
Basic 3D Interaction Techniques Doug Bowman

Basic 3D Interaction Basic 3D Interaction Basic 3D Interaction Basic 3D Interaction
TechniquesTechniquesTechniquesTechniques

Basic 3D Interaction Basic 3D Interaction Basic 3D Interaction Basic 3D Interaction
TechniquesTechniquesTechniquesTechniques

Doug A. BowmanDoug A. Bowman
Dept. of Computer ScienceDept. of Computer Science

Virginia TechVirginia Tech

Basic 3D interaction techniques
Doug A. Bowman
Dept. of Computer Science (0106)
660 McBryde Hall
Virginia Tech
Blacksburg, VA 24061 USA
Email: bowman@vt.edu
Web: http://www.cs.vt.edu/~bowman/

In this lecture, we’ll describe several common techniques for basic 3D tasks. All of
these techniques were described in last year’s course notes, with an emphasis on
their advantages and disadvantages, and on their usability characteristics. This year,
for the advanced course, we take a different approach. We describe details of the
implementation of these techniques, including mathematics needed to properly
implement them. This information has not been compiled in one place before, to our
knowledge, so we hope it will be useful as you implement your own 3D interfaces.

The techniques we describe have mostly been developed in the context of VEs, but
many of them are useful in other types of 3D systems as well. We also have a
lecture on non-VE interaction later in the course.

Basic 3D Interaction Techniques Doug Bowman

Universal 3D interaction tasksUniversal 3D interaction tasks

•• NavigationNavigation
• Travel: motor component of viewpoint motion
• Wayfinding: cognitive component; decision-making

•• SelectionSelection: picking object(s) from a set: picking object(s) from a set
•• ManipulationManipulation: modifying object properties : modifying object properties

(esp. position/orientation)(esp. position/orientation)
•• System controlSystem control: changing system state or : changing system state or

modemode

We’ll be discussing techniques for four basic 3D interaction tasks that are found in
most complex 3D applications Obviously, there are other tasks which are specific to
an application domain, but these are some basic building blocks that can often be
combined to create a more complex task.

Navigation is the most common VE task, and is actually composed of two tasks.
Travel is the motor component of navigation, and just refers to the physical
movement from place to place. Wayfinding is the cognitive or decision-making
component of navigation, and it asks the questions, “where am I?”, “where do I
want to go?”, “how do I get there?”, and so on.

Selection is simply the specification of an object or a set of objects for some
purpose. Manipulation refers to the specification of object properties (most often
position and orientation, but also other attributes). Selection and manipulation are
often used together, but selection may be a stand-alone task. For example, the user
may select an object in order to apply a command such as “delete” to that object.

-continued on the next page

Basic 3D Interaction Techniques Doug Bowman

System control is the task of changing the system state or the mode of interaction.
This is usually done with some type of command to the system (either explicit or
implicit). Examples in 2D systems include menus and command-line interfaces. It is
often the case that a system control technique is composed of the other three tasks
(e.g. a menu command involves selection), but it’s also useful to consider it
separately since special techniques have been developed for it and it is quite
common.

Basic 3D Interaction Techniques Doug Bowman

Assumed knowledgeAssumed knowledge

•• Scene graphs / object treesScene graphs / object trees
• Parent/child relationships

• Representation of user

•• Affine Affine transformations with matricestransformations with matrices
• Translate

• Rotate

• Scale

•• This lecture assumes that y is upThis lecture assumes that y is up

We are assuming a basic level of knowledge in this lecture, so that we do not have
to cover the lowest-level implementation details for these interaction techniques.
These concepts should be familiar to anyone who has done graphics programming.

First, we assume you are familiar with hierarchical scene graphs or object trees in
3D graphics systems, including the concept of parent/child relationships between
objects, inherited transformations, and the representation of the user in a scene
graph.

Second, we assume you are familiar with matrix representations of simple
transformations such as translate, rotate, and scale, and with the concept of
composite matrices for multiple transformations.

Finally, a note on notation: we assume (for the techniques where it makes a
difference) that ‘y’ is the vertical axis in the world coordinate system. Some systems
will use ‘z’ as the vertical axis.

Basic 3D Interaction Techniques Doug Bowman

Mapping between coordinate
systems
Mapping between coordinate
systems
•• Given:Given:

• The vertices of an object in CS2

• A transformation matrix M that transforms CS1 to
CS2

•• What are the coordinates of the object’s What are the coordinates of the object’s
vertices in CSvertices in CS11??

Before we begin with the techniques, we need to review an important concept. In
most graphics systems, objects and their vertices can be described in two ways: their
location (position, orientation, and scale) in a fixed world coordinate system, or in a
local coordinate system attached to the object. For many techniques, we will need to
distinguish between world and local coordinate systems, and in some cases move
from one representation to another. Therefore, we discuss here the concept of
mapping between coordinate systems.

The problem we want to solve is this: given the vertices of an object in one
coordinate system (say its local coordinate system), and a transformation matrix M
that transforms another coordinate system (say the world CS) to the first, what are
the coordinates of the vertices in the world coordinate system?

Basic 3D Interaction Techniques Doug Bowman

Mapping exampleMapping example

Translate(4,4)

Point P is at (2,2) in the transformed CS (CS2).
Where is it in CS1?

Answer: (6,6)

*Note: (6,6) = T4,4 P

In general, if CS1 is transformed by a matrix M to
form CS2, a point P in CS2 is represented by MP in
CS1

P

This problem is relatively trivial. If the corner of the house is at (2,2) in CS2, and the
mapping between CS1 and CS2 is a translation by (4,4), then the corner of the house
is obviously at (6,6) in CS1.

Therefore, we can see that if M is the mapping between CS1 and CS2, then P(CS1) =
MP(CS2).

Basic 3D Interaction Techniques Doug Bowman

Another exampleAnother example

Translate(4,4), then
Scale(0.5, 0.5)

Where is P in CS3? (2,2)
Where is P in CS2? S0.5,0.5 (2,2) = (1,1)
Where is P in CS1? T4,4 (1,1) = (5,5)

*Note: to go directly from CS3 to CS1 we can
calculate T4,4 S0.5,0.5 (2,2) = (5,5)

P

However, the mapping between coordinate systems may be more complicated than
a single transformation. This is especially true when using scene graphs, where
there may be many objects (and therefore many transformations) between the world
coordinate system and the local coordinate system of an object. So, we need a
general rule.

We see here that if we do two transformations to go from CS1 to CS3, then we can
find a point’s location in CS1 by first multiplying the transformation from CS1 to
CS2 by the transformation from CS2 to CS3 (in that order – remember that matrix
multiplication is not commutative), then multiplying the result by the point’s
location in CS3.

Basic 3D Interaction Techniques Doug Bowman

General mapping ruleGeneral mapping rule

•• If CSIf CS11 is transformed consecutively by Mis transformed consecutively by M11, ,
MM22, …, , …, MMnn to form to form CSCSnn+1+1, then a point P in , then a point P in
CSCSnn+1+1 is represented by is represented by
MM11 MM22 … … MMnn P in CSP in CS11..

•• To form the composite transformation To form the composite transformation
between between CS’sCS’s, you , you postmultiplypostmultiply each each
successive transformation matrix.successive transformation matrix.

Therefore, the general rule is that we can form a composite transformation matrix
between coordinate systems by postmultiplying each successive transformation
matrix. (This is the opposite of the procedure if you are transforming the vertices
themselves, instead of the CS). The openGL graphics package implicitly encourages
this type of transformation through its use of transformation matrix stacks.

Remember, this general rule can be applied whenever a technique requires you to do
a transformation between coordinate systems.

Basic 3D Interaction Techniques Doug Bowman

Implementation issues for travel
techniques
Implementation issues for travel
techniques
•• Velocity / acceleration controlVelocity / acceleration control
•• Is world rotation necessary?Is world rotation necessary?
•• Constrained motionConstrained motion

• Constant height

• Terrain-following

•• Conditions of inputConditions of input

First, we’ll talk about techniques for travel (viewpoint movement). We will cover
only the implementation of the simple movement itself, but there are other
implementation issues that must be considered in general.

One such issue is the control of velocity and/or acceleration. There are many
methods for doing this, including gesture, speech controls, sliders, etc.
Another issue is that of world rotation. In systems that are only partially spatially
surrounding (e.g. a 4-walled CAVE, or a single screen), the user must be able to
rotate the world or his view of the world in order to navigate. In fully surrounding
systems (e.g. an HMD) this is not necessary. Next, one must consider whether
motion should be constrained in any way, for example by maintaining a constant
height or by following the terrain. Finally, at the lowest-level the conditions of input
must be considered – that is, when and how does motion begin and end (click to
start/stop, press to start, release to stop, stop automatically at target location, etc.)?

Basic 3D Interaction Techniques Doug Bowman

Common travel techniquesCommon travel techniques

•• GazeGaze--directed steeringdirected steering
•• PointingPointing
•• MapMap--based travelbased travel
•• “Grabbing the air”“Grabbing the air”

We’ll discuss four common techniques.

Basic 3D Interaction Techniques Doug Bowman

Gaze-directed steering techniqueGaze-directed steering technique

•• Move viewpoint in direction of “gaze”Move viewpoint in direction of “gaze”
•• Gaze direction determined from head Gaze direction determined from head

trackertracker
•• Cognitively simpleCognitively simple
•• Doesn’t allow user to look to the side while Doesn’t allow user to look to the side while

travelingtraveling

Gaze-directed steering is probably the most common 3D travel technique, although
the term “gaze” is really misleading. Usually no eye tracking is being performed, so
the direction of gaze is inferred from the head tracker orientation. This is a simple
technique, both to implement and to use, but it is somewhat limited in that you
cannot look around while moving.

See: Mine, M. (1995). Virtual Environment Interaction Techniques (Technical
Report TR95-018): UNC Chapel Hill CS Dept.

Basic 3D Interaction Techniques Doug Bowman

Gaze-directed steering
implementation
Gaze-directed steering
implementation
•• Each frame while moving:Each frame while moving:

• Get head tracker information

• Transform vector [0,0,-1] in head CS to v=[x,y,z] in
world CS

• Normalize v:

• Translate viewpoint by

v
vv =ˆ

() velocitycurrentvvv zyx _ˆ,ˆ,ˆ ×

To implement gaze-directed steering, you set up a callback function that executes
before each frame is rendered. Within this callback, you first obtain the head tracker
information (usually in the form of a 4x4 matrix). This matrix gives you a
transformation between the base tracker CS and the head tracker CS. By also
considering the transformation between the world CS and the base tracker CS (if
any), you can get the total composite transformation. Now you consider the vector
[0,0,-1] in head tracker space (the negative z-axis, which usually points out the front
of the tracker). This vector, expressed in world coordinates, is the direction you
want to move. Now all that’s left to do is to normalize this vector, multiply it by the
speed, and then translate the viewpoint by this amount in world coordinates.

Note: current “velocity” is in units/frame. If you want true velocity (units/second),
you must keep track of the time between frames and then translate the viewpoint by
an amount proportional to that time.

Basic 3D Interaction Techniques Doug Bowman

Pointing techniquePointing technique

•• Also a steering techniqueAlso a steering technique
•• Use hand tracker instead of head trackerUse hand tracker instead of head tracker
•• Slightly more complex, cognitivelySlightly more complex, cognitively
•• Allows travel and gaze in different Allows travel and gaze in different

directions directions –– good for relative motiongood for relative motion

Pointing is also a steering technique (where the user continuously specifies the
direction of motion). In this case, the hand’s orientation is used to determine
direction. This technique is somewhat harder to learn for some users, but is more
flexible than gaze-directed steering.

See: Mine, M. (1995). Virtual Environment Interaction Techniques (Technical
Report TR95-018): UNC Chapel Hill CS Dept., and
Bowman, D. A., Koller, D., & Hodges, L. F. (1997). Travel in Immersive Virtual
Environments: an Evaluation of Viewpoint Motion Control Techniques. Proceedings
of the Virtual Reality Annual International Symposium, 45-52.

Basic 3D Interaction Techniques Doug Bowman

Pointing implementationPointing implementation

•• Each frame while moving:Each frame while moving:
• Get hand tracker information

• Transform vector [0,0,-1] in hand CS to v=[x,y,z] in
world CS

• Normalize v:

• Translate viewpoint by

v
vv =ˆ

() velocitycurrentvvv zyx _ˆ,ˆ,ˆ ×

Pointing is implemented in exactly the same way as gaze-directed steering, except
that the hand tracker is used instead of the head tracker.

Basic 3D Interaction Techniques Doug Bowman

Map-based travel techniqueMap-based travel technique

•• User represented by User represented by
icon on 2D mapicon on 2D map

•• Drag icon with stylus Drag icon with stylus
to new location on to new location on
mapmap

•• When released, When released,
viewpoint animated viewpoint animated
smoothly to new smoothly to new
locationlocation

The map-based technique is a target-based travel technique. The user is represented
as an icon on a 2D map of the environment. To travel, the user drags this icon to a
new position on the map. When the icon is dropped, the system smoothly animates
the user from the current location to the new location indicated by the icon.

See: Bowman, D., Wineman, J., Hodges, L., & Allison, D. (1998). Designing
Animal Habitats Within an Immersive VE. IEEE Computer Graphics &
Applications, 18(5), 9-13.

Basic 3D Interaction Techniques Doug Bowman

Map-based travel
implementation
Map-based travel
implementation
•• Must knowMust know

• Map scale relative to world: s

• Location of world origin in map CS: o=(xo, yo, zo)

•• On button press:On button press:
• If stylus intersects user icon, then each frame:

•Get stylus position in map CS: (x, y, z)
•Move icon to (x, 0, z) in map CS

To implement this technique, you need to know two things about the way the map
relates to the world. First, you need to know the scale factor. Second, you need to
know which point on the map represents the origin of the world CS. We assume
here that the map model is originally aligned with the world (i.e. the x direction on
the map, in its local CS, represents the x direction in the world CS).

When the user presses the button and is intersecting the user icon on the map, then
you need to move the icon with the stylus each frame. You cannot simply attach the
icon to the stylus, because you want the icon to remain on the map even if the stylus
does not. To do this, you must first find the position of the stylus in the map CS.
This may require a transformation between coordinate systems, since the stylus is
not a child of the map. The x and z coordinates of the stylus position are the point to
which the icon should be moved.

We do not cover here what happens if the stylus is dragged off the map, but the user
icon should “stick” to the side of the map until the stylus is moved back inside the
map boundaries, since we don’t want the user to move outside the world.

Basic 3D Interaction Techniques Doug Bowman

Map-based travel
implementation (cont.)
Map-based travel
implementation (cont.)
•• On button release:On button release:

• Get stylus position in map CS: (x, y, z)

• Move icon to (x, 0, z) in map CS

• Desired viewpoint: pv = (xv, yv, zv) where
• xv = (x – xo)/s
• zv = (z – zo)/s
• yv = desired height at (xv ,yv)

• Move vector: m = (xv-xcurr, yv-ycurr, zv-zcurr) * (velocity/distance)

• Each frame for (distance/velocity) frames: translate viewpoint
by m

When the button is released, the icon is set to its final position, using the same
method as before.

Now we need to calculate the desired position of the viewpoint in the world. This
position is calculated using a transformation from the map CS to the world CS,
which is detailed for you here. First, you must find the offset in the map CS from
the point corresponding to the world origin. Then, you divide by the map scale (if
the map is 1/100 the size of the world, this corresponds to multiplying by 100). This
gives us the x and z coordinates of the desired viewpoint position. Since the map is
2D, we can’t get a y coordinate from it. Therefore, the technique should have some
way of calculating the desired height at the new viewpoint. In the simplest case, this
might be constant. In other cases, it might be based on the terrain height at that
location or some other factors.

Now that we know the desired viewpoint, we have to set up the animation of the
viewpoint. The move vector m represents the amount of translation to do each frame
(we are assuming a linear path). To find m, we subtract the desired position from the
current position (the total movement required), divide this by the distance between
the two points (calculated using the distance formula), and multiply by the desired
velocity, so that m gives us the amount to move in each dimension each frame. The
only remaining calculation is the number of frames this movement will take:
distance/velocity frames. Note that again velocity is measured here in units/frame,
not units/second, for simplicity.

Basic 3D Interaction Techniques Doug Bowman

Grabbing the air techniqueGrabbing the air technique

•• Use hand gestures to move yourself through Use hand gestures to move yourself through
the worldthe world

•• Metaphor of pulling a ropeMetaphor of pulling a rope
•• Often a 2Often a 2--handed techniquehanded technique
•• May be implemented using Pinch Gloves™May be implemented using Pinch Gloves™

The “grabbing the air” technique uses the metaphor of literally grabbing the world
around you (usually empty space), and pulling yourself through it using hand
gestures. This is similar to pulling yourself along a rope, except that the “rope”
exists everywhere, and can take you in any direction.

This technique may be done with one or two hands, and is often implemented using
Pinch Gloves™.

See: Mapes, D., & Moshell, J. (1995). A Two-Handed Interface for Object
Manipulation in Virtual Environments. Presence: Teleoperators and Virtual
Environments, 4(4), 403-416.

Basic 3D Interaction Techniques Doug Bowman

Grabbing the air implementation
(one-handed)
Grabbing the air implementation
(one-handed)
•• On pinch:On pinch:

• Obtain initial hand position in world CS: (xh, yh, zh)

•• Each frame until release:Each frame until release:
• Obtain current hand position in world CS: (x’h, y’h, z’h)

• Hand motion vector: m = ((x’h, y’h, z’h) - (xh, yh, zh))

• Translate world by m (or viewpoint by –m)

• (xh, yh, zh) = (x’h, y’h, z’h)

•• Cannot simply attach objects to hand Cannot simply attach objects to hand –– do not do not
want to match hand rotationswant to match hand rotations

We’ll describe a simple one-handed technique. This could be extended to two hands
by running this algorithm for each hand separately, making sure that only one hand
is activated at a time.

When the initial pinch or button press is detected, simply obtain the position of the
hand in the world CS.

Then, every frame until the pinch is released, get a new hand position, subtract it
from the old one, and move the objects in the world by this amount. Alternately,
you can leave the world fixed, and translate the viewpoint by the opposite vector.
Before exiting the callback, be sure to update the “old” hand position for use on the
next frame.

It is tempting to implement this technique simply by attaching the world to the
hand, but this will have the undesirable effect of also rotating the world when the
hand rotates, which can be quite disorienting.

You can do simple constrained motion simply by ignoring one or more of the
components of the hand position (e.g. only consider x and z to move at a constant
height).

Basic 3D Interaction Techniques Doug Bowman

Implementation issues for
selection techniques
Implementation issues for
selection techniques
•• How to indicate selection eventHow to indicate selection event
•• Object intersectionsObject intersections
•• FeedbackFeedback

• Graphical

• Aural

• Tactile

•• Virtual hand avatarVirtual hand avatar
•• List of selectable objectsList of selectable objects

Next, we’ll discuss object selection. We must first note that selection and
manipulation are intimately related, and that several of the techniques described
here can also be used for manipulation.

There are several common issues for the implementation of selection techniques.
One of the most basic is how to indicate that the selection event should take place
(e.g. you are touching the desired object, now you want to pick it up). This is
usually done via a button press, gesture, or voice command, but it might also be
done automatically if the system can infer the user’s intent. You also have to have
efficient algorithms for object intersections for many of these techniques. We’ll
discuss a couple of possibilities. The feedback you give to the user regarding which
object is about to be selected is also very important. Many of the techniques require
an avatar (virtual representation) for the user’s hand. Finally, you should consider
keeping a list of objects that are “selectable”, so that your techniques do not have to
test every object in the world for selection, increasing efficiency.

Basic 3D Interaction Techniques Doug Bowman

Common selection techniquesCommon selection techniques

•• Simple virtual handSimple virtual hand
•• RayRay--castingcasting
•• Sticky finger (occlusion)Sticky finger (occlusion)
•• GoGo--go (armgo (arm--extension)extension)

We’ll discuss four selection techniques.

Basic 3D Interaction Techniques Doug Bowman

Simple virtual hand techniqueSimple virtual hand technique

•• OneOne--toto--one mapping one mapping
between physical and between physical and
virtual handsvirtual hands

•• Object can be selected by Object can be selected by
“touching” or intersecting “touching” or intersecting
v. hand with objectv. hand with object

The most common technique is the simple virtual hand, which does “real-world”
selection via direct “touching” of virtual objects. In the absence of haptic feedback,
this is done by intersecting the virtual hand (which is at the same location as the
physical hand) with a virtual object.

Implementing this technique is simple, provided you have a good
intersection/collision algorithm. Often, intersections are only performed with axis-
aligned bounding boxes or bounding spheres rather than with the actual geometry of
the objects.

Basic 3D Interaction Techniques Doug Bowman

Ray-casting techniqueRay-casting technique

•• “Laser pointer” attached “Laser pointer” attached
to v. handto v. hand

•• First object intersected by First object intersected by
ray may be selectedray may be selected

•• User only needs to User only needs to
control 2 control 2 DOFsDOFs

•• Empirically proven to Empirically proven to
perform wellperform well

Another common technique is ray-casting. This technique uses the metaphor of a
laser pointer – an infinite ray extending from the virtual hand. The first object
intersected along the ray is eligible for selection. This technique is efficient, based
on experimental results, and only requires the user to vary 2 degrees of freedom
(pitch and yaw of the wrist) rather than the 3 DOFs required by the simple virtual
hand and other location-based techniques.

See: Mine, M. (1995). Virtual Environment Interaction Techniques (Technical
Report TR95-018): UNC Chapel Hill CS Dept.

Basic 3D Interaction Techniques Doug Bowman

Ray-casting implementationRay-casting implementation

•• Naïve: intersect ray with each Naïve: intersect ray with each
polygonpolygon
• Parametric equation

• Only consider intersections with t > 0

•• Better: transform vertices (or Better: transform vertices (or
bounding box) to hand’s CSbounding box) to hand’s CS
• Drop new z coordinate of every vertex

• Ray intersects polygon iff (0,0) is in the
polygon

• Count the number of times the polygon
edges cross the positive x-axis

There are many ways to implement ray-casting.

A brute-force approach would calculate the parametric equation of the ray, based on
the hand’s position and orientation. First, as in the pointing technique for travel, find
the world CS equivalent of the vector [0,0,-1]. This is the direction of the ray. If the
hand’s position is represented by (xh, yh, zh), and the direction vector is (xd, yd, zd),
then the parametric equations are given by:

x(t) = xh + xdt
y(t) = yh + ydt
z(t) = zh + zdt

Only intersections with t>0 should be considered, since we don’t want to count
intersections “behind” the hand. If you use this method and you want to determine
whether the actual geometry has been intersected, you should first test the
intersection with the bounding box so that many cases can be trivially rejected.

-continued on the next page

Basic 3D Interaction Techniques Doug Bowman

Another method might be more efficient. In this method, instead of looking at the
hand orientation in the world CS, we consider the selectable objects to be in the
hand’s CS, by transforming their vertices or their bounding boxes. This might seem
quite inefficient, because there is only one hand, while there are many polygons in
the world. However, we assume we have limited the objects by using a selectable
objects list, and the intersection test we will describe is much more efficient.

Once we have transformed the vertices or bounding boxes, we drop the z coordinate
of each vertex. This maps the 3D polygon onto a 2D plane (the xy plane in the hand
CS). Since the ray is [0,0,-1] in this CS, we can see that in this 2D plane, the ray
will intersect the polygon if and only if the point (0,0) is in the polygon (see the
figure). We can easily determine this with an algorithm that counts the number of
times the edges of the 2D polygon cross the positive x-axis. If there are an odd
number of crossings, the origin is inside, if even, the origin is outside.

Not discussed on this slide is a third method of implementation. The openGL
graphics package includes a “selection” concept. By rendering the selectable objects
to an offscreen buffer from the point of view of the hand, you can determine which
objects are intersected by the ray, and which one is closest.

Basic 3D Interaction Techniques Doug Bowman

Occlusion techniqueOcclusion technique

•• ImageImage--plane technique plane technique
-- truly 2Dtruly 2D

•• Occlude/cover desired Occlude/cover desired
object with selector object with selector
object (e.g. finger)object (e.g. finger)

•• Nearest object along Nearest object along
ray from eye through ray from eye through
finger may be selectedfinger may be selected

Next, we’ll cover the occlusion technique (also called the “sticky finger”
technique). This technique works in the plane of the image – that is, you select an
object by “covering” it with the virtual hand so that it is occluded from your point
of view. Geometrically, this means that a ray is emanating from your eye, going
through your finger, and then intersecting an object.

See: Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik, R., & Mine, M.
(1997). Image Plane Interaction Techniques in 3D Immersive Environments.
Proceedings of the ACM Symposium on Interactive 3D Graphics, 39-44.

Basic 3D Interaction Techniques Doug Bowman

Occlusion implementationOcclusion implementation

•• Special case of raySpecial case of ray--
casting techniquecasting technique

•• Must consider position Must consider position
of eye/cameraof eye/camera

•• Can use 2Can use 2ndnd rayray--casting casting
algorithm; requires algorithm; requires
special objectspecial object

ß

ß

This technique can be implemented in the same ways as the ray-casting technique,
since it is also using a ray. If you are doing the brute-force ray intersection
algorithm, you can simply define the ray’s direction by subtracting the finger
position from the eye position.

However, if you are using the 2nd algorithm, you require an object to define the
ray’s coordinate system. This can be done in two steps. First, create an empty
object, and place it at the hand position, aligned with the world CS (the dotted lines
in the figure). Next, determine how to rotate this object/CS so that it is aligned with
the ray direction. In the figure, a 2D example is given. The angle can be determined
using the positions of the eye and hand, and some simple trigonometry. In 3D, two
rotations must be done in general to align the new object’s CS with the ray.

Basic 3D Interaction Techniques Doug Bowman

Go-Go techniqueGo-Go technique

•• ArmArm--extension extension
techniquetechnique

•• Like simple v. hand, Like simple v. hand,
touch objects to select touch objects to select
themthem

•• NonNon--linear mapping linear mapping
between physical and between physical and
virtual hand positionvirtual hand position

•• Local and distant Local and distant
regionsregions

The Go-Go technique is based on the simple virtual hand, but it introduces a non-
one-to-one mapping between the physical hand and the virtual hand, so that the
user’s reach is greatly extended. This is called an arm-extension technique.

The graph shows the mapping between the physical hand distance from the body on
the x-axis and the virtual hand distance from the body on the y-axis. There are two
regions. When the physical hand is at a depth less than a threshold ‘D’, the one-to-
one mapping applies. Outside D, a non-linear mapping is applied, so that the farther
the user stretches, the faster the virtual hand moves away.

See: Poupyrev, I., Billinghurst, M., Weghorst, S., & Ichikawa, T. (1996). The Go-
Go Interaction Technique: Non-linear Mapping for Direct Manipulation in VR.
Proceedings of the ACM Symposium on User Interface Software and Technology,
79-80.

Basic 3D Interaction Techniques Doug Bowman

Go-Go implementationGo-Go implementation

•• Requires “torso position” Requires “torso position” tt -- tracked or inferredtracked or inferred
•• Each frame:Each frame:

• Get physical hand position h in world CS

• Calculate physical distance from torso dp = dist(h, t)

• Calculate virtual hand distance dv = gogo(dp)

• Normalize torso-hand vector

• V. hand position v = t + dv*th (in world CS)

th
thth

−
−=

To implement Go-Go, we first need the concept of the position of the user’s body.
This is needed because we stretch our hands out from the center of our body, not
from our head (which is usually the position that is tracked). I have implemented
this using an inferred torso position, which is defined as a constant offset in the
negative y direction from the head. You could also place a tracker on the user’s
torso.

Before rendering each frame, you get the physical hand position in the world CS,
and then calculate its distance from the torso object using the distance formula. The
virtual hand distance can then be obtained by applying the function shown in the
graph on the previous slide. I have used the function d2.3 (starting at the point (D,D))
as a useful function in my environments, but the exponent used depends on the size
of the environment and the desired accuracy of selection at a distance.

Now that we know the distance at which to place the virtual hand, we need to
determine its position. The most common implementation is to keep the virtual hand
on the ray extending from the torso and going through the physical hand. Therefore,
if we get a vector between these two points, normalize it, multiply it by the distance,
then add this vector to the torso point, we obtain the position of the virtual hand.

Basic 3D Interaction Techniques Doug Bowman

Implementation issues for
manipulation techniques
Implementation issues for
manipulation techniques
•• Integration with selection techniqueIntegration with selection technique
•• Disable selection and selection feedback Disable selection and selection feedback

while manipulatingwhile manipulating
•• What happens upon release?What happens upon release?

Next we turn to techniques for 3D object manipulation. As we noted earlier,
manipulation is connected with selection, because an object must be selected before
you can manipulate it. Thus, one important issue for any manipulation technique is
how well it integrates with the chosen selection technique. Many techniques, as we
have said, do both: e.g. simple virtual hand, ray-casting, and go-go. Another issue is
that when an object is being manipulated, you should take care to disable the
selection technique and the feedback you give the user for selection. If this is not
done, then serious problems can occur if, for example, the user tries to release the
currently selected object but the system also interprets this as trying to select a new
object. Finally, you should think in general about what happens when the object is
released. Does it remain at its last position, possibly floating in space? Does it snap
to a grid? Does it fall via gravity until it contacts something solid? The application
requirements will determine this choice.

Basic 3D Interaction Techniques Doug Bowman

Common manipulation
techniques
Common manipulation
techniques
•• Simple virtual handSimple virtual hand
•• HOMERHOMER
•• ScaledScaled--world grabworld grab
•• WorldWorld--inin--miniatureminiature

We’ll discuss four 3D object manipulation techniques.

Basic 3D Interaction Techniques Doug Bowman

Simple virtual hand techniqueSimple virtual hand technique

•• Attach object to virtual hand, Attach object to virtual hand,
by making object a child of by making object a child of
the hand (w/out moving the hand (w/out moving
object)object)

•• On release, reattach object to On release, reattach object to
world (w/out moving object)world (w/out moving object)

•• Also applies to GoAlso applies to Go--Go (and Go (and
other armother arm--extension extension
techniques) and raytechniques) and ray--castingcasting

Root

head hand building

Root

head hand

building

We already saw the simple virtual hand technique for selection. When this
technique is used for object manipulation, the implementation is quite easy. It
simply involves making a change to the scene graph by attaching the selected object
to the virtual hand. Then, as the virtual hand moves and rotates, the selected object
will inherit those transformations. When the object is released, it should just be
reattached to its earlier location in the tree.

The only tricky issue here is that you must ensure when grabbing or releasing the
object that it does not move (in the world CS). If you simply make the object a child
of the hand, it may move since its position is now being interpreted relative to a new
CS (the hand’s). To be completely general, then, you must get the object’s position
p in the world CS first, then do the attachment, then calculate p’s location in the
hand CS, then move the object to that position (relative to the hand). The opposite
transformation is done upon release.

This same basic procedure works for other techniques that simply attach the object
to the selector, like Go-Go and ray-casting.

Basic 3D Interaction Techniques Doug Bowman

HOMER techniqueHOMER technique

HHandand--CenteredCentered
OObject bject
MManipulationanipulation
EExtending xtending
RRayay--CastingCasting
•• Select: raySelect: ray--castingcasting

•• Manipulate: handManipulate: hand

Time

1.0 m
0.3 m

2.0 m
0.6 m

torso physical
hand

torso physical
hand

The HOMER technique uses ray-casting for selection and then moves the virtual
hand to the object for hand-centered manipulation. The depth of the object is based
on a linear mapping, as shown in the figure at the bottom. The initial torso-physical
hand distance is mapped onto the initial torso-object distance, so that moving the
physical hand twice as far away also moves the object twice as far away. Also,
moving the physical hand all the way back to the torso moves the object all the way
to the user’s torso as well.

See: Bowman, D., & Hodges, L. (1997). An Evaluation of Techniques for Grabbing
and Manipulating Remote Objects in Immersive Virtual Environments. Proceedings
of the ACM Symposium on Interactive 3D Graphics, 35-38.

Basic 3D Interaction Techniques Doug Bowman

HOMER implementationHOMER implementation

•• Requires torso position Requires torso position tt
•• Upon selection, detach virtual hand from tracker, Upon selection, detach virtual hand from tracker,

move v. hand to object position in world CS, and move v. hand to object position in world CS, and
attach object to v. hand (w/out moving object)attach object to v. hand (w/out moving object)

•• Get physical hand position Get physical hand position h h and distance and distance
ddhh = dist(h, t)= dist(h, t)

•• Get object position Get object position oo and distance and distance ddoo = dist(o, t)= dist(o, t)

Like Go-Go, HOMER requires a torso position, because you want to keep the
virtual hand on the ray between the user’s body (torso) and the physical hand. The
problem here is that HOMER moves the virtual hand from the physical hand
position to the object upon selection, and it is not guaranteed that the torso, physical
hand, and object will all line up at this time. Therefore, in my implementation, I
calculate where the virtual hand would be if it were on this ray initially, then
calculate the offset to the position of the virtual object, and maintain this offset
throughout manipulation.

When an object is selected via ray-casting, you must first detach the virtual hand
from the hand tracker. This is due to the fact that if it remained attached but you
move the virtual hand model away from the physical hand location, a rotation of the
physical hand will cause a rotation and translation of the virtual hand. You then
move the virtual hand in the world CS to the position of the selected object, and
attach the object to the virtual hand in the scene graph (again, without moving the
object in the world CS).

To implement the linear depth mapping, we need to know the initial distance
between the torso and the physical hand, and between the torso and the selected
object. The ratio do/dh will be the scaling factor.

Basic 3D Interaction Techniques Doug Bowman

HOMER implementation (cont.)HOMER implementation (cont.)

•• Each frame:Each frame:
• Copy hand tracker matrix to v. hand matrix (to set

orientation)

• Get physical hand position hcurr and distance:

dh-curr = dist(hcurr, t)

• V. hand distance

• Normalize torso-hand vector

• V. hand position vh = t + dvh*(thcurr)
th
thth

curr

curr
curr −

−=

�
��
�

�
×= −

h

o
currhvh d

ddd

Now, each frame you need to set the position and orientation of the virtual hand.
The selected object is attached to the virtual hand, so it will follow along.

Setting the orientation is relatively easy. You can simply copy the transformation
matrix for the hand tracker to the virtual hand, so that their orientation matches.

To set the position, we need to know the correct depth and the correct direction. The
depth is found by applying the linear mapping to the current physical hand depth.
The physical hand distance is simply the distance between it and the torso, and we
multiply this by the scale factor do/dh to get the virtual hand distance. We then
obtain a normalized vector between the physical hand and the torso, multiply this
vector by the v. hand distance, and add the result to the torso position to obtain the
virtual hand position.

Basic 3D Interaction Techniques Doug Bowman

Scaled-world grab techniqueScaled-world grab technique

•• Often used w/ occlusionOften used w/ occlusion
•• At selection, scale user At selection, scale user

up (or world down) so up (or world down) so
that v. hand is actually that v. hand is actually
touching selected objecttouching selected object

•• User doesn’t notice a User doesn’t notice a
change in the image change in the image
until he movesuntil he moves

The scaled-world grab technique is often used with occlusion selection. The idea is
that since you are selecting the object in the image plane, you can use the ambiguity
of that single image to do some magic. When the selection is made, the user is
scaled up (or the world is scaled down) so that the virtual hand is actually touching
the object that it was occluding. If the user doesn’t move (and the graphics are not
stereo), there is no perceptual difference between the images before and after the
scaling. However, when the user starts to move the object and/or his head, he
realizes that he is now a giant (or that the world is tiny) and he can manipulate the
object directly, just like the simple virtual hand.

See: Mine, M., Brooks, F., & Sequin, C. (1997). Moving Objects in Space:
Exploiting Proprioception in Virtual Environment Interaction. Proceedings of ACM
SIGGRAPH, 19-26, and
Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik, R., & Mine, M. (1997).
Image Plane Interaction Techniques in 3D Immersive Environments. Proceedings of
the ACM Symposium on Interactive 3D Graphics, 39-44.

Basic 3D Interaction Techniques Doug Bowman

Scaled-world grab
implementation
Scaled-world grab
implementation
•• At selection:At selection:

• Get world CS distance from eye to hand deh

• Get world CS distance from eye to object deo

• Scale user (entire user subtree) uniformly by deo / deh

• Ensure that eye remains in same position

• Attach selected object to v. hand (w/out moving object)

•• At release:At release:
• Re-attach object to world (w/out moving object)

• Scale user uniformly by deh / deo

• Ensure that eye remains in same position

To implement scaled-world grab, you must do the correct actions at the time of
selection and release. Nothing special needs to be done in between, because the
object is simply attached to the virtual hand, as in the simple virtual hand technique.

At the time of selection, you want to scale the user by the ratio (distance from eye to
object / distance from eye to hand). This scaling needs to take place with the eye as
the fixed point, so that the eye does not move, and should be uniform in all three
dimensions. Finally, you attach the virtual object to the virtual hand as you would
normally.

At the time of release, the opposite actions are done in reverse. You re-attach the
object to the world, and scale the user uniformly by the reciprocal of the scaling
factor, again using the eye as a fixed point.

Basic 3D Interaction Techniques Doug Bowman

World-in-miniature (WIM)
technique
World-in-miniature (WIM)
technique
•• “Dollhouse” world held “Dollhouse” world held

in user’s handin user’s hand
•• Miniature objects can be Miniature objects can be

manipulated directlymanipulated directly
•• Moving miniature objects Moving miniature objects

affects fullaffects full--scale objectsscale objects
•• Can also be used for Can also be used for

navigationnavigation

The world-in-miniature (WIM) technique uses a small “dollhouse” version of the
world to allow the user to do indirect manipulation of the objects in the
environment. Each of the objects in the WIM is selectable using the simple virtual
hand technique, and moving these objects causes the full-scale objects in the world
to move in a corresponding way. The WIM can also be used for navigation by
including a representation of the user, in a way similar to the map-based travel
technique, but including the 3rd dimension.

See: Stoakley, R., Conway, M., & Pausch, R. (1995). Virtual Reality on a WIM:
Interactive Worlds in Miniature. Proceedings of CHI: Human Factors in Computing
Systems, 265-272, and
Pausch, R., Burnette, T., Brockway, D., & Weiblen, M. (1995). Navigation and
Locomotion in Virtual Worlds via Flight into Hand-Held Miniatures. Proceedings of
ACM SIGGRAPH, 399-400.

Basic 3D Interaction Techniques Doug Bowman

WIM implementationWIM implementation

Root

head hand room

table

Root

head hand room

tableWIM room
(scaled)

table copy

To implement the WIM technique, you first need to create the WIM. Consider this
example, where you have a room with a table object in it. The WIM is represented
as a scaled down version of the room, and it attached to the virtual hand. The table
object does not need to be scaled, because it will inherit the scaling from its parent
(the WIM room). Thus, the table object can simply be copied within the scene
graph.

Basic 3D Interaction Techniques Doug Bowman

WIM implementation (cont.)WIM implementation (cont.)

•• On selection:On selection:
• Determine which full-scale object corresponds to

the selected miniature object
• Attach miniature object to v. hand (w/out moving

object)

•• Each frame:Each frame:
• Copy local position matrix of miniature object to

corresponding full-scale object

When an object in the WIM is selected using the simple virtual hand technique, you
first have to match this object to the corresponding full-scale object. Keeping a list
of pointers to these objects is an efficient way to do this step. The miniature object
is attached to the virtual hand, just as in the simple technique.

While the miniature object is being manipulated, you can simply copy its position
matrix (in its local CS, relative to its parent – the WIM) to the position matrix of the
full-scale object. Since we want the full-scale object to have the same position in the
full-scale world CS as the miniature object does in the scaled-down WIM CS, this is
all that is necessary to move the full-scale object correctly.

Basic 3D Interaction Techniques Doug Bowman

Common system control
techniques
Common system control
techniques
•• Virtual menusVirtual menus
•• Tool selectors (belts, palettes, chests)Tool selectors (belts, palettes, chests)
•• Speech commandsSpeech commands
•• Pen & tablet techniquePen & tablet technique

•• For the most part, these only require a For the most part, these only require a
selection techniqueselection technique

•• Good visual feedback is necessaryGood visual feedback is necessary

System control is a wide-ranging topic, and there are many different techniques,
some of which are listed here. For the most part, these techniques are not difficult to
implement, since they mostly involve selection, which we’ve already covered. For
example, virtual menu items might be selected using ray-casting. For all of the
techniques, good visual feedback is required, since the user needs to know not only
what he is selecting, but what will happen when he selects it.

Basic 3D Interaction Techniques Doug Bowman

Pen & tablet techniquePen & tablet technique

I only want to touch on one system control technique, because of its widespread use.
The pen & tablet technique uses a physical pen and tablet (see left image). In the
virtual world, the user sees a virtual pen and tablet, and a 2D interface on the
surface of the virtual tablet (right image). The physical devices provide near-field
haptics and constraints that make such an interface easy to use.

See: Angus, I., & Sowizral, H. (1995). Embedding the 2D Interaction Metaphor in a
Real 3D Virtual Environment. Proceedings of SPIE, Stereoscopic Displays and
Virtual Reality Systems, 282-293, and
Schmalsteig, D., Encarnacao, L., & Szalzvari, Z. (1999). Using Transparent Props
For Interaction with The Virtual Table. Proceedings of the ACM Symposium on
Interactive 3D Graphics, 147-154.

Basic 3D Interaction Techniques Doug Bowman

Pen & tablet implementationPen & tablet implementation

•• Registration of physical and virtual is Registration of physical and virtual is
crucialcrucial
• Physical and virtual tablet same size
• Origin of virtual tablet at location tracker is

attached
• Still may need controls to tweak positions of avatars

•• Useful to have system report on the offset of Useful to have system report on the offset of
the stylus tip from the origin in tablet CSthe stylus tip from the origin in tablet CS

For the implementation of this technique, the most crucial thing is the registration
(correspondence) between the physical and virtual pens and tablets. The tablets,
especially, must be the same size and shape so that the edge of the physical tablet,
which the user can feel, corresponds to the edge of the virtual tablet as well. In order
to make tracking easy, the origin of the tablet model should be located at the point
where the tracker is attached to the physical tablet, so that rotations work properly.
Even with care, it’s difficult to do these things exactly right, so a final tip is to
include controls within the program to tweak the positions and/or orientations of the
virtual pen and tablet, so that you can bring them into registration if there’s a
problem.

Another useful function to implement is the ability for the system to report (for
example when a callback function is called) the position of the stylus tip in the
tablet CS, rather than in the world or user CSs. This can be used for things like the
map-based travel technique described earlier.

Basic 3D Interaction Techniques Doug Bowman

ConclusionsConclusions

•• Implementation details are crucial for Implementation details are crucial for
usabilityusability

•• Ease of coding ease of useEase of coding ease of use
•• Implementation of interaction techniques Implementation of interaction techniques

should be taken into consideration when should be taken into consideration when
designing 3D development toolkitsdesigning 3D development toolkits

≠

In this lecture, we’ve given an overview of the implementation of several important
3D interaction techniques. There are still more details that could not be covered
here, but hopefully this gives the developer the basic tools needed to implement
many types of 3D interfaces.

This information is also important because “the devil is in the details.” A poorly
implemented technique will likely have usability problems. For example, if the user
is not scaled with the eye as a fixed point in the scaled-world grab technique,
selection will cause the user to “jump”, which could disorient users or even make
them sick. Another important point is that the easiest techniques to implement are
not necessarily the easiest to use, and vice-versa. It may take a lot of work to
develop a usable technique. Finally, we hope that future tools for the development
of 3D applications will include support for the implementation of interaction
techniques, both through the inclusion of standard techniques and technique
components, and through functionality that matches the needs of interaction
designers.

