
VEWL: A Framework for Building a Windowing
Interface in a Virtual Environment

Daniel Larimer and Doug A. Bowman
Dept. of Computer Science, Virginia Tech, 660 McBryde, Blacksburg, VA

dlarimer@vt.edu, bowman@vt.edu

Abstract: VEWL (Virtual Environment Windowing Library) is a library designed to provide a highly flexible
interface metaphor for building window-based interfaces within a virtual environment. VEWL was built on top
of DIVERSE and uses the object-oriented paradigm of signals and slots through the use of Qt. In addition to the
windowing metaphor presented this library was designed to provide an API (Application Programming Interface)
to allow rapid development of new interfaces. This paper will describe the design and implementation of this
library and provide preliminary results of a brief usability study.

Keywords: Virtual Environment Windowing Library Interface API

1 Introduction
Most immersive virtual environments (VEs) provide
a three-dimensional (3D) user interface. This makes
sense for 3D navigation, object manipulation, and
the like, but there are other tasks within VEs, such as
menu selection, that require only one- or two-
dimensional interaction (Bowman et al., 2001). By
providing the appropriate number of degrees of
freedom (DOFs), interface designers can increase
user efficiency and reduce errors. One way to
provide 2D interaction in a VE is through an
interface metaphor already familiar to the user: a
window-based environment.

In this paper, we present VEWL (Virtual
Environment Windowing Library), a flexible,
object-oriented API (Application Programming
Interface) for developing applications using
windows within an immersive virtual environment
(VE). The goal of this library was to provide a way
to quickly build interfaces and display information
within a VE. This interface is not meant to stand on
its own, but instead to augment the virtual world by
providing additional information and controls. One
of the main limitations of VEs is the lack of logical
input devices like buttons, sliders, and menus.
VEWL is a window manager that supports the use of
menus, windows, and buttons.

2 Related Work
Most 2D/3D interfaces, such as pen and tablet
techniques (e.g. Angus & Sowizral, 1995), have
required some type of physical surface for 2D input.
Pen and tablet techniques provide limited screen
space and require both hands and two trackers. The
goal of VEWL is to provide a 2D interface that does
requires neither a physical surface nor input devices
specific to 2D input. This is accomplished through
virtual constraints instead of physical constraints.
 There have been other projects related to 3D
window managers including 3DWM (Robertson et
al., 2000) and Task Gallery (Elmqvist, 1996). The
goal of these projects is to move current 2D
windows into 3D in an attempt to improve upon
today’s desktop window managers. VEWL, on the
other hand, was designed to augment existing virtual
environments. Other projects have explored the
placement of 2D content on the walls of a CAVE
(e.g. Dykstra, 1994). These systems are limited in
their ability to take advantage of the 3D environment
by tying too directly to current 2D interfaces.
VEWL is built out of polygons using SGI Performer
to provide a truly native and appropriately flexible
solution to providing WIMP-based interfaces in a
VE. Each window provides a 3D coordinate system
allowing the windows to display either 2D or 3D
content.

3 User Interface
A primary goal of VEWL was to provide a usable
interface that was intuitive and familiar to the user.
One of the main usability issues within a VE is the
difficulty of specifying points with six degrees of
freedom: x, y, z, heading, roll, and pitch (Hinckley,
1994). In order to constrain the input required we
put content on the surface of a virtual sphere. By
keeping content tangent to the surface sphere the
user only needs to point where they want the mouse
and the other information can be calculated to have
the windows always face the user and placed a
constant distance from the user as shown in Figure
1. The end result is a virtual surface on which the
user can point to control a virtual mouse.

3.1 Virtual Mouse
We implemented VEWL to run on a 4-wall
Fakespace CAVE™, using an Intersense IS-900
tracking system to track the user’s head and a hand-
held wand. The wand has a two-DOF joystick and
four buttons. The user points the wand, and the
virtual mouse location is defined as the intersection
of the wand’s direction vector with the sphere.

Once the virtual mouse has been defined the rest
of the interface can follow traditional 2D interface
metaphors. To keep things familiar to the user one
button was used for selecting and clicking, and
another for contextual menus, like left and right
mouse buttons. Because there are four buttons on
the wand we chose to use a third button as the
universal move button. When the move button is
pressed anywhere in a window, it moves with the
mouse until the button is released. This allows the
user to easily place windows without requiring a
precise selection of the window’s title bar. The
fourth button was left unused.

3.2 Applications Menu
 A user can right click anywhere on the sphere and a
menu is brought up with a list of available
applications. When selected, an application’s
windows are placed on the surface of the sphere. To
keep things flexible the applications menu is
configured via an XML file that describes what
applications to add to the menu.

3.3 Windows
Windows are represented as polygons that are
tangent to the sphere at their center and are not

spherically warped along the surface of the sphere.

Windows
on the sphere

surface

Figure 1 - Window Placement Diagram

Figure 1 - Sphere Diagram
All of our current examples (see section 4) use

2D windows; however, windows containing 3D
graphics are supported and encouraged. The mouse
is projected onto the window using a ray cast from
the wand through the sphere to the surface of the
window. The location where the ray intersects the
window is where the mouse event is generated in
window coordinates. Users can then press logical
buttons on the window or simply use information
displayed by the window. As stated above, the
windows can be moved using the third mouse
button. The example windows all have a title bar
that provides a button to close the window as well as
a label. Windows do not require this title bar and
can provide any interface they want.

Figure 2 - Clock, Wave Selector & Glyph

4 Sample Applications
We have developed two prototype applications to
demonstrate the power and flexibility of the API and
the user interface metaphor. The first application is a
simple clock that the user can place anywhere. It

serves as an example of how to provide additional
information to the user to aid in the creation of
information rich virtual environments (Bowman et
al., 1999). It also demonstrates how content can be
dynamically updated.

The second application replaces a current web-
based interface for selecting different 3D wave
models. This application shows a real-world use for
VEWL, and provides an interface that appears to be
much more efficient at selecting models than the
previous web-based interface.

The Wave Selector provides 16 virtual buttons.
Each button displays an image that represents the
surface of the wave to identify the model. The user
may use the virtual mouse to select the 3D model
they would like to look at. When the user selects the
model it is loaded and displayed in the CAVE. This
is an improvement over the old interface, which
required the user to leave the CAVE and click on an
identical picture on a webpage to load a new model.
The user can now compare and contrast models
much faster than before without having to leave the
CAVE.

5 Design and Implementation
The design of VEWL was informed by several
design goals:

1) Reusability – Because this is an API all
objects are designed to be modular

2) Ease of use – Like the user interface, the
programmer interface was equally
important when designing and
implementing the API.

3) Extensibility – Objects were designed to
encapsulate base functionality while not
limiting what the programmer can gain
access to.

4) Documentation – If an API is going to be
used by developers then they will want
good documentation.

To accomplish these goals we implemented all
VEWL widgets using similar class names and
structures to Qt and used SGI Performer calls to
draw the widgets. This is what allows the 3D
widgets and what provides good performance
because the widgets are not rendered to a bitmap and
then shown as a texture, although they can be.

In addition to building on top of Qt, we also
used DIVERSE, which interfaces with various input
devices. DIVERSE is designed to be a modular API
for building reconfigurable, scalable, extensible, and
device independent VEs (Kelso et al, 2002). The
combination of Qt and DIVERSE provided a

powerful, yet flexible foundation from which to
build a window manager and widget toolset.
VEWL was designed as a DTK shared library that
can be loaded along with any existing DIVERSE
application without having to change a line of code.
This was essential because VEWL was designed to
augment existing VEs, not to replace them.

VEWL was also designed to allow plug-in
applications that can be compiled separately. The
clock and Wave Selector mentioned above are both
compiled separately from the rest of the library and
are loaded into the applications menu via an XML
configuration file. The goal was to provide a
window manager that can dynamically load
applications.

6 Usability Evaluation
We conducted a preliminary usability evaluation to
see if the interface was easy to learn and use. Five
student subjects participated in the study. Before the
evaluation began we gave a demonstration of how
the virtual mouse worked and described the
functionality of each button. Subjects used the
interface to open, move, and close windows for 2-3
minutes to allow them to get used to the CAVE and
overcome the initial learning curve associated with
using the wand. After this exploratory phase,
subjects began a more focused task-based
evaluation.

6.1 Tasks
The first task we asked them to perform was to open
four clocks and place them in different locations
around the CAVE. To accomplish this task, subjects
had to make 8 menu selections and move 4
windows. We then asked them to close the windows
and open the Wave Selector. This tested their ability
to close windows and required two more menu
selections and another window placement. Finally,
we asked them to view all 16 wave models and then
close the Wave Selector. This task required them to
press buttons within a window. We watched for
failed attempts at selecting menu items, pressing
buttons, moving windows, and closing windows
because these were the most primitive actions.

6.2 Survey
After using the interface, subjects completed a
survey that asked them to compare the VEWL
interface with similar desktop interfaces that they
are familiar with. They rated the ease of using the
menus, closing a window, selecting a button,

moving a window and pointing the mouse.
Questions used a 7-point Likert scale, where 1
meant “near impossible” and 7 meant “as easy as a
desktop computer”. We also asked subjects about
what they found most difficult and what was the
easiest for them.

6.3 Results
The results were highly varied from one user to
another. Some users had no missed menu attempts
out of the 10 times they had to select a menu option.
They were also able to select the menu options
quickly. Another group of users missed the desired
menu option in 3 out of 4 attempts, and it took them
significantly longer to make each selection. When
this group was asked what made it difficult, they
said the mouse would move when they pressed the
button (the so-called “Heisenberg effect” (Bowman
et al., 2002)). This was most likely caused by the
fact that there is no physical surface on which the
wand rests. If not countered, the pressure on the
button would move the wand. The average rating of
the ease of using the popup menus was 5.0, which
suggests that, while they were not as easy to use as
their desktop counterparts, they were still quite
usable.

Subjects had no problems moving windows or
pressing buttons on the Wave Selector. When
asked, many of the subjects said that these tasks
were what they found to be the easiest and this is
mirrored in their average usability rating of 6.2.

Closing the windows was the most difficult task
for all the users, and some of them could not
complete it at all. The main complaint was that the
close button was too small and too close to the edge
of the window. Despite the problems one subject
was able to close all the windows successfully on his
first attempt. This indicates that pointing the wand
with precision is the limiting factor when it comes to
closing windows. Similar results have been reported
for ray-based selection of floating menu items in
VEs (Bowman, 1996). This task got an average
usability rating of 2.2 from the subjects.

6 Future Work
VEWL has many possibilities for future work. The
API could expand to include many more widgets
and interaction techniques. VEWL has the potential
to be a unified API for augmenting virtual
environments with information rich interfaces.
Other areas for future development include
improving the precision and accuracy of the virtual

mouse, providing effective text input, and
developing truly 3D widgets and windows.

References

Angus, I. And H. Sowizral (1995). Embedding the 2D
interaction Metaphor in a Real 3D Virtual
Environment. SPIE, Stereoscopic Displays and
Virtual Reality Systems.

Bowman, D., Wingrave, C., Campbell, J., Ly, V., &
Rhoton, C. (2002). Novel Uses of Pinch Gloves for
Virtual Environment Interaction Techniques. Virtual
Reality, 6(3), 122-129.

Bowman, D. Wineman, J., Hodges, L., and Allison, D.
(1999) The Educational Value of an Information-
Rich Virtual Environment. Presence: Teleoperators
and Virtual Environments , vol. 8, no. 3, June 1999,
pp. 317-331

Bowman, D. (1996). Conceptual Design Space: Beyond
Walk through to immersive Design. In D. Bertol
(Ed.), Designing Digital Space (pp. 225-2360. New
York: John Wiley & Sons.

Robertson, G., et al,(2000) The Task Gallery: a 3D
window manager, Proceedings of the SIGCHI
conference on Human factors in computing systems,
p.494-501, April 01-06, The Hague, The Netherlands

Kelso, J., Satterfield, S.G., Arsenault, L.E., and Kriz,
R.D., (2002) DIVERSE: A Framework for Building
Extensible and Reconfigurable Device Independent
Virtual Environments, Proceedings of IEEE VR
2002, Orlando, Florida, March 24-28.

Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.,
(1994) A survey of design issues in spatial input,
Proceedings of the 7th annual ACM symposium on
User interface software and technology, p.213-222,
November 02-04, 1994, Marina del Rey, California,
United States.

Elmqvist, Niklas, (1996) 3Dwm: A Platform for Research
and Development of Three-Dimensional User
Interfaces, Department of Computing Science
Chalmers University of Technology and Goteborg
University SE-312 96 Goteborg, Sweden.

Dykstra, P., (1994), X11 in Virtual Environments:
Combining Computer Interaction Methodologies, j-
X-RESOURCE, vol. 9 no. 1, pp. 195—204, Jan 1994

Lindeman, R., Sibert, J., Hahn, J., (1999) "Hand-Held
Windows: Towards Effective 2D Interaction in
Immersive Virtual Environments", Proc. IEEE Virtual
Reality '99, pp. 205-212.

