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Abstract—There have been recent attempts to develop schedul-
ing schemes for downlink transmission in a single cell of a
multi-channel (e.g., OFDM-based) cellular network. These works
have been quite promising in that they have developed low-
complexity index scheduling policies that are delay-optimal (in
a large deviation rate-function sense). However, these policies
require that the channel is ON or OFF in each time-slot with
a fixed probability (i.e., there is no memory in the system),
while the reality is that due to channel fading and doppler shift,
channels are often time-correlated in these cellular systems. Thus,
an important open question is whether one can find simple index
scheduling policies that are delay-optimal even when the channels
are time-correlated. In this paper, we attempt to answer this
question for time-correlated ON/OFF channels. In particular, we
show that the class of oldest packets first (OPF) policies that give a
higher priority to packets with a large delay is delay rate-function
optimal under two conditions: 1) The channel is rnon-negatively
correlated, and 2) The distribution of the OFF period is geometric.
We use simulations to further elucidate the theoretical results.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
digital multi-carrier modulation method that has been widely
used in wideband digital communications. A practical and
important application is the downlink phase of a single cell of
OFDM-based cellular networks, where the wideband can be
divided into a large number of orthogonal sub-carriers, which
can be used to carry data for different users. In this system,
the Base Station (BS) maintains a separate queue to store data
packets requested by each user. When the sub-carrier seen
by a user is in good channel condition, the sub-carrier can
successfully transmit a packet to the user from its designated
queue. We will focus on the setting of a single-hop multi-user
multi-channel system and study the delay performance of this
system from a large-deviations perspective.

In wireless networks, a key problem that has been exten-
sively studied is the design of high-performance scheduling
policies. It is well known from the seminal work [1] that
the MaxWeight policy is throughput-optimal, in the sense that
it can stabilize the system under any feasible arrival rates.
However, it has been shown in [2] that the MaxWeight policy
sacrifices the delay performance (and may lead to very large
queue lengths) for better throughput. This fact has motivated
researchers to look for policies that can improve the delay
performance measured by a queue-length-based metric. In [3],
the authors showed that the maximum-throughput and load-
balancing (MTLB) policy can achieve delay optimality for

two special cases of ON/OFF channels with a two-user system
or a system that allows fractional server allocation. However,
this problem becomes much harder in general cases. On the
other hand, in cellular networks, minimizing average delay
may cause a large delay for certain users that have stringent
delay requirements.

Another line of works focus on designing scheduling poli-
cies that maximize the rate-function of the steady-state prob-
ability that the largest queue length exceeds a given threshold
when the number of channels and users both go to infinity.
In [4] and [5] the authors showed that their proposed policy
can achieve both throughput optimality and queue length rate-
function optimality. However, simulations in [6] - [8] show
that good queue length performance does not necessarily imply
good delay performance. In fact, queue-length-based policies
usually suffer from the so called “last packet” problem, which
occurs in the situation where a certain queue has a very small
number of packets. Hence, this queue is rarely scheduled
by the queue-length-based policies, resulting in large packet
delays.

To that end, a delay-based metric has been investigated in
recent works in [7], [10] and [11]. The authors developed
several policies that achieve both throughput optimality and
delay rate-function optimality (or near-optimality). Although
the results hold for general arrivals (e.g., time-correlated
arrivals are allowed), the channels are assumed to be i.i.d. over
time. In practice, the current channel condition could depend
on past channel conditions. Therefore, the following impor-
tant question remains: How do we design a low-complexity
scheduling policy that achieves provably good throughput and
delay performance in the OFDM downlink system with time-
correlated channels?

While it is relatively straightforward to develop throughput
optimal policies even for time-correlated channels, developing
policies that are delay-optimal or delay-efficient for time-
correlated channels remains an open problem.

To that end, we are motivated to consider the following
question: Can we find index scheduling policies that are
delay-optimal even when the channels are time-correlated?
In this paper, we provide a positive answer in some cases.
Specifically, we analyze the delay rate-function of the class of
oldest packets first (OPF) policies which give a higher priority
to packets with a large delay and present two conditions under
which delay rate-function optimality can be achieved by any



OPF policy.

The key contributions of this paper are summarized as
follows. We use an alternating renewal process to model a
general ON/OFF time-correlated channel. We first prove an
upper bound on the delay rate-function for any scheduling
policy. Then, we analyze the delay rate-function of the class
of OPF policies, which give a higher priority to older packets.
We present two conditions and show that if both conditions
are satisfied, delay rate-function optimality can be achieved by
any OPF policy. The first condition requires that the channel
condition is non-negatively correlated over time. This is often
observed in practical time-correlated channels. The second
condition requires that the “OFF” period distribution has the
memoryless property, whereas the “ON” period distribution
could be arbitrary.

The rest of the paper is organized as follows. In Section II,
we describe the system model and the performance metric. In
Section III, we derive an upper bound on the rate-function
for any possible policy, and in Section IV, we obtain an
achievable rate-function of the class of OPF policies. Then in
Section V, we propose two conditions that imply delay rate-
function optimality of the class of OPF policies. We conduct
simulations to validate our theoretical results in Section VI
and make concluding remarks in Section VII.

II. SYSTEM MODEL

We use a time-slotted multi-queue multi-server system to
model the downlink phase of a single cell OFDM system. In
particular, we assume that there are n servers which stand for
frequency sub-carriers. Furthermore, we assume the number
of users is equal to the number of channels for ease of
presentation [10]. The Base Station maintains a queue/buffer
to store packets requested by each user, hence there are also
n queues in the queueing system. (We use terms “server” and
“channel”, “queue” and “user” interchangeably throughout this
paper.) Next, we present several notations that will be used
later in this paper. We use (); to denote the queue associated
to the i-th user, and use S; to denote the j-th server for
1 < 4,5 < n. We use Q;(t) to denote the queue length of
queue (Q; at the beginning of time-slot ¢ immediately after
new packet arrivals. All queues are assumed to have infinite
buffer size. Further, we use W;(¢) to denote the head-of-line
(HOL) delay of queue Q); at the beginning of time-slot ¢ and
use W(t) = maxi<;<n, W;(t) to denote the largest packet
delay in the system at the beginning of time-slot ¢. Finally, we
use 1 4 to denote the indicator function that indicates whether
event A occurs or not.

A. Arrival Process

The arrival process to each queue is assumed to be stationary
and ergodic. We also assume the arrivals are i.i.d. across all
users, but could be correlated over time. Let A;(¢) denote
the number of packet arrivals to queue @); in time-slot ¢. Let
A(t) = 1, A;(t) denote the total packet arrivals coming
into the system in time-slot ¢, and let A(t1,t5) = Y72, A(7)

T=t1

Fig. 1. A multi-queue multi-server system with stochastic connectivity. The
connectivity between queue (Q; and server Sj; is “ON” if they are connected
by a solid line, and “OFF” otherwise (connected by a dashed line).

denote the cumulative packet arrivals to the system from time-
slot ¢; to time-slot ¢s.

Next, we will introduce several assumptions on the arrival
process for purpose of rate-function delay analysis.

Assumption 1: The number of arrivals are bounded, i.e.,
there exists a finite number L such that A;(¢) < L for any 4
and t. Also, we assume P(A(s,s+t—1) = Lnt) > 0 for any
s,t and n.

Assumption 2: The arrival process are i.i.d across all users,
and the mean arrival rate is p (we assume p < 1, otherwise the
system could not be stable under any scheduling policy) for
every user. Given any € > 0 and § > 0, there exists a positive
function Ip(¢, d) independent of n and ¢ such that

P<23:11{\A<T>—pn\>en}
t
for all t > Ts(e,d) and n > Ng(e, ).

Assumptions 1 and 2 are mild. Packet arrivals per time-
slot are typically bounded in practice. In addition, it has been
shown in [7] that Assumption 2 is a general result of the
statistical multiplexing effect of a large number of sources and
holds for both i.i.d. arrivals and Markov chain driven arrivals.

> 5) < exp(—ntlp(e,8)). (1)
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Fig. 2. Time-correlated channel model

B. Stochastic Connectivity

We assume that each channel has unit capacity and changes
between “ON” state and “OFF” state from time to time. We
use C; ;(t) to indicate the connectivity between queue Q; and
server S; in time-slot t: C; ;(t) = 1 when the channel is “ON”
and C; ;(t) = 0 when the channel is “OFE.” We define “ON”
period to be the number of time-slots between the last time the
channel was “OFF” until the next time-slot it becomes “OFF”
again. “OFF” period is defined in the similar way. From time
to time, the channel state alternates between “ON” periods
and “OFF” periods. We use an alternating renewal process to
model the stochastic connectivity. In other words, the channel



is initially “ON” for a time period U; and then “OFF” for a
time period D;, followed by another “ON” period U and so
on. In particular, the sequences of “ON” times {U,, : n > 1}
and “OFF” times {D,, : n > 1} are independent sequences of
i.i.d. positive random variables. Let U be a generic “ON” time
and D be a generic “OFF” time. We use Fy () and Fp(-) to
denote the CDF of random variable U and D, respectively.

Assumption 3: The sum of “ON” and “OFF” periods U + D
is aperiodic with E[U] < co and E[D] < cc.

It is well known (e.g. [9]) that under Assumption 3, we
have:

lim P(Ci,j(t) = O) =

t—o0

= To. 2)

for any 1, j.

Remark 1: If U + D is periodic with period d, the above
result is true if ¢ is an integral multiple of d. For simplicity,
we only focus on the aperiodic case.

Note that this is a general model that can capture the
time-correlation of a channel. If U and D are geometri-
cally distributed with parameters 1 — ¢ and ¢, respectively,
it degenerates to a static i.i.d. channel model with channel
“ON” probability ¢. Similarly, if U and D have a geometric
distribution with parameter pio and pgp, respectively, it be-
comes the Markovian channel model with transition matrix

1—po1  po1
pio 1—pio

In each time-slot, a scheduling policy allocates servers to
serve packets from user queues. We further assume that a
server can only serve one queue in a time-slot, however, a
queue can get service from multiple servers simultaneously in
one time-slot. In addition, one packet from queue (Q; can be
served if an “ON” channel is allocated to queue Q);.

C. Problem Formulation

In this paper, the metric we use to measure the delay
performance is the large deviation rate-function of the steady-
state probability that the largest packet delay exceeds a given
threshold b. Assume the system starts at minus infinity, then
W(0) is the largest packet delay over all the queues in the
steady-state. We define the rate-function I(b) as the asymptotic
decay-rate of the probability that W (0) > b for a given
threshold b:

lim -1 log P(W(0) > b). 3)

n—,oo M

I(b) 2

Note that by the definition of rate-function I(b), we can esti-
mate the order of delay violation probability (i.e., P(W(0) >
b) by exp(—nlI(b)). It is obvious that a larger rate-function
implies a smaller delay violation probability and a better delay
performance. In this paper, our objective is to maximize the
rate-function 7(b). !

'We mainly focus on the delay analysis, since the results for throughput
performance can be easily generalized from [10].

III. AN UPPER BOUND ON THE RATE-FUNCTION

In this section, we derive an upper bound on the best
achievable delay rate-function. Later, we will use this upper
bound as a baseline to evaluate the delay performance of the
OPF policies.

First, as in [6], [7], we define quantity I4(t,x) for any
integer ¢ > 0 and any real number = > 0:

Ia(t,z) 2 SGUIS[Q(t 1) = Ay (—+1,0)(0)]- “4)
>
where A4, (_s41,0)(0) = logE[e?4:(=1+1.0)] is the cumulant-
generating function of A;(—t+1,0) = Z(T):_tH Ai(1).

From Cramer’s Theorem, I 4 (¢, x) is equal to the asymptotic
decay-rate of the probability that in any interval of ¢ time-slots,
the total number of packet arrivals to the system is no smaller
than n(t 4+ x) as n tends to infinity, i.e.,

-1
lim —logP(A(—t+1,0) > n(t+z)) = La(t,x). (5)

n—oo N
We define ¢, for L > 1 and non-negative integer x:

X

L-1

ty 2

(6)
Then we define an integer set ¥, 2 {c ¢
{1,2,--- ,b}|tp—c € Z*}. For any integer b > 0, let

« A . 1—FD(7‘)
I (b) £ min { log (| _max = Folr 1)

min { tliltf;) T4(t,0), 1?&21){012{6 T4(t,b—c¢) —logmg

) — log mo,

].—FD(T)
TE?OI%})(} 1—F‘D(7’—FC—1))}7

in{T4(ty_c,b—c)—1
Cnglmr}){ Aty c) — log mo+

+1og(

1-— FD(T)
1 RTINS ,
Og(fe?(},al},{---}l—FD(T—i-c))} @
In addition, we define:
Iy(b) = —log g + log (maXTe{O’L...} %), L=1
u(b) =
1, (b), L>1

The following theorem shows that for any integer b > 0,
Iy (b) is an upper bound on the delay rate-function for any
feasible scheduling policy.

Theorem 1: For any integer threshold b > 0 and any
scheduling policy, we have:

lim sup 71 logP(W(0) > b) < Iy (b). )
n—oo

Proof: We consider two cases L > 1 and L = 1. For the
case L > 1, we will consider three types of events: x1, x5 and
X$§, which are subsets of the delay-violation event {WW(0) >
b}. Note that bursty arrivals and sluggish services both cause
large packet delay in the system. In particular, x; is the event
with sluggish services while x§ and x§ are events with bursty
arrivals and sluggish services. For detailed proof, please see
our online technical report [14]. [ ]



IV. ACHIEVABLE RATE-FUNCTION OF OPF POLICIES

In this section, we aim to derive a non-trivial achievable
delay rate-function of the class of OPF policies. First, we state
the definition of the class of OPF policies.

Definition 1: A scheduling policy P is said to be an OPF
(oldest packets first) policy if in any time-slot, policy P can
serve the k oldest packets in the system for the largest possible
value of k € {1,2,--- ,n}.

We want to show that the achievable rate-function of any
OPF policy P is no smaller than I (b), defined as:

—logmy +b-log =, L=I
Loy = BT (10)
I:(b), L>1
where the parameter ¢ is defined to be
8 min mn PO=EHD 1 Fy(k+1)
ke{o,1,-} 1—Fp(k) "ke{o1,} 1—Fy(k)
(11)
and
* A 3 1
I5(b) = min {b -log T~ log mo,
mln{tliltfb I4(t,D), 11;132}}{01236 Ia(t,b—c)
1
—logmy+ (¢ —1) - log 1}
1—q
1
in{Ta(ty_ob—c) —1 1 } 12
52312{ Aty c) —logmy + ¢ ogl_q} (12)

The analysis of delay rate-function follows a similar line
of argument as in the case of ii.d. channels. Specifically,
we analyze the rate-function of the Frame Based Scheduling
(FBS) policy and the perfect-matching policy and exploit
the dominance property of the OPF policies over both of
them. However, in the case of time-correlated channels, it
becomes more challenging to derive a good lower bound on
the achievable rate-function. Since the channel has different
behaviors (distributions) for state-change and state-keeping. To
address this key challenge, we prove two important properties
of the FBS policy and the perfect-matching policy (Section
IV.A), which will play a key role in the proof. We start by
briefly describing the operations of the FBS policy and the
perfect-matching policy.

Under the FBS policy, packets are served in unit of frames.
Each frame is constructed according to a given operating
parameter h, such that: 1) the difference of the arrival times
of any two packets within a frame must be no greater than
h; and 2) the total number of packets in each frame is no
greater than ng = n — Lh. In each time-slot, the packets
arrived at the beginning of this time-slot are filled into the
last frame until any of the above two conditions are violated,
in which case a new frame will be opened. In each time-slot,
the HOL frame can be served only if there exists a matching
that can serve all the packets in the HOL frame. Otherwise, no
packet will be served. In any time-slot, the FBS policy serves
the HOL frame that contains the oldest (up to ng) packets
with high probability for a large n. Under the perfect-matching

}.

policy, if a perfect matching can be found, i.e., every queue
can be matched with a different server that is connected to
this queue, the HOL packet of every queue will be served
by the respective server determined by the perfect matching.
Otherwise, none of the packets will be served. It has been
shown in [10] that any OPF policy dominates the FBS policy
and the perfect-matching policy, i.e., given the same packet
arrivals and channel realization, any OPF policy will serve
every packet that the FBS policy has served up to time ¢; and
the same for the perfect-matching policy. Therefore, the FBS
and perfect-matching policy will provide lower bounds on the
delay rate-function that any OPF policy can achieve.

A. Properties of FBS and Perfect Matching Policy

In this subsection, we derive the following properties of
FBS and perfect matching policy, which will later be used for
the rate-function analysis. For ease of presentation, we define
function Xp(t) as:

1 if a frame can be served in time-slot ¢

Xp(t) = under FBS policy, (13)

0 otherwise.

We have the following lemma that gives a lower bound on the
probability that X (t) = 1.

Lemma 1: Consider an n X n bipartite graph G, where
the time-varying connectivity has the general time-correlation
property described in Section II. Then, there exists an Nz > 0,
such that for all » > Np the conditional probability that
Xp(t) =1 is bounded by:

B(Xp(t) = S(t1), - , S(ta), S(t - 1))

n TH —nlog%{i
>1 (1 — q) e -,
for any positive integer d, t; < to < - < tg < t—1,
and any S(t1),---,S(tq) and all n > Np, where S(-) is the
connectivity in the corresponding time-slot.
Proof: We provide the proof in APPENDIX A. [ ]

Lemma 1 shows that given the past channel state informa-
tion, a frame can be successfully served with high probability.
We are interested in finding an upper bound on the probability
that during the time interval [—¢ — b, —1], exactly ¢t + a frames
can be successfully served by the FBS scheduling policy. We
have the following lemma:

Lemma 2: For all a < b — 1, we have:

—1
P( Z Xp(r)=t+a)

T=—t—b
< 2t+b(£)7H( n

(14)

)7bH67n{7 log mo+(b—a—1) log 1%@}

5)

Proof: We provide the proof in APPENDIX B. [ ]
Likewise, we define X pj, as:

Xpu(t) = {

1 if G has a perfect matching at time-slot ¢,

0 otherwise.
(16)



Similarly, we have the following lemma:

Lemma 3: Consider an n x n bipartite graph G, where
the time-varying connectivity has general time-correlation
property. There exists an Npys > 0, for all n > Npjy, the
probability that G has no perfect matching can be bounded
as:

P(Xpa(t) =0S(t1), - ,S(tq),S(t — 1))

< 3ne B T (17)

Proof: We omit the proof here, as the same technique
used in the proof of Lemma 1 can be applied. ]
Similarly, it can be shown that for all a < b — 1:

P( Y Xpu(r)=t+a)

T=—t—b

< 2t+3bnbe—n{—logTrg—i-(b—a—l)log =} (18)

The above inequality holds for sufficiently large n > Npj,.
Note that the R. H. S. of inequalities (15) and (18) are both
monotonically increasing with respect to a.

B. Achievable Rate-function

We first consider the case where L > 1. We need to pick an
appropriate choice for the value of parameter & for FBS based
on the statistics of the arrival process. We fix § < % and € <
p/2. Then, from Assumption 2, there exists a positive function
I (e, 6) such that for all n > Ng(e,0) and t > T(e€,§), we
have

1+t
P(ZTZM Lija(r)—pn|>en}

: > 5) < exp(—ntIp(e,d)).

(19)
where [ is any arbitrary integer. Choose parameter h to be:

= 6)(11 — %)1’ [Iffe(,bgﬂ} 1
(20)

h = max {TB(E, d), [

and define H = Lh.

The reason for choosing this value of h will later become
clearer. Note that in Assumption 2, the maximum number of
arrivals in a time-slot is L.

Let L(—b) be the last time before time-slot —b, when the
backlog is empty, i.e., all the queues have a queue-length of
zero. Also, let & be the set of sample paths such that L(—b) =
—t—b—1 and W(0) > b under policy P. Then, we have

P(W(0) > b) = > P(&). (21)
t=1

Let & and £F'M be the set of sample paths such that given
L(-b) = —t — b — 1, the event W(0) > b occurs under
the FBS policy and the perfect-matching policy, respectively.
Recall that policy P dominates both the FBS policy and the
perfect-matching policy. Since each packet not served by the
OPF policy is also not served by the FBS policy or perfect
matching policy, then for any ¢ > 0 we have

& CEFnegPM, (22)

Recall that p is the mean arrival rate to a queue. Now, we
choose any fixed real number p € (p, 1), and fix a finite time
t* as

Iy(b
# 2 max {Tl, [ o )-‘,max{tb_c|c c \Ilb}}, (23)
Ipx
where 7} and Ipx are constants determined by p.
Hence, if we let
.
P 2Y PESneM), (24)
t=1
and
P2 Y PESNEM). (25)
t=t*
From the relation in (22), we can bound P(&;) as:
P(&) < Py + Ps. (26)

Hence, we can divide the rate-function analysis into two
parts. In part 1, we show that there exists a finite N; > 0
such that for all n > N;, we have

P < Cln7(b+1)H€_nIO(b). (27)

Then, in part 2, we show that there exists a finite Ny > 0
such that for all n > N,

Py < 4 o(®) (28)

By combining part 1 and part 2, there exists a finite N =
max{Ny, Nao}, such that for all n > N,

P(W(0) > b) < (Cln7(b+1)H + 4)6—"Io<b>. (29)

If we take logarithm and limit as n goes to infinity, we

obtain lim inf,, o = log P(W(0) > b) > Io(b), which is the

desired result.
Using the properties we derived in Section IV.A, we can
prove part 1 and part 2 following a similar argument as in

the proof of [10]. The detailed proof is provided in our online
technical report [14] for completeness.

V. THE RELATIONSHIP BETWEEN [ (b) AND Ij(b)

We have already shown that Iy (b) is an upper bound on
the delay rate-function under any possible scheduling policies.
Also, we show that the delay rate-function that can be achieved
by any OPF policy is no smaller than I(b). In this section,
we investigate the relationship between the values of these two
rate-functions. We show that if the channel is non-negatively
correlated (Condition A) and the distribution of the OFF
period is memoryless (Condition B), any OPF policy can
achieve the optimal delay rate-function, i.e., Iy (b) = Iy(b)
for any fixed integer b > 0.



1) Condition A: Any vector of finite channel states satisfies

non-negative correlation condition:
In statistics, two random variables X,Y are non-negatively
correlated if cov(X,Y) = E[XY] — E[X]E[Y] > 0. The
following definition from [13] is a reasonable generalization
of non-negative correlation to a set of random variables.

Definition 2: (Non-negative Correlation Condition) Let
X = (X4, ,X,) be a vector of random variables. Then the
random vector X satisfies non-negative correlation condition
if the conditional expectation E[X;,i € [|X; = t;,for Vj € J]
is non-decreasing in each t;, j € J for any disjoint index set
LJ C [n].

Lemma 4: If condition A holds, then the class of OPF poli-
cies can achieve a delay rate-function of Iy(b) with parameter
q replaced by ¢, which is given by:

. P(D=k+1)
kefod-} 1— Fp(k)

Proof: The proof follows a similar argument as in the
proof of Lemma 1. We provide the proof in our online
technical report [14]. [ |

2) Condition B: Distribution D has a memoryless property:
When the distribution D has a memoryless property, namely
D is geometrically distributed, we have:

1-Fpk+n—-1) 1—-Fpk+n—2)

1-Fpk+n)  1-Fplk+n—1)

~_ 1-Fp(k)
1-Fpk+1)

forany k£ > 1 and 1 < n < b. Multiplying all these n fractions,
we can obtain the following equation:

( 1 — Fp(k) )"7 1 — Fp(k)
1—-Fp(k+1))  1-Fp(k+n)

Finally, if the above two conditions are both satisfied, we
have the following theorem:

Theorem 2: The class of OPF policies achieve optimal delay
rate-function performance under the general time-correlated
channel model if conditions A and B both hold:

Proof: Condition A ensures that ¢ is related to the
distribution of random variable D and does not depend on
U. If we substitute the value of g into I(b), it is easy to see
that the expression for Io(b) is very similar to Iy (b), except
for the terms related to the CDF of D. Applying condition
B, we can obtain Iy(b) > Iy(b) directly. Since I(b) is an
lower bound on the delay rate-function that can be achieved
by any OPF policy and Iy (b) is an upper bound on the delay
rate-function under any possible scheduling policies, we can
conclude that the class of OPF policies achieve delay rate-
function optimality in general correlated channel model. H

In fact, i.i.d. channel and non-negatively correlated Marko-
vian channel are two special cases, in which both conditions
A and B are satisfied, and thus, the optimal rate-function is
achieved.

Remark 2: Under i.i.d. channel model with channel “ON”
probability ¢, conditions A and B always hold. In this case,

q= (30)

3D

(32)

U has a geometric distribution with parameter 1 — ¢, and D
has a geometric distribution with parameter q.

E[Ci;(D)|Ci;(t1) = 1, -+, Cy (k) = ex] = E[Cy ;(1)] = ¢

Since the conditional expectations remain the same for any
¢, the non-negative correlation condition (condition A) holds.
On the other hand, since random variable D is geometrically
distributed, D has a memoryless property, i.e., condition B
holds.

Remark 3: Under Markovian channel model with transition
matrix 7', condition A is equivalent to the standard notion of
non-negative correlation for a two-state Markov chain. In this
case, U has a geometric distribution with parameter p1g, and D
has a geometric distribution with parameter pg;. Substituting
the PMF of the geometric distribution, we have

E[Ci;j(|Ci;(t1) = er,---, Ciy(t = 1) = 1]

=P(C;;(t) =1|C;;(t —1) =1) =1 — pro. (33)
and
E[Ci;(D)ICi;(t1) = cr,- -, Ciyi(t —1) = 0]
=P(Ci;(t) =1|Ci;(t —1) = 0) = po1. (34)
Hence, condition A is equivalent to:
I —pio =2 por < po1 +pio < 1. (35)

which is the condition for non-negative correlation in a two-
state Markov chain. Similarly, condition B is satisfied because
D is also geometrically distributed.

Theorem 3: Under negatively correlated Markovian channel
model, i.e., po1 + p1o > 1, the class of OPF policies can
achieve a delay rate-function that is no smaller than bgk(’%if;’m-
fraction of the optimal value, where pg; and p;y come from
the transition probability.

Proof: Since pp1 + p1o > 1, the conditional probability
P(C;,;(t) = 1|C; ;(t—1)) is lower bounded by 1 —py¢. Thus,
by using the same proof technique, we can show that the same
results hold for log 1_11)01 replaced by log 1%0 Note that the
upper bound still remains the same, therefore, it is easy to see
that the delay rate-function achieved by the OPF policies is

no smaller than —25P10 __fraction of the optimal value. M
log(1—po1)

VI. NUMERICAL RESULTS

In this section, we conduct simulations to compare schedul-
ing performance under different channel settings. Among all
the OPF policies such as delay weighted matching (DWM)
[6], [7], DWM-n and hybrid policy [10], we choose DWM in
our simulations as DWM has the best empirical performance
in various scenarios [7]. The DWM policy considers at most
n oldest packets from each queue, i.e., a total of at most n2
packets and chooses the schedule that maximizes the sum of
the delays in each time-slot. We consider 0-5 i.i.d. arrivals i.e.,

Aty =4
77 )0, with probability 1 — s,

with probability p, 36)



for all ¢. The arrival processes are assumed to be inde-
pendent across all the queues. For the channel model, we
assume that all the channels are homogeneous and consider
the following seven channel settings, channel settings 1 and
2 are ii.d. ON/OFF channels with “ON” probability ¢; =
0.6 and g2 = 0.5, respectively, and channel settings 3, 4,
5, 6 and 7 are Markovian channels with transition matrix

0.94 0.06 0.85 0.15 0.01 0.99
T 0.04 0.96 |’ 0.1 09 || 099 o0.01 |’
0.1 09 0.25 0.75
09 01 and 075 025 | ° respectively. Note that

channel settings 1, 2, 3, and 4 are non-negatively correlated,
while channel settings 5, 6, and 7 are negatively correlated. In
addition, we fix the channel/server number to 10, i.e., n = 10.

i.i.d. Arrivals p=0.15, n=10

-~ Channel Setting 1
-=Channel Setting 3
10" ——Channel Setting 4

1 ~

P(W(0)>b)

&)

3 4 5
Delay threshold b

Fig. 3. Performance comparison under different channel settings with p =
0.15, n = 10. Channels are i.i.d. in channel setting 1 and from channel setting
4 to 3, channels become more positively correlated.

ii.d. Arrivals u=0.13, n=10

10 T T

-e-Channel Setting 1
-=Channel Setting 3
—4-Channel Setting 4

§403 , \‘-\

5 6

S

A

<

3 Delay thieshold b

Fig. 4. Performance comparison under different channel settings, with p =
0.13, n = 10. Channels are i.i.d. in channel setting 1 and from channel setting
4 to 3, channels become more positively correlated.

First, we plot the delay violation probability against dif-
ferent delay thresholds b under channel settings 1, 3, 4 for
p = 0.15 and p = 0.13, respectively. From Fig. 3 and Fig.
4, we can observe that the positively correlated Markovian
channel settings have a larger delay than that in the ii.d.
channel setting. This result can also be seen through our
theoretical results. The i.i.d. channel setting has a larger delay
rate-function which implies good delay performance. Also,

we can use a single-queue single-server system to mimic the
multi-queue multi-server system here. As channels are more
positively correlated, it is more likely to see longer “ON”
and “OFF” periods. In this case, the sum of the total service
rate could be very large (up to n) or very small with a non-
trivial probability. However, in the i.i.d. case, according to
the Chernoff bound, the sum of total service rate lies in a
neighborhood of the mean value ng with high probability.
Thus, the service variation under Markovian channels should
be larger than the counterpart under the i.i.d. channels.

Given the same mean service rate, we know from basic
queueing theory that the Markovian channel setting should
have a larger delay. Moreover, if we further lower the arrival
rate (e.g., decrease p from 0.15 to 0.13), the simulation results
show that as the channels become more positively correlated
the delay gap increases further.

0 i.i.d. Arrival p=0.15, n=10
\-

B N

10 N

=o—Channel Setting 2
—&- Channel Setting 5
—4— Channel Setting 6

Channel Setting 7

| et

4 5 6 7 0
Delay threshold b

,_
O‘

3
~

P(W(0)>b)

Fig. 5. Performance comparison under different channel settings, with 1 =
.15, n = 10. Channels are i.i.d. in channel setting 2 and from channel setting
7 down to 5, channels become more negatively correlated

Next, we would like to explore the story under negatively
correlated channels. As before, we plot the delay violation
probability against different b under channel settings 2, 5,
6, and 7 for 4 = 0.15. As we can see from Fig. 5, when
channel becomes more negatively correlated, the system has
a smaller delay. An extreme example is channel setting 5,
where alternating ON-OFF-ON... will be observed with high
probability. Once the initial state is determined, the service
rate of the system is almost deterministic. According to basic
queueing theory, smaller service variation should give us a
smaller delay. However, when we look at channel setting 6
and 7, there is no big difference between itself and the i.i.d.
channel setting. Therefore, there is still some space for us to
find a better scheduling policy under the negatively correlated
channel model.

VII. CONCLUSION

In this paper, we considered the scheduling problem of an
OFDM downlink system with multiple users and multiple sub-
carriers with time-correlated channels. Our theoretical result
shows that the class of oldest packets first (OPF) policies,
which give a higher priority to large delay packets, is delay
rate-function optimal when two conditions are both satisfied:
1) The channel is non-negatively correlated, and 2) The



distribution of “OFF” period has a memoryless property.
An open problem for future work is to consider multi-rate
channels rather than ON/OFF channels with a unit capacity.
In this multi-rate channel model, a lexicographically-optimal
algorithm that makes the HOL delays most balanced over all
the queues is expected to achieve good delay performance.
However, the channel-rate heterogeneity introduces a new
trade-off between maximizing instantaneous throughput and
balancing delays. Nonetheless, we believe that the results in
this paper will provide useful insights for designing high-
performance scheduling policies for more general scenarios.

APPENDIX A
PROOF OF LEMMA 1

Applying the law of total probability to different values of

C;.;(t — 1), we have:
P(Ci;(t) = 1|S(t1), S(t2), -+, S(ta), S(t = 1))
=P(Ci;(t) = 1S(t1), -+, S(ta), Cij(t = 1) = 1)
P(Cij(t =1) =1S(t1), -+, S(ta), S(t = 1))
+P(Ci;(t) = 1S(t), -+, S(ta), Cij(t = 1) = 0)
P(Ci;(t = 1) = 0[S(tr), -~ S(ta), S(t = 1)). (37

Recall that 7'(t, C; ;) is the length of the time period from
the beginning of its last state-change (“ON” to “OFF” or
“OFF” to “ON”) time-slot before time-slot ¢ to the begin-
ning of time-slot £ — 1. Summing up all possible values for
T(t,C; ), we have:

P(Ci;(t) = 1|S(t),
- Z(

T(t,Ciz) = k)
X P(T(t,Ci ;) = k|S(t1), - --

S(t2)7 .
=1|8(t1),-

;S(ta), Cij(t—1)=1)

-+, S(ta), Cij(t—1) =1,

[ S(ta), Cii(t—1) = 1)).
(38)

Note that C; ;(t) only depends on the last known state (here
is C; ;(t —1)) and the last state-change time-slot before time-
slot ¢, thus, we can simplify the above equation as:

P(C;;(t) = 1|S(t1), S(t2), - - -

=3 (P(Ciy(®) = 1UCis(t = 1) = LT, Ciyy) = )
=0

,S(ta),Cij(t—1) =1)

k=

(T(t Cij) = k|S(t1), -
—P(U >k+2)
,;0 P(U > k+1)
(T(t, Cij) = K[S(tr), - -~
1-Fy(k+1)
T1-Fy(k)

8(ta). Cigt = 1) = 1))

. P ,S(td),CiJ(t—l):l)

v

min

39
ke{0,1,---} (39)

Applying the same method, we have:

P(C;;(t) = 1|S(t1), S(t2), -+, S(ta), Ci i (t — 1) = 0)
P(D = k+1)
2By TRl w
Substitute (39) and (40) into (37),
1 Fy(k+1)
= kelot) 1= Fy(k)
‘P(Ci(t — 1) =1|S(t1),- -+ ,S(ta),S(t — 1))
. P(D=k+1)
ketotie} 1— Fp(k)
{ 1 Fy(k+1) PO =kt 1),
=ming Wi TR ketot ) T By k)
=g @l)

The above result gives us the lower bound on the conditional
probability that C; ;(t) = 1 given S(t1),---,S(tq), S(t — 1),
thus, by simply replacing g with ¢ in the proof of Lemma 6
in [7], the result stated in the lemma follows.

APPENDIX B
PROOF OF LEMMA 2
From Lemma 1, there exists an Ng > 0, for all n > Np,
the probability that X (t) = 0 occurs given the connectivity
at time-slots ¢1,--- ,tq,t — 1 can be bounded as,

n A)7H€_n10g 1%&'
I—q

Now, we are seeking an upper bound on the probability that
there are exactly ¢+a time-slots that satisfy X (¢) = 1 among

< ( (42)

all ¢ + b time-slots during the time interval [—¢t — b, —1].
-1
P( Z Xp(r)=t+a)
T=—t—b
<p( U Xelt) =0, Xrltya) =0)
t1<to<--<tp_q
t+b
< -0 ... —0).
< (t n a) .. P(XF(tl) 0, -, Xp(ty—a) 0)
(43)
Applying the chain rule of conditional probability, we have:
P(Xp(t) =0+, Xr(ty-a) =0)
=P(Xr(t1) = 0)P(Xp(t2) = 0| Xp(t1) = 0) x
X P(Xp(tp-a) =0[Xp(t1) =0, , Xp(tp—a—1) = 0).

(44)

Next, we consider the R. H. S. of (44). The upper bound on
the first term is quite obvious: substituting g by the stationary
probability 1 — 7y in lemma 6 in [7], we have:

P(XF(t1) — 0) < (£)7H6"10gm~
To

(45)



For the d'"(d > 1) term, it is the probability of { X (t4) =
0} happens given {Xp(t1) =0, -+, Xp(ts—1) = 0} occurs.
Now, we want to obtain a bound for P(X g (t4) = 0| Xp(t1) =
0, s ,XF(td_l) = 0)

P(Xp(ta) = 0| Xp(t1) = 0, , Xp(ta_r) = 0)
P(X(ta) = 0| Xp(t) = 0,--- |
Xi(tao1) = 0, Xp(ta — 1) = 0)
K P(Xp(ta — 1) = 0| Xn(t) = 0, - , Xp(ta_1) = 0)
+P(Xp(ta) =01 Xp(t1) =0,---,
Xp(ta1) = 0, Xp(ta — 1) = 1)
) P(Xp(tg—1) = 1Xp(t1) = 0, Xp(ta_1) = 0).
(46)

We use S to represent the connectivity S(-) at each time-
slot, and define F to be a collection of all possible vectors S
such that XF(tl) =0,--- 7XF(td—1) = O,XF(td — 1) = 0.
Then we evaluate the following term:

P(XFp(ta) = 0| XFp(t1) =0, -,
Xp(ty1) =0, Xp(ta — 1) = 0)
S P(Xr(ta) = 0[S) - P(SIF)
SeF
> P(Xp(ta) =0|S(t1), -+, S(ta1),S(ta — 1)) - P(S|F)
SeF
n TH 7nlog1%(j
(1=5) ¢ é;m&f)
N \TH _nlog 1L
(1 _é) et )

(47)

where the inequality comes from Lemma 1. Similarly,
we have the same result for P(Xp(tq) = 0| Xp(t1) =
0,--+, Xp(ta—1) =0, Xp(tqg — 1) = 1), thus we have

P(Xp(ta) = 0| Xp(t1) =0, , Xp(tg_1) = 0)

( n

1—q

< ) Henlos 5 (48)

Combining what we have already derived in (45) and (48),
we have:

IP(XF(tl) =0, Xp(tya) = 0)

()™ (=

0 1—@

<

)7bH6_n{— log mo+(b—a—1)log 15} (49)

This inequality holds for any t1,to,--- ,t—_q, hence,

max ]P’(Xp(tl) =0, Xp(ty_a) = 0)

tl»"'vb—a
TNTH M \TWH  —n{—logmo+(b—a—1)log 13-}
< ()M Sk 50

Thus, we have for all a < b —1:
-1

P( Y Xp(r)=t+a)

T=—t—b

t+b . i TH n TH _np{—logmo+(b—a—1)log %q}
g(phgplﬂJ ()™ :

t+b( M N\TH N NTVH _p{—logmo+(b—a—1)log =}

S 2 (WO) (1 _ (j) € 1o

(5D
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