé& not empty. LetS denote the set of flows in the network.
Eq. (34) for the formal definition). Using this new metricWe assume that each flow has a single, fixed, and loop-free
we can establish a linear relation between queue lengths d@dte. The route of flows has anH(s)-hop length from
delays in the fluid limit model. Then the linear relation aythe source to the destination, where edeth hop link is
the key role in showing that the proposed Delay-based Badkenoted by(s, k). Note that the assumption of single route
Pressure (D-BP) scheduling scheme is throughput-optimaland unit capacity is for ease of exposition, and one canyeasil

II. SYSTEM MODEL

multi-hop networks. extend the results to more general networks with multiple
In summary, the main contributions of our paper are dked routes and heterogeneous capacities. To specifyessel
follows: interference, we consider theth hop of each flows or link-

« We re-visit throughput optimality of Q-BP using fluidflow-pair (s, k). Let 7> denote the set of all link-flow-pairs,
limit techniques. Throughput optimality of Q-BP had-€.. P = {(s,k) | s € S, 1 <k < H(s)}. The set of link-
been originally shown using the standard Lyapunov tecHow-pairs that interfere W'ﬂ(S k) can be described as
nique in a stochastic sense. We re-derive throughput r(s 1) 2 {(y j) e P | (S k) interferes with(r, ),
optimality of Q-BP itself using fluid limit techniques so
that we can extend the analysis to D-BP using the linear or (r,j) = (s, k)}
relation between queue lengths and delays in the fludpte that the interference model we adopt is general. A
limit model. schedule is a set of (active orqinactive) link-flow-pairsdan

« We devise a new delay metric for D-BP and show that @n be represented by a vectbr € {0,1}/"], where each
achieves the optimal throughput performance in multink-flow-pair is set to 1 if it is active, and 0 if it is inacty
hop wireless networks. Calculating a link weight agnd |- | denotes the cardinality of a set. A scheddl is
sojourn time difference of the HOL packet, we establispaid to befeasibleif no two link-flow-pairs of M interfere
a linear relation between queue lengths and delays in téh each other, i.e.(r,j) ¢ I(s, k) for all (r, j), (s, k) with
fluid limit model, which leads to throughput-optimality of M..; = 1 and M, , = 1. Let Mp denote the set of aII feasible
D-BP following the same analytical procedure of Q-BPschedules iP, and letCo(Mp) denote its convex hull.

« We conduct extensive simulations to evaluate the perfor-Let A;(t) denote the number of packet arrivals at the source
mance of delay-based schedulers. Through simulatiofi®de of flows at time slott. We assume that the packet arrival
we observe that the last packet problem can cause @ocesses satisfy the Strong Law of Large Numbers (SLLN):
cessive delays for certain flows under Q-BP, while th&ith probability 1,
problem is eliminated under D-BP. Further, in the case lim S0 As(n) _ oy @)
of Q-BP, even though the average delays experienced in f=oo t o
the network may be similar to D-BP, the tail of the delayor all flow s € S, and their fluid limits exist [15]. We call
distribution could be substantially longer. We also show, the arrival rate of flows, and letx 2 A1, A2, Njg)]
that, D-BP can not only achieve the same throughpdénote its vector.
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Let Qs x(t) denote the number of packets at the queue dfift under Q-BP when queue lengths are large enough. In
(s, k) at the beginning of time slot. Slightly abusing the this section, we re-visit throughput optimality of Q-BP ngpi
notation, we also us€, ; to denote the queue. We denote théuid limit techniques. The analysis will be extended later t
queue length vector at time sloby G () £ [Q. x(t), (s,k) € prove throughput optimality of the delay-based back-presss
P], and use|| - || to denote theL,-norm of a vector, e.g., algorithm.

Q@) = > (s.kyep @s.k(t). Let Il x(t) denote the service To begin with, we define thqueue differentia\Q; 1 (t) as
of @, at time slott, which takes either 1 if link-flow-pair N
(s, k) is active, or 0, otherwise, in our settings. We denote the AQs k(1) = Qur(t) — Qs p41(t), @)
actual number of packets transmitted fr@ . at time slot and specify the back-pressure algorithm based on queue
t by W, (). Clearly, we haveb ;(t) < TI; ,(t) for all time |engths as follows.
slotst > 0. Let P ,(t) = Zle Qs,i(t) denote the summed Queue-length-based Back-Pressure (Q-BP) algorithm:
queue length of queues up to theth hop for flow s. By -
setting Q. (s 11 = 0, we haveP, (11 = Pis). The M* € argmaxy;c 0 > (s pyep AQsk(t) - Msp.  (8)
queue length evolves according to the following equations: algorithm needs to solve a MaxWeight problem with
Quilt+1) = Quilt) + Uy (t) — Uy k(t), (3) Weights as queue differentials, and ties can be brokerrarbit

ily if there are more than one schedules that have the largest
where we setl o(t) = A,(t). weight sum.

Let F;;(¢) be the total number of packets that arrive at the \we establish the fluid limits of the system and prove

source node of flows until time slot¢ > 0, including those throughput optimality of Q-BP using fluid limit techniques.
present at time slot 0, and 1é, ;(¢) be the total number of

packets that are served @ ;. until time slot¢ > 0. We by A. Fluid limits

convention setF ;(0) = 0 for all link-flow-pairs (s, k) € P. We define the process describing the behavior of the under-
We let Z, 1 ;(t) denote the sojourn time of thieth packet of lying system ast = (X(t),t=0,1,2,---), where

Qs in the network at time slot, where the time is measured N

from when the packet arrives in the network (i.e., when the X(t) = (Zska(t), -, Zo k.. (0(t). (s,k) € P) . (9)

packet arrives at the source node), andi&t,,(¢) denote the The processt forms a discrete time Markov chain, if a

sojourn time of the Head-of-Line (HOL) packet 6 in  gcheduling decision is based on the information of the aiirre
the network at time slot, i.e., W k(t) = Zsk1(t). We Set ime glot only. Clearly,¥ forms a Markov chain under Q-BP.

Wio(t) = 0 and W s 41(t) = Ws s (1), for all s € S. \otivated by Definition 1, we define the norm af(t) as
Further, if Q, x(t) = 0, we setW, i (t) = Wy ,—1(t). Letting

Us k() &t — Wy () denote the time when the HOL packet 1@ 2 11Q@)]. (10)

of arrives in the network, we have that . - . .
Qs Let X(*») denote a proces& with an initial configuration

Usr(t) = inf{r <t | Fy(r) > Fyx(t)}, forall ¢t >0. (4) such that

(In) —
We next define the stability of a network as follows. 25 O)f = 2n. (11)

Definition 1: A network of queues is said to tmableif,  All the processes at'(*») satisfy the properties in the original

. t—1 = systemX.

limsup,_, o ¢ 22, —o E[| Q)] < oc. ®) "The following Lemma was derived in [16] for continuous

We define thethroughput regionof a scheduling policy as time countable Markov chains, and it follows from more

the set of rates, for which the network remains stable undgeneral results in [17] for discrete time countable Markov
this policy. Further, we define theptimal throughput region chains.
(or stability region) as the union of the throughput regions of Lemma 1:Suppose there exists an integer- 0 such that,
all possible scheduling policies. The optimal throughegion for any sequence of processg (*+)}, we have that,
A* can be presented as

A* 2 {X| 34 € Co(Mp) s.t. A, < ¢, forall (s, k) € P}.
(6) then the system is stable.
An arrival rate vector is strictly insidd*, if the inequalities A stability criteria of (12) leads to a fluid limit approactfL
above are all strict. to the stability problem of queueing systems. Hence, we star
our analysis by establishing tHkiid limit modelas in [11],
1. THROUGHPUTOPTIMALITY OF Q-BP UsING FLUID [15]. We define the procesg 2 (A,F,F, Q,P,IL, U, W,U),
LIMITS and it is clear that, a sample path Pfuniquely defines the
It has been shown in [1] that Q-BP stabilizes the netwodample path oft. We then extend the definition &f = A,
for any feasible arrival rate vector using stochastic Lyapu F, F, Q, P, II, ¥, W and U to continuous time domain
techniques. Specifically, we can use a quadratic-form Lyas Y (¢) = Y(|t]) for time ¢ > 0. Note that,Y (¢) is right
punov function to show that the function has a negativ@ntinuous having left limits.

limg,, oo E [% 1xG) (2, 7)) ] = o, (12)



As in [11], we extend the definition oFS(I")(t) to the for all (scaled) timet > 0. Without loss of generality, we
negative intervak € [—z,,0) by assuming that the packetsassume that, at time slot O, all queues on each route are empty
present in the initial stat& (*») (0) arrived in the past at someexcept for the first queue, then it follows that (30) holds for
of the time instants-(z,, — 1), —(x,, — 2),---,0, according all (scaled) timet > 0, and thus,Ag; »(¢) > 0 holds, for all
to their delays in the statet(*~)(0). By this convention, ¢ > 0.

F) (—z,) = 0forall s € S andz,, and) ", g F&(0) =
xn, for all z,. B. Throughput optimality of Q-BP

Then, using the techniques of Theorem 4.1 of [15], we canpynasition 2: Q-BP can support any traffic with arrival
show that, for almost all sample paths and for all positivg;ie vector that is strictly insida*.

sequencer, — oo, there exists a subsequensg; with Proof: We prove the stability using the standard Lyapunov

@n, — oo such that, for alls € S and all (s, k) € P, the ocpnique. We consider a quadratic-form Lyapunov function
following convergences holdniformly over compact (u.0.C) i the fiuid limit model of the system, and show that it has

interval: a negative drift, which implies that the fluid limit model and
L Oz”jt Aim"j)(T)dT = Aot (13) thus the original system is stable.
" (@) Let V(4(t)) denote the Lyapunov function defined as
%WFS Y (@, t) = fi(t), (14) A )
S ) V(@) 2 1Y pyep (@sk(D) (32)
ﬁFqu ! (Inj t) - fs,k(t)v (15) N
! (@) _ Suppose) is strictly insideA”, then there exists a vector
T=Qu (@, t) = g5k (1), (16) ¢ € Co(Mp) such thath < ¢, i.e., \s < és . for all (s, k) €
1J (zn.) P. Sinceq(t) is differentiable, for any regular time> 0 such
o Lo (@nyt) = psie(t), (17) thatV(¢(t)) > 0, we can obtain the derivative of (g(t)) as
mnjt (mnj)
ﬁjfo I, (r)dr — fot s, (T)d, (18) D_"‘ (@)
1 Tt (zn]) t dt+
o U, (n)dr = [o s k(r)dr,  (19) = 3 qen(®) - Waso1(t) = mok(t)
and similarly, the following convergences (which are dedot (s,k)eP
by “=-") hold at every continuous point of the limit function: < Z Qo (t) - (M1 (t) — ma (1))
(171) (s,k)EP
Wi (@n,t) = wak(t), (20) (33)
R = > Aqr(®) A= D Agur(t) - mon(t)
wUsk” (@n,t) = ua k(D). (21) (s.k)EP (s.k)EP
At almost all pointst € [0, 00), the derivatives of these limit = Z Ags k(1) - (As = ds k)
functions exist. We call such pointegular time. Moreover, (s:k)EP
the limits satisfy that + ) AGk(t) - (G — mek(t)),
Pies f5(0) =1, (22) (er
Pok(t) = Y0, gsit), (23) where 2LV (q(t)) = limgyo LIEEDVED) ang the first
per(t) = fo(t) — s K(t), (24) equality and the inequality are from (29) and (27), respebti
_ Note that in the final result of (33), we obtain that i) the
s(t) = fs(0 Ast, 25 . ° ) 7 1
fs®) = £:(0) + (25) first term is negative because }) < ¢, and Ag; ;(t) > 0
us,k(t) =t = wsk(?), (26)  for all (s,k) € P and Agy i (t) > 0 for at least one link-
Vs k() < sk (1), (27)  flow-pair (s', k) since V(g(t)) > 0, and that ii) the second
Ags i (t) = qs k(1) — gs,pr1(t), (28) term becomes non-positive since Q-BP chooses schedules tha
., [ a1 (t) — men(t), Gs(t) > O rPaximiz_e _the gueue differential weight sum (8), its fluiditim
s k() = [ k1 (8) — Ton(O]F, qon(t) = 0(72 ) #(t) satisfies that
where[z]* £ max(z,0), and we setb, o = T 0 = As. 7 (t) € argmaxz. o, aap) 2a(s,kyep Ds k(L) - Os ks

It is clear from (8) that Q-BP will not schedule link-flow-
pair (s, k) if Qs.x(t) — Qsis1(t) < 0. This implies that, if ~ Which implies that

Qs(t) 2 Qs 41 (t) — 2 (B0)  X(emer Ao k() - Gok < D(snyep Aok (t) - Tk (1),

initially holds for all (s, k) at time slot 0, then the inequality

— + -
holds for every time slot > 0. This further implies that forall ¢ € Co(Mp). Therefore, we hav§t—+v(q(t)) < 0and

the fluid limit model of the system is stable, which implieatth
Qs k() > qs kt1(t), 1., Agsr(t) >0, (31) the original system is also stable by Theorem 4.2 of [1H].



IV. THROUGHPUTOPTIMALITY OF D-BP
A. Algorithm description

Next, we develop Delay-based Back-Pressure (D-BP) policy
that can establish a linear relation between queue lengths
and delays in the fluid limit model. The idea has appeared
first in [11] for single-hop networks. However, when packets
travel multiple hops before leaving the system, the arzdyti
approach in [11] (i.e., using HOL delay in the queue as the
metric) cannot capture queueing dynamics of multi-hogditraf
and the resultant solutions cannot guarantee the linegtioe!

This is because the arrival rate of a relay node is not a consta
and depends on the system dynamics (i.e., depends on the
underlying scheduling policies). In this section, we callgf
design link weights using a new delay metric, and re-eshbli
the linear relation between queue lengths and delays under
multi-hop traffic.

Recall thatlV ;(t) denotes the sojourn time of the HOL
packet of queud); ;(t) in the network, where the time is
measured from when the packet arrives in the network. We
define the delay metrieV, . (t) as

Wik (t) £ Wik (t) — Wa i1 (t), (34) Fio-2
and also define thdelay differentialas
AW,k (t) 2 Wen(t) = W (1). (35)

The relations between these delay metrics are illustrated i
Fig. 1. We specify the back-pressure algorithm with the new
delay metric as follows.

Delay-based Back-Pressure (D-BP) algorithm: L B

Tn .

M* € argmax ;. Z(s,k)ep AVA[/&k(t) - My j;.

Flow s .3
(s,k-1) (s,k) (s,k+1) \

Ws, k-1 (t) Ws, k( t) Ws, k+1 (t)

Wei(t) = Wei(t) - Weea(t)
Ws,k+1(t) = Ws,k+1( t) - Ws,k(t)
AW i(t) = Wa(t) - Wekaa(t)

Fig. 1. Delay differentials using new delay metric.

(1)

P, (1) =AW (D)

Linear relation between queue lengths and delayserfltid limits.

initially holds for all (s, k) at time slot 0, then the inequality
holds for all time slott > 0. This further leads to

Ws k(1) > W pr1(t), €., Ay () > 0, (38)

for all (scaled) timet > 0, in the fluid limits, since

Ty, .

s (Tn,t) — 0, asz,, — oo, otherwise we will arrive

(36) a contradiction to the fact that the arrival process sasidfie
Strong Law of Large Numbers. Recall that we assume that all

D-BP computes the weight dfs, k) as the delay differential queues on each route are empty, except for the first queue at
AWs; (t) and solves the MaxWeight problem, i.e., finds &me slot 0, then (37) and (38) follow.

set of non-interfering link-flow-pairs that maximizes wieig

sum. Ties can be broken arbitrarily if there are more thdh Analysis of throughput performance

one schedules that have the largest weight sum. An intuitiveWe first establish the linear relation between the fluid Bmit
interpretation of the new delay metri&, (¢) is as follows. of queue lengths and delays in the following lemma. We will
Note that the queue lengtty, 1 (¢) is roughly the number use the lemma later to show that D-BP achieves the optimal
of packets arriving at the source of flowduring the time throughput.

slots betweeriU, 1(t), Us x(t) + Wi (1)), and Q, x(t) is in
the order ofA\, W, 1 (t) whenW, . (t) is large. Hence, a large (s, k)

Lemma 3:For any fixedts ;, > 0, for any link-flow-pair

e P, the two conditionsu, ;. (ts ) > 0 and f, x(t..r)

W, x(t) implies a large queue length, ;. (¢), and similarly, a > fs(0) are equivalent. Further, if these conditions hold, we

large delay differentiaAWsyk(t) implies a large queue lengthhave
differential AQ; 1 (t). Therefore, being favorable to the delay
weight sum in (36) is in some sense “equivalent” to being
favorable to the queue length weight sum in (8) as Q-BP. We
later formally establish the linear relation between thédflu
limits of queue lengths and delays in Section IV-B.

Clearly, D-BP also will not schedule link-flow-pa(s, k) if
Wik (t) — Wi i1 (t) < 0. Let B, (t) denote the inter-arrival
time between the HOL packet @, »(¢) and the packet that
arrives immediately after it. The aforementioned operatid
D-BP implies that, if inequality

Ws,k(t) > Ws,k+1 (t) - QBs,k(t)a (37)

ps,k(t) = AsU)s.,k(t)a

qs.k (t) = /\sws,k (t)a

(39)
(40)

for all t > t, 5, with probability 1.
Fig. 2 describes the relations between the variables.
Proof: Since the first part, i.e., the two conditions are
equivalent, is straightforward from the definition of fluichlts
and (4), we focus on the second part, i.ef;ijc (ts.x) > f5(0),
then (39) and (40) follow.
Suppose that

Fsnltsn) > f5(0). (41)



Then, by definition ofu, ,(t), we have complications, we discuss the induction step foe 1. The
generalization for > 1 is straightforward. We show that for

Fsk(8) = fs(us i (2)), (42) given S; and T}, there exists a finitdy > Ty such that (46)
for all ¢ > t, . Hence, we obtain that with T3 holds for at least two different link-flow-pairs.
R Let (s, k) denote the link-flow-pair that satisfies (45) with
Pske(t) = fs(t) = fo(t) Ty. Since (s, k) € S, implies (3,i) € S; forall 1 <i < k, we
(@) must havek = 1 and S; = {(5,1)}. From (47), we have that

= (f5(0) + Ast) — (fs(0) + Asus k(1)) (43)
(:b) )\sws,k(t)a
where (a) is from (42) and (25), and (b) is from (26). FurtheWhere Ne = {(5,2)} if H(8) > 1, andN; = 0 if H(3) = 1.
(40) follows from (23) and the fluid limit version of (34)m We discuss only the case thAk(s) > 1, and the other case
We emphasize the importance of Lemma 3. Lemma %N be easily shown following the same line of analysis. Now
implies that after a finite time (i.emax(s y)ep tsx), queue SUPPOSE that
lengths are\, times delays in t_he_flwd limit model. Then th_e frj(t) < £,(0), for all (r,j) € P\S;, and allt >0, (49)
schedules of D-BP are very similar to those of Q-BP, which™ "’
implies that D-BP achieves the optimal throughput region i.e., for all the link-flow-pairs except those &, the total
In the following, we show that such a finite time exists. amount of service up to timeis no greater than the amount of
Lemma 4:Consider a system under the D-BP policy. Foihe initial packets for alt > 0. We show that this assumption
X strictly inside A*, there exists a tim@ > 0 such that the leads to a contradiction, which completes the inductive,ste
fluid limits satisfy the following property with probabiitl, —and we prove the lemma.
. From the base case and Lemma 3, we haye(t) =
s (T) > £5(0), (44) Asw;s 1(t) for all ¢ > T1. We view the subset of links; as a
for all link-flow-pairs (s, k) € P. generalized system, and consider the time slots when there i
We can prove Lemma 4 by induction following the tech@t least one packet transmission from the outsidé&ofi.e.,
niques described in Lemma 7 of [11]. We omit the prodfJ) € P\Si. For each of such time slot, we say that the
and refer readers to our online technical report [18]. Wet néme slot isunavailableto S, .
outline an informal discussion, which highlights the malea 1) The number of such unavailable time slots is bounded
of the proof. First, we consider the base case. D-BP chooses from the above by, since at every such time slot, at

St =A{(r,1) [ r e S\{3}}UNs, (48)

one of the feasible schedules iM» (we omit the term least one initial packet will be transmitted and the total
“feasible” in the following, whenever there is no confusian number of initial packets is bounded i¥2(0)| = z,
each time slot. Each schedule receives a fraction of thé tota  from (11). Hence, the amount of (scaled) time unavail-
time and there must exist a schedule that gets at lggs able toS; is bounded byj|g(0)|| = 1.
fraction of the total time. Thus, after a large enough time 2) Since the amount of (scaled) time unavailableStois
Ty > 0, there must exist a scheduld* that is chosen for bounded, there exists a sufficiently large> 77 such
at Ieastva—lp| amount of time. The amount of initial packets _that thg fraction of time that is given to-, j) € P\Sy
of M* is bounded from (22), thus, for a large enough is negligible, and we must have; ;(t) = ©(1)* and
all initial packets of at least one link-flow-pair ff* must A, 5(t) = ©(1) for (7, j) € P\(S1UST).
be completely served, i-efs,k(Tl) > £,(0), for at least one 3) Then, we can restrict our focus on the generalized
(s,k) with M}, = 1. system$S; to time ¢ > Ti, and ignore the time that is
Next, we consider the inductive step. Suppose there exists a unavailable toS;. Then Q-BP and D-BP are in some
T, > 0, such that for at least one subsgtc P of cardinality sense “equivalent” in the generalized system for
I, we have t > Ty with the following properties: First, Q-BP will
fs,k(Tl) > f4(0), (45) stabilize the system if the arrival rate vector is strictly
inside A*. Second, since the linear relation (40) holds
for all (s, k) € S;. Then there existd}, > 7} such that for all link-flow-pairs in S; from Lemma 3, D-BP will
fs,k(Tl—H) > £,(0), (46) schedule links similar to Q-BP and also stabilizes the

generalized systerf;.
holds for all link-flow-pairs(s, k) within at least one subset 4) Now let us focus oi$;. Link-flow-pairs in ST must have

Si+1 C P of cardinality! + 1. Note that, if(s, k) € S;, then some initial packets at> T; becauses; N ST = (). On
(s,i) € S; for 1 <i <k. Let the other hand, the generalized netwdtk is stable.
This implies that the delay metrics of link-flow-pairs in

St =49 | (g) & S (ri g = 1) € 81, for j > 1; (47) ST should increase at the same order as we incrgase
or (r,j)  Si, for j =1}

. . . . IWe use the standard order notatio = implies
denote the set of link-flow-pairg:, j) such that(r, j) € P\Si  ji. . (g(m)/f(n)) = 0: and g(n) E‘"g(f(n))"ﬁ{n(;j?gs s
is the closest hop to the source af To avoid unnecessary lim,,,«(g(n)/f(n)) < c2 for some constants; andcs.



i.e., Wy j+(t) = O(t) for (r*, j*) € ST. Then we have @ @

Aty = (t) O(t), sincew,« j+41(t) = O(1) from | |
(r*,7* + 1) € P\(S1US7) and 2). Since the delay 8 Short 15
differentials Aw, 1, (t) for all (s, k) € S; and Aw, - (t) ‘ ‘

for all (7,7) € P\(S; U S}) are bounded above from Long @1@1@ Long
stability of S; and 2), respectively, D-BP will choose 110 15§

some of the link-flow-pairs iS5 for most of time for 3 3

a sufficiently larget. This implies that the amount of @ @'

time unavailable ta5; is ©(t), which conflicts with our
previous statement that the fraction of time that is given
to (r,j) € P\S1 is negligible. ;

x 10

—6—Q-BP
fl—=—D-BP

(a) “H"-type network topology

N
o

As mentioned earlier, we omit the detailed proof here and
refer readers to our online technical report [18].

The following proposition shows throughput optimality of
D-BP.

Proposition 5: D-BP can support any traffic with arrival
rate vector that is strictly insida*.

Proof: We show the stability using fluid limits and
standard Lyapunov techniques. From Lemmas 3 and 4, we
obtain the key property for proving throughput optimality o
D-BP in Eq. (40), i.e., after a finite time, there is a linear
relation between queue lengths and delays in the fluid limit
model. We start with the following quadratic-form Lyapunov
function,

HOL delay (slots)
Q@ P N ®w & O o N ® ©

|
[N

4 6 8 10
Time (slots) x 10°

o
N

(b) HOL delay of short flom2 — 4 — 6) when\ =3

V(1)) A % Z(s,k)ep (qs,iit)f. (50) Fig. 3. lllustration of the last packet problem under Q-BP.

Following the line of analysis in the proof of Proposition 2,

we can show that the Lyapunov function has a negative driftroughput and delay performance of Q-BP and D-BP in a

if the underlying scheduler maximizés , Aq;\,k(t) o n(t). grid network topology under the 2-hdjnterference model.

Now applying the linear relation (40), we can observe that D- We first show the last packet problem of Q-BP through
BP satisfies such a condition, and obtain the results. We ofifinulations. We observe that several last packets of a short
the detailed proof. m flow that carry a finite amount of data may get stuck, which

Although D-BP operates efficiently and achieves the optimgpu!d cause excessive delay. We consider a scenario dogsist
throughput region, it is difficult to implement in practiceel Of 7 nodes and 6 links as shown in Fig. 3(a), where nodes
to centralized operations and high computational complexiare represented by circles and links are represented bgdash
Therefore, we are interested in simpler approximations to Bnes with link capacit§. We assume a time-slotted system.
BP that can achieve a guaranteed fraction of the optimAfe establish three flows: one short flow ¢ 4 — 6)
performance. The delay-based greedy maximal algofitsra  @nd two long flows 1 — 2 — 3) and 6 — 6 — 7).
good candidate algorithm. We can characterize the thrautghg he short flow arrives at the network with a finite amount
performance of the delay-based greedy scheme combining 8liPackets at time 0, and the number of packets follows
results along with the techniques used in [19], [20], andshd>0isson distribution with mean rate 10. The long flows have
that it is as efficient as its queue-length-based counteripa;  @n infinite amount of data and keep injecting packets at the
the queue-length-based greedy maximal algorithm. source nodes following Poisson distribution with mean rate
at each time slot. Numerical calculation shows that theiliéas
rate under the 2-hop interference should satisfy that4.44.

We conduct our simulation fot0® time slots, and plot time

In this section, we first highlight théast packetproblem traces of HOL delay of the short flow when= 3. Fig. 3(b)

of the queue-length-based back-pressure algorithm. Téte Mustrates the res_ults_that_the delay linearly increasiis time
packet problem implies that flows that lack packet arrivals Ynder Q-BP, which implies that several last packets of the
subsequent times may experience excessive delay under Q-

BP, which is later confirmed in the simulations. We compare®In the 2-hop interference model, two links within a 2-hopstdnce”
interfere with each other. Note that the interference mdgel. (1)) in the
problem setup is general. We consider the 2-hop interferenodel in the

2A greedy maximal algorithm finds its schedule in a decreasirder of simulations, as it is often used to model the ubiquitous IEB2.11 DCF
weight (e.g., queue length or delay) conforming to the ulgdey interference  (Distributed Coordination Function) wireless network4]23].
constraints. 4Unit of link capacity is packets per time slot.

V. NUMERICAL RESULTS
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Fig. 4. Performance of scheduling algorithms for multi-hggfic following  over offered loads.
Poisson distribution.

_é)ﬁ,’itribution with mean ratg )\, at each time slot. Although

short flow get excessively delayed. On the other hand, D f h h hasi ith an iénti
succeeds in serving the short flow and keeps the delay closéf}%se ows share the same stochastic property with an eaenti

0. This also implies that certain flows whose queue lengths EBean arrival rat,@/\?’ um_form pattt_—:‘.rns O,f raffic are avglded
not increase because of lack of future arrivals (or whos-int y carefully setting the link capacities differently anagihg

arrival times between groups of packets are very large) mé%gn]:](évrvs with different number of hops in an asymmetric

experience a large delay under Q-BP, which will be confirm ) )
in the following simulations. We evaluate the scheduling performance by measuring

Next, we evaluate the throughput of different schedulef¥erage total queue lengths in the network over time. Fig). 4(
in a grid network that consists of 16 nodes and 24 links d4strates average queue lengths under different offévads
shown in Fig. 4(a), where nodes and links are representedBy&xamine the performance limits of scheduling schemes.
circles and dashed lines, respectively, with link capadig Each result represents an average of 10 simulation runs with

establish 9 multi-hop flows that are represented by arrow@dependent stochastic arrivals, where each run IastS_Cl’br
Let A, = 0.1 and A, = 1. At each time slot, there is a file fime slots. Since the optimal throughput region is defined as
arrival with probabilityp = 0.01 for flow (11 — 10 — 9) the set of arrival rates under which queue lengths remaitefini

(represented by the red thick arrow in Fig. 4(a)), and the fif§e€ Definition 1), we can consider the traffic load, under
size follows Poisson distribution with mean fje\; /p. Note Which the queue length increases rapidly, as the boundary
that flow (L1 — 10 — 9) has bursty arrivals with a small mearPf the optimal throughput region. Fig. 4(b) shows that D-BP
rate (we simply call it the bursty flow in the following part).2chieves the same throughput region as Q-BP, thus supports
All the other 8 flows have packet arrivals following Poissof'® theoretical results of throughput optimality.
Although Q-BP and D-BP perform similarly in terms of

SNote that given the network topology, it is hard to find thea@oundary average queue length (or average delay) over the netwark, th
of the optimal throughput region of scheduling policies irclased form. tail of the delay distribution of Q-BP could be Substanyiall
Hence, we probe the boundary by scaling the amount of traffiter we . .
choose), which determines the direction of traffic load vector, we ur |Onger because certain flows are starved. This could cause

simulations with traffic loacpX changingp, which scales the traffic loads. enormous unfairness between flows, resulting in very poor



QoS for certain flows. Note that although a bursty flow is g2]
long flow that has an infinite amount of data, the arrivals occu
in a dispersed manner (i.e., the inter-arrival times belwee[3
groups of packets are very large) and we can view this bursty
flow as consisting of many short flows. Thus, we expect that
the bursty flow may experience a very large delay under Q-BB]
due to lack of subsequent packet arrivals over long peridéds o
time that does not allow the queue-lengths to grow and thusl
contributes to the long tail of the delay distribution. Hawg

this phenomenon may not manifest itself in terms of a highep]
average delay for Q-BP, as can be observed in Fig. 4(b),
because the amount of data corresponding to the bursty fl

in the simulation is small compared to the other flows. On the
other hand, D-BP can achieve better fairness by schedulir@
the links based on delays and not starving bursty or variab
flows. We confirm this in the following observations.

We now illustrate the effectiveness of using D-BP over Q1]
BP in terms of how each scheme affects the delay distribution
of bursty flows. We plot the delay distribution of the bursty
flow in Fig. 5 underp = 0.2. It reveals that the tail of the [10]
delay distribution under D-BP vanishes much faster than Q-
BP. Further, we plot the mean delay, $op% and top5% [11]
largest delays of the bursty flow over offered loads in Fig. 6.
All these delays under D-BP are substantially less thanunde
Q-BP, which implies that D-BP successfully eliminates thg2]
excessive packet delays. The t6d % largest delays of the
whole network demonstrate similar behaviors in Fig. 6 and
the results are omitted. This confirms that, Q-BP causeq1a]
substantially long tail for the delay distribution of thetwerk
due to the starvation of the bursty flow, while D-BP overcoméls4]
this and achieves better fairness among the flows by scimeduli
the links based on delays. (15]

VI. CONCLUSION [16]

In this paper, we develop a throughput-optimal delay-based
back-pressure scheme for multi-hop wireless networks. W]
introduce a new delay metric suitable for multi-hop traffic
and establish a linear relation between queue lengths gpg
delays in the fluid limit model, which plays a key role in
the performance analysis and proof of throughput-optimali
Delay-based schemes provide a simple way around the wglP—]
known last packet problem that plagues the queue-length-
based schedulers, and avoid flow starvation. As a result, {8
excessively long delays that could be experienced by certai

X. Lin, N. Shroff, and R. Srikant, “A tutorial on crossylar optimization
in wireless networks,Selected Areas in Communications, |IEEE Journal
on, vol. 24, no. 8, pp. 1452-1463, Aug. 2006.

] A. Warrier, S. Janakiraman, S. Ha, and |. Rhee, “DiffQ:afical

differential backlog congestion control for wireless netiss,” in Proc.
of INFOCOM 2009.

A. Sridharan, S. Moeller, and B. Krishnamachari, “Implenting
Backpressure-based Rate Control in Wireless Networkdyifirmation
Theory and Applications Workshop009.

P. van de Ven, S. Borst, and S. Shneer, “Instability of Méaight
Scheduling Algorithms,” inProc. IEEE INFOCOM 2009, pp. 1701—
1709.

S. Liu, L. Ying, and R. Srikant, “Throughput-Optimal Oggunistic
Scheduling in the Presence of Flow-Level Dynamics,”Proc. IEEE
INFOCOM, 2010.

——, “Scheduling in multichannel wireless networks witbw-level dy-
namics,” ACM SIGMETRICS Performance Evaluation Revigal. 38,
no. 1, pp. 191-202, 2010.

A. Mekkittikul and N. McKeown, “A starvation-free algithm for
achieving 100% throughput in an input-queued switch,Pioc. of the
IEEE International Conference on Communication Netwpd&96.

M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whitinand
R. Vijayakumar, “Providing quality of service over a shamwieless
link,” IEEE Communications magazingol. 39, no. 2, pp. 150-154,
2001.

S. Shakkottai and A. Stolyar, “Scheduling for multiplews sharing
a time-varying channel: The exponential ruleltanslations of the
American Mathematical Society-Seriesvdl. 207, pp. 185-202, 2002.
M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vigymar,
and P. Whiting, “Scheduling in a queuing system with asyocbhusly
varying service ratesProbability in the Engineering and Informational
Sciencesvol. 18, no. 02, pp. 191-217, 2004.

B. Sadiqg and G. de Veciana, “Throughput optimality ofiagedriven
MaxWeight scheduler for a wireless system with flow dynarhias
Forty-seventh Annual Allerton Conference on Communioat@ontrol,
and Computing, Allerton House, Monticello,, |I2009.

M. Neely, “Delay-based network utility maximizatidnn Proc. IEEE
INFOCOM, 2010.

A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scHeu policies
for fading wireless channels/[EEE/ACM Transactions on Networking
vol. 13, no. 2, p. 424, 2005.

J. Dai, “On positive Harris recurrence of multiclassegeing networks:
a unified approach via fluid limit models,The Annals of Applied
Probability, pp. 49-77, 1995.

A. Rybko and A. Stolyar, “Ergodicity of stochastic pesses describing
the operation of open queueing network®foblems of Information
Transmissionvol. 28, no. 3, pp. 3-26, 1992.

V. Malyshev and M. Menshikov, “Ergodicity, continuignd analyticity
of countable Markov chainsTransactions of the Moscow Mathematical
Society vol. 39, pp. 3-48, 1979.

B. Ji, C. Joo, and N. Shroff, “Delay-Based Back-Pressticheduling in
Multi-Hop Wireless Networks,” November 2010. [Online]. @iable:
http://arxiv.org/abs/1011.5674

C. Joo, X. Lin, and N. Shroff, “Understanding the capacegion of the
greedy maximal scheduling algorithm in multi-hop wirelestworks,”
in IEEE INFOCOM 2008, pp. 1103-1111.

——, “Greedy Maximal Matching: Performance Limits forrl#itrary
Network Graphs Under the Node-exclusive Interference NJodEEE
Transactions on Automatic Contra2009.

flows under the queue-length-based scheduling schemes [a¥E X. Wu, R. Srikant, and J. Perkins, “Scheduling Efficigraf Distributed

eliminated without any loss of throughput.

[22]
REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability propertiek constrained [23]
queueing systems and scheduling policies for maximum ghput in
multihop radio networks,"IEEE Transactions on Automatic Control
vol. 37, no. 12, pp. 1936-1948, 1992.

8Suppose there a¥ packets sorted by their delays from the largest to the
smallest, the topX % largest delay is defined as the delay of 1[%]-th
packet. If% < 1, it means the maximum delay. For example, if the delays
are[3,2,1, 1, 1], the top20% largest delay is 2.

Greedy Scheduling Algorithms in Wireless Networké2EE Transac-
tions on Mobile Computingpp. 595-605, 2007.

M. Leconte, J. Ni, and R. Srikant, “Improved bounds oe throughput
efficiency of greedy maximal scheduling in wireless netwgrkin
MobiHoc '09.  New York, NY, USA: ACM, 2009, pp. 165-174.

C. Joo and N. Shroff, “Performance of random access didimg
schemes in multi-hop wireless networks,” IBEE INFOCOM 2007,
pp. 19-27.



