
Scaling Up Data-Parallel Analytics Platforms:
Linear Algebraic Operation Cases

Luna Xu∗, Seung-Hwan Lim†, Min Li‡, Ali R. Butt∗, Ramakrishnan Kannan†
∗Virginia Tech, †Oak Ridge National Laboratory, ‡IBM Almaden Research
∗{xuluna, butta}@cs.vt.edu, †{lims1, kannanr}@ornl.gov, ‡minli@us.ibm.com

Abstract—Linear algebraic operations such as matrix ma-
nipulations form the kernel of many machine learning and
other crucial algorithms. Scaling up as well as scaling out such
algorithms are key to supporting large scale data analysis that
require efficient processing over millions of data samples. To this
end, we present, ARION, a hardware acceleration based approach
for scaling-up individual tasks of Spark, a popular data-parallel
analytics platform. We support both linear algebraic operations
of between two dense matrices, and between sparse and dense
matrices in distributed environments. ARION provides a flexible
control of acceleration according to matrix density, along with
efficient scheduling based on runtime resource utilization. We
demonstrate the benefit of our approach for general matrix mul-
tiplication operations over large matrices with up to four billion
elements by using Gramian matrix computation that is commonly
used in machine learning. Experiments show that our approach
achieves more than 2× and 1.5× end-to-end performance speed-
ups for dense and sparse matrices, respectively, and up to 57.04×
faster computation compared to MLlib, a state of the art Spark-
based implementation.

I. INTRODUCTION

High-dimensional data is commonplace both in science [1],
[2] and enterprise [3] applications. In order to discover patterns
and relationships in such data, machine learning (ML) is
widely used, typically through a core set of linear algebraic
operations, called the analysis kernel [4]. The fundamental
need of scalable data analysis, thus, is the ability to process
a large number of data samples timely, i.e., to have a high
analysis kernel computing throughput for matrix operations.

Extant practices for fast analysis kernel computing fall into
two broad groups: (1) enabling scaling out on commodity
hardware via the use of data parallel computation software
platforms such as MPI [5], Hadoop[6], and Apache Spark [7],
[8], [9]; and (2) enabling scaling up the computational power

This work is sponsored in part by the NSF under the grants: CNS-
1565314, CNS-1405697, and CNS-1615411. The manuscript has been au-
thored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan). This research used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

of individual nodes/machines for data analysis [10], [11]. Scal-
ing up approaches have been proven to be beneficial to data
analysis algorithms, since the approaches entail optimization
algorithms [4] that can exploit hardware accelerators, e.g.,
GPUs, ASICs, FPGAs, and specialized CPU instructions [12]
for matrix operations [13], [14], [15].

However, advantages from both scale-out and scale-up tech-
niques come at a price to achieve higher performance. Scale-
out options can suffer communication networking overheads
and higher costs (energy, labor, machine failures, etc.) as
the size of a cluster grows. Due to the constantly growing
data acquisition throughput, such overheads lead to a constant
pressure on scale-out options. On the other hand, scale-up
options face a hard-wall of scalability, limited by the resources
available in a single machine. Hence, how best to combine and
reconcile the scale-out and scale-up approaches has become
an important topic in processing matrix operations at scale.

Although it is promising to combining scale-out and scale-
up techniques, it is non-trivial to realize the full potential of
both approaches, due to the fundamental design choices made
under each approach. Scale-out approaches, such as Spark,
often focus on scalability, fault tolerance, cluster utilization,
and workload balancing, but do not typically factor in tech-
niques for improving an individual node’s performance via
hardware acceleration to support a wide range of distributed
environments. For instance, Spark maps a job to a number of
tasks that can later be run on any participating nodes without
any regard to the unique hardware capabilities of the nodes or
the ability of a task to leverage the available capabilities.

Let us look into the details of the challenges in exploiting
node-local accelerators for matrix operations in the context
of Spark. Spark MLlib [16], a widely used machine learning
library built on top of Spark, often applies an ad-hoc Scala im-
plementation for performing matrix operations without regards
to node-local accelerators. Thus, users have to understand and
implement system-level details if they want to scale-up Spark
tasks. Moreover, scale-up approaches are not designed to
consider the wide variance of tasks within Spark applications.

Scale-up solutions focus on parallelism at a fine granularity,
such as SIMD and SIMT models, but with limited consid-
eration of distributed environments. Each scale-up solutions
for matrix operations, also known as Basic Linear Algebra
Subroutine (BLAS) [17] operations, typically target special-
ized operations for the specific target hardware acceleration,

with minimal consideration, if any, on distributing tasks across
systems. For example, OpenBLAS [18] is optimized for BLAS
operations for dense matrices on CPU; cuBLAS [19] is op-
timized for BLAS operations on GPUs; and spBLAS [20] is
optimized for BLAS operations between a sparse matrix and
a dense matrix. It is because the maximal performance for
each BLAS operation under each hardware configuration can
significantly vary according to the density and size of given
matrices. Hence, it is challenging to integrate existing scale-up
solutions to the Map-Reduce programming paradigm, where
the same operation is to be applied over each partition (or
element) in the data set, through a single run-time solution
when different tasks form a directed acyclic graph.

Therefore, we propose ARION, a dynamic hardware accel-
eration framework atop Spark. ARION is carefully designed
for scaling up BLAS operations in a MapReduce like scale-
out environment where multiple map tasks are concurrently
running. ARION supports multiple hardware accelerated solu-
tions for BLAS operations on both sparse and dense matrices.
In addition, ARION treats available GPUs as additional cluster
slots to run tasks. Thus, we allow to run tasks on both GPUs
and CPUs on the condition that the overheads to schedule
tasks on each processing unit does not exceed the benefits.
The ability to leverage multiple hardware resources increases
the overall system utilization. ARION bridges the mismatch of
the design between local accelerators and scale-out platforms
by utilizing techniques such as stream processing and kernel
batching. More specifically:

• We extend our previous work [21] by designing and
implementing ARION, a dynamic hardware acceleration
framework atop Spark, and effectively combine scale-
up hardware acceleration for distributed linear algebraic
operations with scale-out capabilities of Spark.

• We design distributed matrix manipulation support for
both dense and sparse matrices in Spark for scale-out
matrix operations. In contrast, the current state of the
art, e.g., MLlib [16], considers only sparse matrices in a
distributed setting.

• We design a dynamic algorithm that chooses the best
hardware accelerator at runtime by considering key fac-
tors such as matrix size, density, and system utilization.
Our approach does not require changes to the Spark
applications on user side, instead it leverages already-
available libraries to support the target operations.

• We design a dedicated GPU component along with the
BLAS libraries to support concurrent usage of both CPU
and GPU to increase overall system utilization. The GPU
component is optimized to maximize the GPU utilization
by streaming processing and kernel batching techniques.

On top of our design and implementation, for computing
Gram matrix (XXT [22]), ARION shows more than 2× and
1.5× speed-up for end-to-end performance for dense and
sparse matrices, respectively. Most notably, for dense matrices,
ARION achieves 57.04× of speed-up in the computation time.
Finally, ARION performs faster than or comparable to a larger

scale setup with default Spark.

II. BACKGROUND

In abstract, most of machine learning algorithms can be
understood as the operations between a weight matrix that
represents the training model and feature vectors that repre-
sents the data samples. Thus, linear algebra operations forms
the foundation of machine learning algorithms, making MLlib,
the machine learning package of Spark, the default package
for distributed linear algebra operations in Spark. MLlib wraps
the lower level Spark Resilient Distributed Dataset (RDD)
generation and operations needed to perform matrix operations
and machine learning algorithms. A common assumption
across components in MLlib is that a matrix will be mostly
likely to be sparse, tall, and thin [23]. Assuming each row
vector of a matrix will fit into a reasonable size of machines,
most of linear algebra operations in MLlib does not support
fully distributed linear algebra operations, along with limited
support for dense matrix operations, except BlockMatrix.

Such a design choice leads to challenges in accelerating
linear algebra operations in Spark. Assuming sparse matrix,
MLlib heavily exploits sparse matrix representation to com-
pactly store non-zero terms for the sake of efficiency. A
consensus on accelerating BLAS operations is that GPUs are
typically less efficient in performing sparse matrix operations
than dense matrix operations [13]. Thus, in most cases, to
support sparse operations, a user inflates the sparse matrices
into a dense one and offloads the processing to the accelerators.
Otherwise, accelerator inflates internally. In addition to data
representation, Spark partitions the matrix into concurrent
multiple tasks per node, assigning in a relatively smaller chunk
to each task (e.g., default partition size for BlockMatrix is
1K × 1K). The execution of each task often forms multiple
waves, resulting in a limited number of concurrent tasks
per node. As a result, a small number of concurrent matrix
operations arrive at GPU at the unit of small chunks, leading
to a low utilization of GPU. Accordingly, a straightforward
drop-in solution of using BLAS libraries from Spark MLlib,
including BlockMatrix class, cannot guarantee a full utilization
of hardware capabilities.

III. DESIGN

This section describes the design overview of ARION, along
with detailed explanation on our design choices.

A. System architecture

Figure 1 illustrates the architecture of ARION and its key
components that all run in Spark executors on participating
worker nodes. Selector is responsible for selecting the optimal
processing variant such as BLAS and GPU implementation
(GPU Impl) based on matrix characteristics. Selector ad-
dresses the problem of the standard MLlib always using the
Scala implementation for multiplications in BlockMatrix. We
employ MLlib to partition the input datasets per given block
size, and generate RDDs and associated tasks, which are
then send to the executor. Selector calculates the density of

Matrix
Multiplication

Java Native Interface

Scheduler
(Runtime CPU/GPU Status)

Spark Framework

Selector
(Block size, Matrix Density)

GPU Implementation

OpenBLAS spBLAS NVBLAS cuBLAS cuSPARSE

CPUs GPUs

JCuda

S
c

a
la

 I
m

p
le

m
e

n
ta

ti
o

n

BLAS Enabler

Spark.MLib

JVM

System
Native

A
ri

o
n

Devices

Fig. 1: System architecture of ARION.

assigned sub-matrices (this also catches skewed density cases
that can be missed if examining a matrix as a whole), retrieves
the block size information, and decides which processing
variant to use to perform the multiplication. The tasks are
then submitted to the Scheduler.

Our Scheduler aims for high resource utilization of both
CPUs and GPUs. Thus, tasks are scheduled based on the
system runtime utilization using the processing variant chosen
by the Selector with a high priority. Scheduler works with
node-local hardware accelerators, which can help the case of
a heterogeneous cluster where each node has different hard-
ware configurations. Moreover, to increase resource utilization,
Scheduler negotiates with Spark task scheduling system to
dynamically allocate more tasks if hardware resources become
idle. This is in contrast to the current Spark process, which
only considers CPU core resource.

B. Hardware acceleration for dense and spare matrices

Table I lists the processing variants supported in ARION.
The ad-hoc Scala implementation is preserved in our system
as one of the options. For others, we proceed as follows.
Given the block size, the matrices are partitioned into block
sub-matrices. Each task performs the multiplication of two
block sub-matrices. ARION supports multiplications of both
ddGEMM and spGEMM. As shown in Figure 1, ARION
enables hardware acceleration via two channels: BLAS En-
abler and GPU Impl. BLAS Enabler is able to adopt
underlying hardware optimized BLAS libraries through a Java
native interface (JNI). Currently we adopt OpenBLAS [18],
NVBLAS [24], and spBLAS [20]. Here, OpenBLAS and
NVBLAS support acceleration for ddGEMM on CPU and
GPU, respectively. Both are allowed in MLlib with the inte-
grated Netlib-Java [25] as the JNI layer. To support hardware
accelerated sdGEMM, we adopt the spBLAS library under
BLAS Enabler. For this purpose, we extend Netlib-Java to
support linking to the spBLAS library so that it is transparent
to MLlib. Note that our design of BLAS Enabler is flexible
and support plugging in of any external libraries via JNI. While
detailed discussion is out of the scope of this paper, we do not
prevent the adoption of SpGEMM (sparse-sparse matrix mul-
tiplication) libraries without hardware acceleration. We also
implement a dedicated GPU matrix multiplication component,

TABLE I: Summary of all processing variants supported in ARION.
Methods on “GPU (direct)” platform can co-execute with methods
running on “CPU” platform.

Methods Matrix type Platform
OpenBLAS Dense-dense CPU
NVBLAS Dense-dense GPU
cuBLAS (GPU Impl) Dense-dense GPU (direct)
spBLAS Sparse-dense CPU
cuSPARSE (GPU Impl) Sparse-dense GPU (direct)

GPU Impl, with GPU runtime dense matrix operation libraries
such as cuBLAS [19] and spark matrix operation libraries such
as cuSPARSE, which bypasses initializing BLAS libraries
through JNI. Thus, ARION supports co-execution using both
CPU and GPU, i.e., using GPU Impl without JNI BLAS
library linking, while using CPU BLAS libraries through JNI.
This can yield more effective scale-up by leveraging both CPU
and GPU accelerator resources.

C. Choice of processing variants

Once Selector determines the matrix type of a given mul-
tiplication task, it recommends the methods to Scheduler,
which are then given priority for processing the matrix. Note
that the Scheduler can also ignore the recommendation if it
conflicts with resource availability and utilization. To suggest
the right option for performing multiplication on a given
environment, we adopt a user configurable system parameter
Thblock (size of a block matrix) to decide the best compute
variants, given environments and workloads. We choose block
size as a parameter since other parameters such as density can
skew in a matrix, and with a fixed block size, we can calculate
the density of each block. Note that the Thblock is for both
dense and sparse matrix.

Let us show our approach to decide Thblock used in our
evaluation, which also can highlight the differences between
the three supported methods. We first performed ddGEMM
with both NVBLAS and GPU Impl using cuBLAS as the
two methods for GPU acceleration, and OpenBLAS as CPU
acceleration on a GPU node in Rhea [26] (Table II shows
the specifications). For simplicity, we measured the end-to-end
computation time for the multiplication of two matrices of the
same size. In this measurement, we included the data transfer
time between the host and GPU into the computation time
since this time is included in the computation time of tasks in
Spark. We used block sizes within the range of 256× 256 to
16K×16K in the experiment, which is within the reasonable
range for Spark. The default block size in Spark is 1K× 1K.
Figure 2(a) shows the execution time using different options
with different block sizes. The reported execution time is an
average of five runs for each block size. For small block sizes
up to 4K × 4K, we observe that GPU Impl performs better
than the other two. As the block size increases, NVBLAS starts
to outperform GPU Impl due to NVBLAS design (§ III-D).
OpenBLAS performs reasonably within the block size of 1K×
1K, but the performance degrades dramatically as the size
grows more than 2K×2K, when OpenBLAS starts to perform
worse than NVBLAS. Based on this observation, we identify

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1000 10000

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

MLlib (Scala)
GPU (NVBLAS)

CPU (OpenBLAS)
GPU (cuBLAS)

(a) Dense-dense matrix.

 10

 100

 1000

 10000

 100000

 1x10
6

 1000 10000

MLlib (Scala)
GPU (cuSPARSE)

CPU (spBLAS)

(b) Sparse-dense matrix.

Fig. 2: Execution time of matrix multiplication using different implementations. X-axis represents
b in a block matrix b× b. Both axes are log-scaled.

 0

 20000

 40000

 60000

 80000

 600 1200 1800

T
h

ro
u

g
h

p
u

t
(e

le
m

e
n

ts
/m

s
)

Fig. 3: Throughput of NVBLAS. X-axis repre-
sents b in a block matrix b× b.

Thblock for dense matrix in our system to be 2K × 2K (the
cross point of the NVBLAS and GPU Impl). In our system,
Selector would either choose NVBLAS or GPU Impl based
on the threshold as they outperform OpenBLAS in any cases.

Next, we repeat the experiment with a dense matrix and a
sparse matrix with density of 0.05. We recorded the end-to-end
time of multiplication with GPU Impl using cuSPARSE, and
CPU acceleration using spBLAS. As shown in Figure 2(b),
GPU does not accelerate the calculation until the block size
reaches 8K×8K. Thus, we chose the Thblock to be 8K×8K
for sparse-dense matrix multiplications. The thresholds are
configurable by the users, which they can set based on their
specific environment profiling. The values remain unchanged
if the environment does not change. The default in our system
is set based on our experiments above. Moreover, we found
in our experiment that there is an upper limit size for a
single GPU bounded by the GPU memory size, 32K × 32K
in our case, thus Thblock should be below this limit. In
practice, a user’s environment may have multiple decision
points, for which we use a configuration file. The file is
used by the Selector after it has determined the computation
type (ddGEMM or sdGEMM) to select appropriate processing
variants.

Discussion: To show the impact of hardware acceleration,
we also study the performance of the Scala implementation
of MLlib as our baseline case for our studied scenarios. We
can see that for ddGEMM, hardware acceleration significantly
speeds up the execution time. However, spBLAS performs
slightly better or similar to MLlib. This is because ddGEMM
is more computation intensive than multiplication with highly
sparse matrices, thus ddGEMM offers more opportunity for
performance improvement.

D. Improving system utilization
Our design aims to improve resource utilization with the

goal to maximize performance and efficiency. We achieve this
via a simple, yet effective, scheduling algorithm. If a GPU has
to be employed, we also prevent node-level waves of tasks.
This is because the number of tasks assigned per node can
be much larger than the concurrency limit of the available
GPU. We propose to batch task executions to improve the
concurrency efficiency of GPUs.

1) Task scheduling: The goal of node-level task scheduling
is to increase resource utilization whenever possible. First,
Scheduler over-provisions the task slots and enables tasks
to run on both GPUs and CPUs simultaneously, instead of

just utilizing one type of resource at a time. Note that the
data parallel design of Spark guarantees the data independency
among Spark tasks so there is no data communication between
CPU tasks and GPU tasks. A side effect of this approach
can be that tasks are scheduled on suboptimal resources.
To remedy such problems, Scheduler speculatively executes
lagging tasks on available resources.

To over-provision the resources, we assign the task slots
nslots with the number of CPU cores plus the GPU capacity,
i.e., the maximum number of block sub-matrices the GPUs
attached to a node can hold. For example, in our experimental
setup described in § III-C, nslots = 56 (CPU cores)+32 (GPU
streams [19] of 2 GPUs per node). Among the nslots task
slots, 56 are for the CPUs and the others for the GPUs. This
allows ARION to request more tasks per node from Spark DAG
scheduler to execute concurrently.

The scheduling algorithm works as follows. Given the
processing option, and the occupied GPU and CPU slots,
Scheduler obtains the resource type used by the processing
variant as determined by Selector. If the resource type is
GPU and all the GPUs are currently occupied, Scheduler
changes the current processing variant to the method for the
same matrix type in CPU platform shown in Table I to use
the available CPU slots, i. e., OpenBLAS for ddGEMM and
spBLAS for sdGEMM. On the other hand, if the resource
type is CPU and all CPU slots are occupied, then depending
on the block size, Scheduler changes the processing option
to NVBLAS or to cuBLAS for ddGEMM. Scheduler simply
changes to cuSPARSE for spGEMM. Here, to support running
tasks on both OpenBLAS and NVBLAS simultaneously, we
preload and link the NVBLAS library as the BLAS library,
and automatically modify NVBLAS configuration to redirect
the BLAS operation to OpenBLAS. Similarly, we modify the
configuration back to NVBLAS when necessary. Note that
this configuration switch requires each thread to maintain a
thread local configuration file to avoid conflicts. In practice, the
block size is usually small due to the limitations mentioned in
§ III-C. As a result, ARION opts for cuBLAS over NVBLAS,
and thus is able to avoid this switching and initiation overhead.
Furthermore, recall that we extended Netlib-Java to support
spBLAS (§ III-B). Our extension does not interfere with
the existing OpenBLAS and NVBLAS libraries, instead we
internally load spBLAS library from our extended Java code
without the need of preloading as long as the spBLAS library
can be loaded in the system library path.

Scheduler respects the variant choice of Selector as long
as appropriate resources are available, choosing an alternate
only if needed resources are occupied. However, in cases with
few number of waves of tasks, executing on the suboptimal
alternate can lead to suboptimal task execution time, which
in turn exacerbates the performance of entire stage execution.
For instance, for an application that launches 88 tasks per
node as a single wave requesting cuBLAS, Scheduler may
change the processing option of 56 tasks to OpenBLAS and
executes them on CPUs. Since GPUs run much faster for
dense matrices, the other tasks executed on CPUs become
stragglers. Thus, Scheduler speculatively re-launches the tasks
on idle GPUs and terminates the stage when all the results
are available. Consequently, ARION is able to mitigate any
suboptimal Selector decisions.

2) GPU optimization: ARION adopts a number of optimiza-
tion techniques for GPU Impl to ensure that all of the GPUs
within a node are fully utilized.

We first discuss the performance inefficiency of the tiling
technique of NVBLAS. NVBLAS uses the cuBLAS-XT [19]
API under the hood. cuBLAS-XT supports a multi-GPU
enabled host interface. In cuBLAS-XT, matrices are divided
into configurable square tiles of a fixed dimension, called
BlockDim, with a default value of 2K. Each tile is assigned
to an attached GPU device in a round-robin fashion, and one
CPU thread is associated with one GPU device for transferring
data. This enables NVBLAS to pipeline tile transfer and
computation, thus improving the overall GPU throughput.

While NVBLAS outperforms other processing variants by
tile splitting when matrices are large, Spark tasks work on
RDD partitions where each sub-matrix is usually not big
enough to be further split into square tiles of size 2K. Usually
GPU throughput is low with small sizes of matrices. To verify
this, we tested GPU throughput of matrix multiplication with
different sizes. As shown in Figure 3, GPU throughput drops
exponentially as the size of matrix decreases.

Another problem is that NVBLAS handles one matrix mul-
tiplication at a time, with multiple tiles of the matrices handled
concurrently. This concurrency model is different from Spark
concurrency model in which each task performs one sub-
matrix multiplication, and multiple sub-matrix multiplications
are performed by different tasks at the same time. It is equally
important to optimize the performance of using GPU for
small matrices. However, NVBLAS is inefficient in achieving
high concurrency for small matrices multiplications. Thus, we
propose to batch small matrices into a large one to improve
the concurrency and utilization of GPUs in our GPU Impl
design (for both cuBLAS instance and cuSPARSE instance).
In particular, we adopt the CUDA Streams [19] technology
to overlap computation of different tasks by batching the
execution of small kernels. We associate one Spark task
with one separate CUDA stream to make the GPU compute
the tasks concurrently. This effectively batch multiple small
matrices into a large matrix to run concurrently, consequently
improving the GPUs’ throughput.

While it is possible to have as many streams as needed

TABLE II: System specification.

System name Rhea GPU node Rhea CPU node
CPU model dual Xeon E5-2695 dual Xeon E5-2650
CPU cores 14× 2 (28× 2 HT) 16× 2 (32× 2 HT)
CPU memory 1TB 128GB
GPU model dual NVIDIA K80 N/A
GPU (CUDA) cores 4992× 2 N/A
GPU memory 24× 2 GB N/A
CUDA ver. 7.5 N/A
Network Interface 1G Ethernet 1G Ethernet

TABLE III: Studied matrix sizes, densities, and raw file size.

Matrix 8K 16K 32K 64K
Density=1.00 0.98 GB 3.93 GB 15.73 GB 80.82 GB
Density=0.05 0.30 GB 1.19 GB 4.77 GB 19.08 GB

for a single GPU, the CUDA community suggests to not
have more than 16 concurrent kernels per GPU [19]. We
further limit the degree of concurrency based on the GPU
memory capacity, such that a GPU can hold no more than
GPUram/b2bytes/3 streams concurrently, where GPUram

represents the GPU memory capacity. This is to accommodate
the two b × b input matrices and the result matrix. Although
sparse matrices can be represented with compressed formats,
we keep this limitation without loss of generality (e.g., GPU is
used for a mixture of multiplication tasks including ddGEMM
and sdGEMM). Using multiple streams may cause higher data
transfer overhead between the CPU and GPUs. In this case, we
arrange a fixed number of concurrent streams for each GPU,
and once the streams in one GPU are all occupied, we dispatch
the next batch tasks to the next GPU in a round robin fashion.
Therefore, we can efficiently utilize multiple GPUs to overlap
the data transfer and accelerate Spark tasks for small matrices
with high concurrency.

IV. EVALUATION

We have integrated ARION in Spark by modifying MLlib
(mainly small changes to BlockMatrix class). However, ARION
can also be integrated with other scale-out platforms. In this
section, we evaluate ARION’s ability to efficiently accelerate
matrix multiplication in Spark compared to vanilla MLlib
implementation. To this end, we use a large scale Gramian
matrix (XXT) computation kernel. This kernel is common in
ML algorithms such as SVD and PCA [4]. Gramian matrix
computation also plays a critical role in popular data analysis
techniques, e.g., all-pair similarity [22].

We use Spark 1.6.1, the latest version at the time of this
work. We manually compiled OpenBLAS and spBLAS library
version 0.2.19 with acceleration instruction flags set including
AVX2 and FMA3 [27]. We use the default NVBLAS library
included in CUDA toolkit 7.5. We implemented GPU Impl
with cuBLAS and cuSPARSE APIs from the CUDA toolkit.
Our experiments are conducted on six highly-scalable GPU
nodes assigned from a super computing cluster, Rhea, as
described in Table II. We configure Spark with one master and
six worker nodes. One worker is co-located with the master.
Each worker node runs one executor. We configure each

 1

 10

 100

 1000

 10000

8K 16K 32K 64K

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

in
) MLlib

Arion
OpenBLAS

NVBLAS
cuBLAS

(a) Dense matrix.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

8K 16K 32K 64K

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

in
) MLlib

Arion
spBLAS

cuSPARSE

(b) Sparse matrix.

Fig. 4: End-to-end execution time with default Spark MLlib, ARION, and the naive adoption of other processing variants. (Note log-scaled Y-axis in (a).)

executor to have 800 GB memory and 56 cores. We repeat
each experiment five times and report the average results.

A. Overall performance

In our first experiment, we study the overall performance
gain obtained from ARION. For this purpose, we generate
random square matrices of different orders with uniform
densities as shown in Table III. We store both dense and
sparse matrices in text files with same format to maintain the
same data preprocessing process of Spark. We use density 1.0
for dense matrices and 0.05 for highly sparse matrices. We
see that our raw input file sizes scale up to 80 GB with
computation of up to 4.3 billion data points. We perform
generalized matrix multiplication from an input matrix, X,
to compute Gramian Matrix, XXT. Due to the nature of
the computation of Gramian Matrix, the pair of matrices of
multiplication would be either both dense or both sparse.
However, ARION may still employ acceleration of sparse-
dense matrix multiplication on block sub-matrices where there
may be skewness within the matrix. To study the performance
of the different processing variants, we consider several sce-
narios: (i) default Spark MLlib, ARION for both dense and
sparse matrix X; (ii) ARION using OpenBLAS only (with
Selector and Scheduler disabled), ARION using NVBLAS
only, ARION using GPU Impl with cuBLAS only for dense
matrix X; (iii) ARION using spBLAS only and GPU Impl
with cuSPARSE only for sparse matrix X. We use the default
block size of 1K × 1K for our experiments.

We record the end-to-end execution time of the application,
which includes reading input data file, creating a BlockMatrix
matrix type from the input file through intermediate data types
(from RowMatrix to IndexedRowMatrix and CoordinateM-
atrix), and performing matrix multiplication on BlockMatrix.
Figure 4 shows the results. The x-axis represents execution
time against the order of matrices as shown in Table III.

We first compare the performance of ARION to default
Spark MLlib. Here, we observe that ARION performs better
than MLlib for dense matrices with an average speed-up of
1.87×, and up to 2.47×. For sparse matrices, ARION speeds
up performance by 1.15× on average and up to 1.5× for
64K × 64K matrix. This performance improvement mainly
comes from the hardware acceleration for performing matrix
multiplications (further investigated in § IV-B. The perfor-
mance of ARION over MLlib is higher in the case of dense

matrices (y-axis is only log scaled in the case of dense matrix)
due to the fact that the computation of dense matrices is more
intensive than the case of sparse matrices, and dense matrices
can benefit more from the GPU computation power.

Next, we analyze the impact of different implementation
variants. From the figure, we see that for dense matrices,
all hardware acceleration methods (OpenBLAS, NVBLAS,
cuBLAS) finish earlier than MLlib. For sparse matrices,
hardware acceleration methods (spBLAS, cuSPARSE) perform
similar to, or only slightly better than MLlib. This is because
for highly sparse matrices with 5% of non-zero elements, the
overhead of random memory access outweights the benefit of
GPU acceleration where the overhead is incurred by storing
non zero entries non-sequentially in memory due to the
sparsity of the matrices. This observation is consistent with
the results reported in [23]. Overall, ARION outperforms other
implementation variants for both dense and sparse matrices.
Among all matrices sizes, ARION increases the performance
by 10.75% and 20.28%, compared to the naive use of Open-
BLAS and NVBLAS, respectively. ARION performs similar to
cuBLAS case because ARION selects cuBLAS for dense ma-
trices in our system, and most tasks are scheduled to GPU over
CPU due to the short task execution times. The performance
improvement reaches up to 31.89% for dense matrices. Similar
trend is observed in sparse matrix case where ARION further
improves performance by 10.59% compared with cuSPARSE,
and 10.13% compared with spBLAS. The main reason for
this is that ARION dynamically chooses the optimal variant
per block based on density and order of block sub-matrices
and schedules tasks to otherwise idled compute resources,
consequently increasing resource utilization significantly.

B. Performance breakdown

The end-to-end performance includes data preprocessing
(reading input file and converting to BlockMatrix), matrix
multiplication, and persisting results to storage. Figure 5 shows
the breakdown of the end-to-end time for these three stages
under ARION. The time fraction for the “Multiply” phase
suggests how much time is spent on computation, which
is the component where hardware acceleration can speed
up. As seen in the figure, in general, dense matrices spend
more time on multiplication than sparse matrices, thus dense
matrices benefit more from hardware acceleration. Moreover,
larger matrices spend more time on computation while smaller

matrices spend more time in data preprocessing. We thus
conclude that hardware acceleration favors bigger and denser
matrices. The benefit of hardware acceleration on computation
tends to be discounted by large data preprocessing time for
smaller and more sparse matrices.

In the “Multiply” stage, Spark tasks shuffle the block
matrices to get the right sub-matrices, and then perform the
computation. To further investigate the acceleration of compu-
tation, we eliminate the data shuffle phase, and record only the
computation time. Note that we use aggregated compute time
as a simplified metric due to the complexity of Spark task
scheduling for this set of experiments. Figure 6 shows the
speed-ups of aggregated compute time of ARION and other
variants compared to MLlib. The observed speed-up for dense
matrices increases with matrix size, and peaks at 57.04× with
the matrix of 64K×64K. This is because ARION fully utilizes
both CPUs and hardware accelerators. As the matrix grows,
hardware accelerators demonstrate greater speed-ups. Using
hardware accelerators improves the computation performance
by up to 57 times. However, the overall performance decreases
due to the data preprocessing and other framework overheads.
For sparse matrices, we still see a slight speed-up (up to 1.5×)
under ARION over the Scala implementation of MLlib, which
is consistent with the overall results in Figure 2(a). Again, we
observe that ARION performs similar to or better than other
implementations for both dense and sparse matrices, similar to
the overall performance. As the matrix size grows, the perfor-
mance improvement of ARION and GPU Impl increases, up to
88.2% and 84.9% for dense and spare matrices, respectively,
compared to BLAS libraries. We expect the performance
improvement of ARION to increase with growing matrix sizes
against just vanilla hardware acceleration.

Next, we compare the computation speed-ups of different
implementation variants. Among the three hardware solutions
for dense matrices (OpenBLAS, NVBLAS, and cuBLAS),
cuBLAS outperforms the other two variants, which is consis-
tent with results in Figure 2(a). Moreover, OpenBLAS slightly
surpasses NVBLAS with an average improvement of 9.07%,
which is different from the pure measurement of Figure 2(a).
This is because the default block size of Spark falls out of the
sweet spot of NVBLAS. As described in § III-D, NVBLAS is
designed to opt for large matrices. However, Spark divides
matrices to 1K × 1K block sub-matrices, which hinders
NVBLAS to benefit from its optimizations such as matrix
tiling and pipelining of data transfers. Furthermore, NVBLAS
does not support stream processing and kernel batching as
in GPU Impl, falling short in meeting the demand of high
concurrency of Spark and resulting in low GPU utilization.
Finally, the overhead of NVBLAS in initializing the NVBLAS
library, reading a configuration file, and selecting GPUs is not
negligible. In contrast, GPU Impl avoids this overhead by
directly operating through GPU function calls. As a result,
we see that in Figure 4, for dense matrices, NVBLAS always
performs the worst among the hardware acceleration variants.
For the libraries for sparse matrices (spBLAS and cuSPARSE),
spBLAS performs similar to the Scala implementation of ML-

 0

 20

 40

 60

 80

 100

8K 16K 32K 64K

T
im

e
 p

e
rc

e
n
ta

g
e
 (

%
)

Preprocessing
Multipy

Output

(a) Dense matrix.

 0

 20

 40

 60

 80

 100

8K 16K 32K 64K

T
im

e
 p

e
rc

e
n
ta

g
e
 (

%
)

(b) Sparse matrix.

Fig. 5: Performance breakdown of studied matrices under ARION.

lib, and cuSPARSE degrades computation heavily. This is also
in line with our hardware profiling results in § III (Figure 2(b)).
However, we do not see this impact on the overall performance
in Figure 4. This is because the computation portion is not
dominant for sparse matrices (Figure 5), thus the impact is
again negated by the other overheads. Nevertheless, ARION’s
selection of the best processing variants and utilizing multiple
resources still results in overall performance improvement.

C. System utilization

Next, we repeat the experiments with 16K × 16K dense
matrix and 64K × 64K sparse matrix using MLlib, ARION,
OpenBLAS, NVBLAS, and GPU Impl. We observe differ-
ences in resource utilization across variants.

First, we compare the CPU utilization of MLlib, ARION,
and OpenBLAS as shown in Figure 7. Here, x-axis represents
the time sequences, and the y-axis depicts the average CPU
utilization of the testbed nodes. Since the computation using
MLlib takes longer than 250 seconds, we omit the tail results
after 250sec, where the average utilization is less than 1.3%.
We observe that OpenBLAS has the highest CPU utilization,
reaching 100%, since this variant heavily exploits CPUs to
accelerate matrix multiplication. MLlib also exhibits medium
CPU utilization, which reaches 37.24% due to the usage of
Scala based implementation executing on CPUs. However, this
Scala based implementation has much lower CPU utilization
compared to OpenBLAS. In contrast, ARION shows the low-
est CPU utilization with an average of 2.49%. For default
1K × 1K dense blocks, ARION favors GPU accelerations for
computation, and GPU Impl calculates fairly fast for each
task and finishes earlier than OpenBLAS. Moreover ARION
selects GPU Impl for all tasks as there is only one wave of
tasks for 16K × 16K matrix.

Figure 8 shows the aggregate GPU utilization of all nodes
for ARION, ARION using GPU Impl only, and NVBLAS.
Note that maximum GPU utilization reaches 6× 100%. Here
we observe that NVBLAS demonstrates the lowest GPU
utilization among the three. The tiling of NVBLAS is effective
on block sub-matrices with size greater than 2K instead of
small ones. Compared to NVBLAS, GPU Impl increases GPU
utilization by associating each small task to a CUDA stream
and batching the task execution. ARION shows a similar GPU
usage with GPU Impl due to the main adoption of GPU
Impl for the 16K × 16K matrix case. The aggregated GPU
utilization of both ARION and GPU Impl fails to reach the
maximum capacity of the cluster. This is because in Spark,
matrix multiplication tasks first shuffle data to retrieve needed

 1

 10

 19

 28

 37

 46

 55

8K 16K 32K 64K

S
p
e
e
d
-u

p

Arion
OpenBLAS

NVBLAS
cuBLAS

(a) Dense matrix.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

8K 16K 32K 64K

S
p
e
e
d
-u

p

Arion
spBLAS

cuSPARSE

(b) Sparse matrix.

Fig. 6: Speed-up of aggregated compute time with ARION, and other
processing variants with respect to the Scala implementation in MLlib.

sub-matrices. The actual computation happens after all the
data has been obtained. In this case, the actual computation of
different tasks may start at different times based on how long
the shuffle takes for a task. In the case of multiple waves, the
discrepancy in computation start time increases across tasks.
This feature of MapReduce based scale-out platforms like
Spark limits the chances of fully extracting GPU utilization
with the batching task design of GPU Impl inside ARION, and
also prevents the Scheduler of ARION to detect GPU resource
contention. However, such shuffle behavior is nondeterministic
so we can benefit from the flexibility of ARION to fully utilize
idle resources when available. Moreover, when applied to a
multi-tenant environment or multiple parallel phases of a job—
where there may be resource contention, e.g., when a GPU
intensive job runs alongside a matrix multiplication job—,
Scheduler is able to avoid resource contention by scheduling
tasks to resources with higher availability. For highly synchro-
nized scale-out platforms such as Bulk Synchronous Parallel
(BSP) based frameworks [28], [29], [30], ARION is expected
to be able to fully utilize the hardware resources and schedule
tasks to avoid resource contention.

To evaluate how ARION effectively utilizes both CPU and
GPUs resources, we run an experiment with sparse matrix mul-
tiplication of size 64K×64K. Figure 9 shows aggregate CPU
and GPU utilization. Here, while CPUs are mostly fully uti-
lized, GPUs exhibit a spike pattern throughout the execution.
While Selector initially selects spBLAS, Scheduler notices
idle GPU resources and fully occupied CPU slots. Scheduler
then reassigns the tasks to GPU based variants (GPU Impl
with cuSPARSE). The fluctuation in GPU utilization comes
from ARION’s decision to respect choices of Selector. That
means tasks are assigned with spBLAS whenever a CPU slot
becomes available. Thus, we see that ARION improves the
overall resource utilization.

D. Impact of block size

In our next experiment, we perform Gramian matrix cal-
culation with 16K × 16K dense matrix using ARION with
different block sizes. We record the end-to-end runtime of all
cases and break it down into the three stages as illustrated in
Figure 10. Here we can see that Spark spends most of time
on data preprocessing and performing multiply computation,
and the time on writing outputs is thus trivial. Therefore,
we focus on preprocessing and multiplication times. The data
preprocessing is minimum with block size of 512, but the
matrix multiplication is minimum with block size of 1K, the

default case. The overall performance reaches minimum at
9.08 minutes with the block size of 1K. Although suboptimal
block sizes (such as 256) cause huge data preprocessing
overhead from data partitioning and shuffling, in this paper
we fix block size with default value and focus on optimizing
computation time.

Next, we study the relationship between computation and
block sizes, by repeating the experiment with hardware ac-
celeration implementations (GPU Impl, OpenBLAS, and
NVBLAS). We record the average compute time of each
task. Figure 11 shows the results. For all the implementations,
computation time increases as the block size increases. Larger
block sizes result in larger matrices and longer computa-
tion time, which is consistent with our earlier observation
(Figure 2(a)). However, in contrast to Figure 2(a), where
NVBLAS performs better when the matrix size grows and
finally outperforms other two implementations, here we see
that NVBLAS performs worse as the block size grows and
the gap between the other two variants also increases. This
is because under the highly concurrent environment of Spark,
NVBLAS cannot handle multiple task requests, and causes
a delay to execute subsequent tasks. With smaller sizes of
matrices, although the number of tasks increases, the com-
putation finishes fast enough to overlap the shuffle of other
tasks. However, when the matrix size grows, even if there are
fewer tasks, the computation takes longer and tasks are prone
to a higher chance and duration of waiting. On the contrary,
the Spark-aware design of GPU Impl yields a consistent best
performance among the processing variants in any block size.

E. Scalability of ARION

In our final experiment, we test the scalability of ARION. In
this experiment, we scale ARION in a 128-node “Rhea CPU”
cluster (4096 cores in total). Table II shows the specifications
for both setups. Here, we configure Spark executor with
120 GB memory and 64 cores for the CPU nodes, and repeat
the experiments for dense matrices using default Spark MLlib.
We record the end-to-end execution time of both default Spark
MLlib and ARION. ARION is able to apply CPU hardware
acceleration for dense matrix multiplications in this set-up.
We are able to scale our input matrix up to 96K × 96K
with a raw file size of 177 GB for ARION. However, default
Spark MLlib fails to finish the 96K × 96K matrix case due
to OutOfMemory error after 7.2 hours running as plotted
in the figure. This is because the computation with Scala
implementation is executed inside JVM and thus requires on-
heap memory space, while hardware acceleration uses out-
of-heap memory (sometimes GPU memory) for calculation.
Figure 12 shows the results. Note the log-scaled y axis. We see
that ARION is also able to improve the performance by 13.35%
(up to 40.9%) in a large scale system. This improvement
is however limited by the CPU only infrastructure of the
“Rhea CPU” environment. We expect ARION to have more
performance improvement on emerging systems that have
multiple hardware accelerators.

We also compared ARION on a 6-node “Rhea GPU” with

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

MLlib Arion OpenBLAS

Fig. 7: CPU utilization of 16K × 16K dense
matrix using Spark MLlib, ARION, and Open-
BLAS.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80A
g

g
re

g
a

te
d

 G
P

U
 u

ti
liz

a
ti
o

n
 (

%
) GPU Impl Arion NVBLAS

Fig. 8: Aggregated GPU utilization of 16K ×
16K dense matrix using ARION, GPU Impl, and
NVBLAS.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400

A
g

g
re

g
a

te
d

 u
ti
liz

a
ti
o

n
 (

%
)

GPU util CPU util

Fig. 9: Aggregated utilization of 64K × 64K
sparse matrix using ARION.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

256 512 1K 2K 4K

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

in
) Output

Multipy
Preprocessing

Fig. 10: Breakdown of end-to-end execution
time with different block sizes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

256 512 1K 2K 4K

A
v
e

ra
g

e
 c

o
m

p
u

te
 t

im
e

 (
m

in
)

GPU Impl
OpenBLAS

NVBLAS

Fig. 11: Average computation time of Block-
Matrix multiplication using different block sizes
with GPU Impl, OpenBLAS, and NVBLAS.

 1

 10

 100

 1000

16k 32k 64k 96k

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

in
) MLlib

Arion

Fig. 12: Performance of default Spark MLlib
and ARION in a 128-node scale. Y-axis is log-
scaled.

default Spark on a scale-out 16-node CPU only cluster. Our
results show that ARION on a smaller setup performs similar
to default Spark MLlib on a larger setup (the detailed results
are omitted due to page limit). Moreover, ARION improves
performance by 17.45% for 16K × 16K matrix, and 39.13%
for 32K×32K matrix compared with default Spark MLlib on
a larger setup. Since ARION effectively utilizes both CPUs and
hardware accelerators in the cluster, we can achieve the same
or better performance with a smaller cluster of fat machines
than a larger cluster of less-endowed machines.

V. RELATED WORK

Advancing the computational capability of fundamental
mathematical operations such as matrix operations is critical
to brining large scale data analytics to bear upon knowledge
discovery across domains [1], [31]. For instance, scalable
matrix inversion has been studied both with Hadoop [7] and
Spark [8]. Elgamal et al. [9] show that optimizing matrix
operations can improve both scalability and performance of
ML algorithms. Gittens et. al [32] investigated both perfor-
mance and scalability of the randomized CX low-rank matrix
factorization on Spark. Zadeh et. al [23] optimize Singular
Value Decomposition (SVD)— which can be considered as a
form of matrix factorization—in Spark by distributing matrix
operations to the cluster while keeping vector computations
local to the driver node. In addition, scaling up individual
machines for enhancing the throughput of matrix computations
is also promising. For instance, numerous works have focused
on optimizing GEMM operations [13], [14], [15] and, in turn,
ML algorithms [33], [34], [35], through exploiting GPUs.

The Spark community has also initiated discussions re-
garding utilizing hardware accelerations from within the
Spark [36], [37] platform, so as to realize the benefits from
hardware acceleration for increased throughput of matrix com-
putations on individual nodes [38], [39], [10]. To this end, a

preliminary study about using hardware optimized libraries
for both CPU and GPU on a single machine for matrix
multiplication in Scala has shown promising results [40].
Similarly, HeteroSpark [41] showed that RMI can be used to
reduce communication overheads between CPU and GPU in
Spark. SparkNet [42] provides a Spark interface to use Caffe
framework [35] for training large-scale deep neural networks,
where the instance of Caffe framework on each node can use
GPUs, and Spark maintains data on system memory, managed
by CPUs. However, many challenges remain when employing
combining the above scale-out and scale-up techniques. Some
approaches are not applicable to general data analysis [42], and
further, utilizing hardware optimized libraries often requires
an in-depth understanding of the hardware characteristics
for each computation in data analysis pipeline, which tends
to be cumbersome and impractical. Consequently, efficient
utilization of hardware acceleration in a cluster is not available
in popular distributed matrix computation packages such as
ScaLaPACK [43], PLAPACK [44], CombBLAS [45], and
Elemental [5]. While the focus of the above approaches is
different, they essentially offer C/C++ programming libraries
atop MPI library. Our approach is complementary to these
works and aims to reconcile the Spark philosophy of providing
a general-purpose, fault-tolerant data analysis platform with
benefits of using hardware optimized libraries for extracting
higher performance, specifically for crucial matrix multiplica-
tion operations.

VI. CONCLUSION

We have presented ARION, a dynamic hardware accelera-
tion framework atop Spark. ARION supports scale-up acceler-
ations for linear algebraic operations in scale-out data process-
ing platforms. The approach adopts both drop-in solution of
BLAS libraries and customized GPU acceleration in Spark for
the best-effort processing of both dense and sparse matrices.

Moreover, we design a scheduler that maps tasks to different
resources at runtime based on both matrix characteristics and
system utilization. Our evaluation of ARION shows a 2× end-
to-end speed-up compared to extant solutions in Spark. In
addition, ARION is able to exploit hardware acceleration to
enable the use of a smaller-sized cluster to achieve perfor-
mance comparable to that of a larger Spark cluster. Although
this work focuses on the usecases of matrix operations to
provide a proof-of-concept, the result from this work can have
a broad impact on various algorithms in machine learning and
graph analysis, since the most of machine learning and graph
algorithms are implemented in a layered approach on top of
matrix operations.

REFERENCES

[1] A. Belianinov, R. Vasudevan, E. Strelcov, C. Steed, S. M. Yang,
A. Tselev, S. Jesse, M. Biegalski, G. Shipman, C. Symons et al., “Big
data and deep data in scanning and electron microscopies: deriving
functionality from multidimensional data sets,” Advanced Structural and
Chemical Imaging, vol. 1, no. 1, pp. 1–25, 2015.

[2] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular value decom-
position and principal component analysis,” in A practical approach to
microarray data analysis. Springer, 2003, pp. 91–109.

[3] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of pca for
traffic anomaly detection,” in ACM SIGMETRICS, 2007.

[4] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” Ad-
vances in neural information processing systems, 2007.

[5] J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM TOMS, vol. 39, no. 2, p. 13, 2013.

[6] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale
graph mining system implementation and observations,” in Proc. of
ICDM’09, pp. 229–238.

[7] J. Xiang, H. Meng, and A. Aboulnaga, “Scalable matrix inversion using
mapreduce,” in Proc. of the 23rd ACM HPDC, 2014, pp. 177–190.

[8] J. Liu, Y. Liang, and N. Ansari, “Spark-based large-scale matrix inver-
sion for big data processing,” IEEE Access, vol. 4, p. 2166, 2016.

[9] T. Elgamal, M. Yabandeh, A. Aboulnaga, W. Mustafa, and M. Hefeeda,
“spca: Scalable principal component analysis for big data on distributed
platforms,” in Proc. of ACM SIGMOD ICMD, 2015, pp. 79–91.

[10] J. Canny and H. Zhao, “Big data analytics with small footprint: Squaring
the cloud,” in Proc. of the 19th ACM SIGKDD, 2013, pp. 95–103.

[11] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in Proc. of the 30th ICML, 2013,
pp. 1337–1345.

[12] J. Hofmann, J. Treibig, G. Hager, and G. Wellein, “Comparing the
performance of different x86 simd instruction sets for a medical imaging
application on modern multi-and manycore chips,” in Proc. of WPMVP.
ACM, 2014, pp. 57–64.

[13] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning gemm kernels for
the fermi gpu,” TPDS, vol. 23, no. 11, pp. 2045–2057, 2012.

[14] R. Nath, S. Tomov, and J. Dongarra, “An improved magma gemm for
fermi graphics processing units,” HPCA, vol. 24, no. 4, p. 511, 2010.

[15] N. Nakasato, “A fast gemm implementation on the cypress gpu,” ACM
SIGMETRICS, vol. 38, no. 4, pp. 50–55, 2011.

[16] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: Machine learning in
apache spark,” Journal of Machine Learning Research, vol. 17, no. 34,
pp. 1–7, 2016.

[17] Netlib, “Blas (basic linear algebra subprograms),” 2017, http://www.
netlib.org/blas/.

[18] W. S. Zhang Xianyi, Wang Qian, “Openblas : An optimized blas library,”
2011, http://www.openblas.net.

[19] NVIDIA, “Nvidia cuda blas library,” 2007, http://docs.nvidia.com/cuda/
cublas/#axzz4See8FUGO.

[20] I. S. Duff, M. Marrone, G. Radicati, and C. Vittoli, “A set of level
3 basic linear algebra subprograms for sparse matrices,” ACM Trans.
Math. Softw, vol. 23, pp. 379–401, 1995.

[21] L. Xu, S.-H. Lim, A. R. Butt, S. R. Sukumar, and R. Kannan, “Fatman
vs. littleboy: scaling up linear algebraic operations in scale-out data
platforms,” in Proceedings of the 1st Joint International Workshop on
Parallel Data Storage & Data Intensive Scalable Computing Systems.
IEEE Press, 2016, pp. 25–30.

[22] R. B. Zadeh and A. Goel, “Dimension independent similarity compu-
tation,” The Journal of Machine Learning Research, vol. 14, no. 1, pp.
1605–1626, 2013.

[23] R. B. Zadeh, X. Meng, A. Staple, B. Yavuz, L. Pu, S. Venkataraman,
E. Sparks, A. Ulanov, and M. Zaharia, “Matrix computations and
optimization in apache spark,” in Proc. of the 22nd ACM SIGKDD.
ACM, 2016.

[24] NVIDIA, “Nvidia blas library,” 2007, http://docs.nvidia.com/cuda/
nvblas/#abstract.

[25] netlib java, “High performance linear algebra,” 2013, https://github.com/
fommil/netlib-java.

[26] ORNL, “Rhea - oak ridge leadership computing facility,” 2017, https:
//www.olcf.ornl.gov/computing-resources/rhea/.

[27] D. Kanter, “Intel’s haswell cpu microarchitecture,” Real World Tech-
nologies, November, 2012.

[28] Z. Wang, Y. Bao, Y. Gu, F. Leng, G. Yu, C. Deng, and L. Guo, “A
bsp-based parallel iterative processing system with multiple partition
strategies for big graphs,” in Proc. of IEEE Big Data, 2013, pp. 173–
180.

[29] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proc. of ACM SIGMOD ICMD, 2010, pp. 135–146.

[30] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama: An
efficient matrix computation with the mapreduce framework,” in Proc.
of the 2nd IEEE CloudCom, 2010, pp. 721–726.

[31] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yek-
sigian, J. Kottalam, A. Ahuja, J. Hammerbacher, M. Linderman et al.,
“Rethinking data-intensive science using scalable analytics systems,” in
Proc. of ACM SIGMOD ICMD, 2015, pp. 631–646.

[32] A. Gittens, J. Kottalam, J. Yang, M. F. Ringenburg, J. Chhugani,
E. Racah, M. Singh, Y. Yao, C. Fischer, O. Ruebel, B. Bowen, N. Lewis,
M. W. Mahoney, V. Krishnamurthy, and Prabhat, “A multi-platform
evaluation of the randomized cx low-rank matrix factorization in spark,”
in Proc. of the 5th ParLearning, 2016.

[33] S. R. Agrawal, C. M. Dee, and A. R. Lebeck, “Exploiting accelerators
for efficient high dimensional similarity search,” in Proc. of the 21st
ACM SIGPLAN, 2016, p. 3.

[34] N. Lopes and B. Ribeiro, “Gpumlib: An efficient open-source gpu
machine learning library,” IJCISIM, vol. 3, pp. 355–362, 2011.

[35] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proc. of the 22nd ACM MM, 2014, pp. 675–
678.

[36] Apache Spark, “Support off-loading computations to a gpu,” https://
issues.apache.org/jira/browse/SPARK-3785, 2014.

[37] ——, “Explore gpu-accelerated linear algebra libraries,” https://issues.
apache.org/jira/browse/SPARK-5705, 2015.

[38] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the bar
for using gpus in software packet processing,” in Proc. of the 12th NSDI
15, 2015, pp. 409–423.

[39] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“Virtualizing deep neural networks for memory-efficient neural network
design,” arXiv preprint arXiv:1602.08124, 2016.

[40] A. Ulanov, “Nvblas:gpu usage with nvblas,” 2013, https://github.com/
fommil/netlib-java/wiki/NVBLAS.

[41] P. Li, Y. Luo, N. Zhang, and Y. Cao, “Heterospark: A heterogeneous
cpu/gpu spark platform for machine learning algorithms,” in Proc. of
IEEE NAS, 2015, pp. 347–348.

[42] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “Sparknet: Training
deep networks in spark,” arXiv preprint arXiv:1511.06051, 2015.

[43] L. S. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley et al., “Scalapack: a
portable linear algebra library for distributed memory computers-design
issues and performance,” in Proc. of ACM/IEEE SC, 1996.

[44] P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt,
R. van de Geijn, and Y.-J. J. Wu, “Plapack: Parallel linear algebra
package design overview,” in Proc. of SC, 1997, pp. 1–16.

[45] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” HPCA, vol. 25, no. 4, pp. 496–509, 2011.

http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.openblas.net
http://docs.nvidia.com/cuda/cublas/#axzz4See8FUGO
http://docs.nvidia.com/cuda/cublas/#axzz4See8FUGO
http://docs.nvidia.com/cuda/nvblas/#abstract
http://docs.nvidia.com/cuda/nvblas/#abstract
https://github.com/fommil/netlib-java
https://github.com/fommil/netlib-java
https://www.olcf.ornl.gov/computing-resources/rhea/
https://www.olcf.ornl.gov/computing-resources/rhea/
https://issues.apache.org/jira/browse/SPARK-3785
https://issues.apache.org/jira/browse/SPARK-3785
https://issues.apache.org/jira/browse/SPARK-5705
https://issues.apache.org/jira/browse/SPARK-5705
https://github.com/fommil/netlib-java/wiki/NVBLAS
https://github.com/fommil/netlib-java/wiki/NVBLAS

