
VENU: Orchestrating SSDs in Hadoop Storage

Krish K.R., M. Safdar Iqbal, Ali R. Butt

Department of Computer Science, Virginia Tech

Email: {kris, safdar, butta}@cs.vt.edu

Abstract—A major obstacle in sustaining high performance
and scalability in the Hadoop data processing framework is
managing the growing data and the need for very high I/O rates.
Solid State Disks (SSDs) are promising and are being employed
alongside the slower hard disk drives (HDDs) in emerging storage
architectures. However, we observed that SSDs are not always
a cost-effective option for all Hadoop workloads, and there is
a critical need to identify usecases where SSDs can help. To
this end, we present VENU, a dynamic data management system
for Hadoop. VENU aims to improve overall I/O throughput via
effective use of SSDs as a cache for the slower HDDs, not for all
data, but for only the workloads that are expected to benefit from
SSDs. In addition, we design placement and retrieval schemes to
efficiently use the SSD cache. We evaluate our implementation of
VENU on a medium-sized cluster and show that it achieves 11%
improvement in application completion times when 10% of the
available storage is provided by SSDs.

I. INTRODUCTION

MapReduce [7] and Hadoop [2] have become the de facto

framework for large-scale data processing and analytics. This

is mainly due to the ability of the framework to efficiently

handle both large batch processing workloads, such as building

search indexes, and short interactive jobs, such as ad hoc data

mining queries. The key component enabling the big data

applications is the underlying Hadoop Distributed File Sys-

tem (HDFS), which offers desirable scale-out ability without

performance degradation and while ensuring data availability

and fault tolerance.

A challenge faced by researchers and IT practitioners in

sustaining Hadoop clusters is evolving the storage and I/O

infrastructure to deal with the exponentially growing data

volumes, and to do so in an economically viable fashion. This

is non-trivial, especially as the network bandwidth provided

by the cluster networking infrastructure is growing an order

of magnitude faster than the I/O bandwidths of hard disk drives

(HDDs) [22]. In a typical large-scale Hadoop deployment, the

intra-rack and inter-rack network has a bandwidth 200× and

400× that of the disk bandwidth [22], respectively.

Solid-state drives (SSDs) can help mitigate the above per-

formance gap. Recent research [14], [13], [9], [19] has shown

that SSDs are a viable alternative to HDDs for Hadoop I/O.

Moreover, the hot data is too large to fit in RAM and the cold

data is too large to easily fit entirely in flash memory [9].

Thus, adding a flash tier can improve overall performance.

This approach is promising, but introduces the challenge of

effectively managing the distribution of data among different

tiers and selecting a tier for servicing read/write requests with

the goal of improving application efficiency. In this paper,

we address this challenge and explore the design space of

incorporating tiered storage in Hadoop.

A promising trend observed in recent analysis is the sig-

nificant heterogeneity in HDFS I/O access patterns. Green-

HDFS [15] observed a news server like access pattern in HDFS

audit logs from Yahoo!, where recently created data service

a majority of the data accesses compared to old data, and

more than 60% of used storage remained untouched for at

least one month (during the period of the analysis). Scarlet [1]

analyzed job history logs from Bing production clusters and

observed that 12% of the most popular files are accessed over

ten times more than the bottom third of the data. Similarly, the

characteristics of the intermediate I/O, such as the size of the

data and impact of intermediate I/O latency on execution time,

is not constant across all Hadoop applications and may also

vary across different executions of the same application [16].

In this paper, we introduce VENU, a system that reduces

the overall I/O latency and execution time of applications

in Hadoop by introducing application-aware storage man-

agement in HDFS. VENU employs a tiered storage system

with two tiers designed to better match the heterogeneous

Hadoop I/O access patterns. The tiers include a fast SSD tier

that aggregates the SSDs provisioned in each node, and a

secondary HDD tier comprising of HDDs. We use the SSD

tier as a cache in front of the HDD tier. To this end, the

key contribution of VENU is observing the HDFS I/O access

patterns and load popular files into the SSD tier using our

popularity predictor.

A concern in employing SSDs as a cache is that such

devices have limited erase cycles, and may affect the MTTF.

We stress that incorporating SSDs to form a caching tier is not

unique to our approach, and other state-of-the-art works [20],

[24] have also purported the same. Moreover, numerous SSD

optimization approaches are available [23], [6] to remedy this,

which can be leveraged in VENU.

Specifically, this paper makes the following contributions:

• We design a popularity predictor that predicts popularity

of HDFS files based on access pattern of the file.

• We realize enhancements for HDFS to support the SSD

caching tier and support data prefetching between the

proposed tiers.

• We design and implement VENU to track the usage char-

acteristics and dynamically propose appropriate storage

tiers for HDFS data.

• We validate the VENU design and techniques therein

using experiments on a real deployment.

Evaluation of VENU using a medium-sized Hadoop cluster,

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE 207

shows an 11% speed-up in application completion times when

the SSD tier accounted for only 10% of the total available

storage.

II. BACKGROUND

Hadoop offers an open-source implementation of the

MapReduce framework that provides machine-independent

programming at scale. A Hadoop cluster node consists of both

compute processors and directly-attached storage. A small

number of nodes (typically 12− 24 [3]) are grouped together

and connected with a network switch to form a rack. One

or more racks form the Hadoop cluster. Intra-rack network

bandwidth in large deployments is typically 20 GB and the

inter-rack is 40 GB [22].

The compute component is managed by the JobTracker

component that accepts jobs from the users and also manages

the compute nodes that each run a TaskTracker. Each job

consists of several map and reduce functions specified by

the programmer. Each TaskTracker has one or more map and

reduce slots, and applications will have tens of hundreds of

map and reduce tasks running on these slots.

The data management for a Hadoop cluster is provided by

the Hadoop Distributed File System (HDFS). HDFS manages

the persistent data associated with the Hadoop cluster such as

the input and the output of applications. The main functions

of HDFS are to ensure that tasks are provided with the needed

data, and to protect against data loss due to failures. HDFS

uses a NameNode component to manage worker components

called DataNodes running on each cluster node. HDFS divides

all stored files into fixed-size blocks (chunks) and distributes

them across DataNodes in the cluster. Moreover, the system

typically maintains three replicas of each data block, two

placed within the same rack and one on a different rack. The

replica placement policy distributes each data block across

multiple racks to ensure fault tolerance against node and rack

failure. For data retrieval, a list of DataNodes ordered with

respect to network proximity to the application instance is

obtained from the NameNode and the nearest replicas are used.

III. DESIGN

In this section, we present the design of VENU and how we

address the challenges faced therein.

A. VENU Overview

The motivation for the design of VENU is that the access rate

and the number of accesses vary for each file in HDFS input

data, leading to popularity skewness over a subset of files. The

goal of VENU is to improve the overall read throughput and

storage efficiency of Hadoop clusters. To this end, we foresee

Hadoop clusters comprising nodes with attached SSDs. VENU

divides the different storage types into tiers, i.e., HDD tier

and SSD tier, and enables effective utilization of the SSD

tier by using it as a cache. Figure 1 illustrates the main

components of VENU and their interactions. The Popularity

Predictor dynamically keeps track of the access counts of input

data files in HDFS. Based on this information, the component

periodically makes a prediction for the popularity of each file

in the upcoming interval and instructs HDFS to move the

popular files into the SSD tier if needed.

We make the following choices in VENU design. First, we

consider prefetching at file granularity because Hadoop jobs

access entire files [1], [18]. Thus, prefetching at the block level

is detrimental to the read performance of files as the blocks

left behind in the slow tier will become the bottleneck. Second,

we assume that the target resources are under load with large

working sets — as is the case in production Hadoop clusters

— thus any file system level caching has negligible effect,

and the majority of reads are serviced from the storage layer.

Third, all the nodes in the cluster contain an SSD. Finally,

VENU is designed for the standard Hadoop deployment where

all nodes contribute storage and compute resources.

Fig. 1. VENU architecture overview.
B. Enabling Technology: hatS

hatS [16] is an enhancement to HDFS that provides

heterogeneity-aware tiered storage in Hadoop. hatS logically

groups all storage devices of the same type across the nodes

into an associated “tier.” A deployment has as many tiers as

the different type of storage devices used, and a node with

multiple types of devices is part of multiple tiers. For instance,

if a deployment consists of nodes with an SSD and an HDD,

all the SSDs across the deployment will become part of a

SSD tier, and similarly all the HDDs will form the HDD tier.

By managing the tiers individually, hatS is able to capture

the heterogeneity in hardware and exploit it to achieve high

I/O performance. While HDFS considers only network-aware

data placement and retrieval policies, hatS proposes additional

policies to replicate data across tiers in a heterogeneity-aware

fashion. This enhances the utilization of the high-performance

storage devices by efficiently forwarding a greater number

of I/O requests to the faster tier, thus improving overall I/O

performance.

We leverage hatS to provide an enhanced HDFS component

for the system. We employ the default Hadoop data placement

policy but ensure that by default the data is placed only in the

HDD tier. Also, in order to avoid network contention during

accesses and tolerance against node failure, we ensure that

whenever a block is moved to the SSD tier, the block is not

replicated at the node that already stores the block. The data

retrieval policy that we employ is to always access the data

from the fastest available tier. Moreover, we also provide APIs

to be used by the Popularity Predictor to enable data movement

between tiers.

208

C. Popularity Predictor

The Popularity Predictor uses the HDFS audit log infor-

mation to determine the popularity of a file in HDFS in

order to proactively fetch the popular data from the HDD

tier into the persistent region of the SSD tier. This is an

effective approach for identifying hot data as also shown in our

previous work [18]. The popularity predictor uses Algorithm 1

to analyze the access patterns of each file after periodic time

intervals and predict the file’s expected popularity value for the

next interval. The length of each interval is called Reference

Time (RT). The choice of RT is critical; a very large RT

can result in a stale SSD cache tier, whereas a small RT can

increase network traffic. Previous works [1], [18] suggests that

an RT between 12 and 24 hours is sufficient.

Input : HDFS audit logs

Output: HDFS files with their new popularity based on

the access count.

F is the set of files in the file system;

foreach access i+ 1 to the file f ∈ F in RT do

if i==0 then

Pi+1(f)← AV G(P);
end

else

Pi+1(f)← Pi(f) + 1;

end

IP = IP + Pi+1(f)− Pi(f);
end

foreach deletion of the file f in F do

IP = IP +AV G(P)− P (f);
end

MIP ← IP
size(F) ;

foreach file f in F do

Pi(f)← Pi(f)−MIP ;

where i is the most recent access to the file f .

Ppredicted(f)← Pi(f) + (P (f)− Pi(f));
P (f)← Pi(f);

end

Algorithm 1: Algorithm used by the Popularity Predictor.

When a file is created, its popularity P1(f) is initialized to

average file popularity observed in the system, AV G(P). For

each access to the file, the popularity of the file is increased

by one. Similarly, whenever a file is deleted, the popularity of

other files is modified based on the popularity of the deleted

file. When a popular file is deleted, the popularity of other

files in the system increases. Conversely, when an unpopular

file is deleted, the popularity of other files decreases. After the

accesses of all files in the RT are processed, the popularity

value Pi(f) of a file f for the most recent access i is decreased

by the mean increase in the popularity of the file f during

that RT . This is done to makes sure that the popularity of

the file P (f) does not grow arbitrarily. The mean increase in

popularity is a fraction of increase in popularity, IP , during

RT over F , the set of all files in the system. Finally, we

compute the popularity of the file for the next RT by linear

extrapolation. The files in HDFS are sorted in the order of their

predicted popularity, and popular files are prefetched into the

SSD cache tier, until it is full.

D. Discussion

VENU can co-exist with the master component of each

cluster or in a separate node. The computational overhead

of VENU is negligible. The Popularity Predictor predicts the

popularity of the files by linearly processing the file system

audit logs. However, the prediction is done every RT, i.e., 12

to 24 hours, amortizing the associated overhead.

Hadoop performance is sensitive to network bandwidth,

particularly during the shuffle phase that involves moving large

amounts of data across the network. The Performance Predic-

tor rearranges the data during every RT. This entails additional

network overhead. To balance the bandwidth consumption,

HDFS employs multi-location replication [1], where the data

to be moved across tiers is read from multiple sources thereby

spreading the traffic across nodes.

Data movement across tiers during the network-intensive

shuffle phase may adversely affect the performance of the

jobs in progress. To remedy this, the Performance Predictor’s

data rearrangement is made a low priority background process

that yields to the shuffle phase to avoid negative performance

impact.

IV. EVALUATION

In this section, we present the evaluation of VENU using

both a real deployment on a medium-scale cluster and simu-

lations. We first study the characteristics of 10 representative

Hadoop applications on SSD and HDD storage configurations.

Next, we evaluate the impact of our HDFS enhancements,

performance prediction and adaptive placement. Finally, we

compare the overall performance of VENU against the extant

application-oblivious storage placement strategy.

A. Experimental Setup

Our testbed consists of a master node and 8 worker nodes.

Each node has two 2.8 GHz quad-core Intel Xeon proces-

sors, 8 GB of RAM, and one SATA HDD. The HDDs are

500 GB 7200 RPM Seagate Barracuda ES.2 drives. In addition

to HDDs, each worker node is provisioned with an OCZ

RevoDrive series PCIe 128 GB SSD. Table I shows the

performance specifications of these storage devices. In our

setup, all DataNodes contribute to both the SSD tier and the

HDD tier. The nodes are connected using a dedicated 10 Gbps

InfiniBand switch. Each worker node is configured with six

map slots and two reduce slots so as to use all of the available

cores on the node. The benchmark applications are mostly map

intensive, so there are more map slots than reduce slots. The

master node runs both the Hadoop JobTracker and NameNode

for all the experiments, and all the worker nodes contribute to

both TaskTracker and DataNode. The replication factor is fixed

at the default of three, and the block size used is 64 MB.

209

TABLE I
SPECIFICATIONS OF DIFFERENT STORAGE DEVICES USED IN OUR TESTS.

Device
Type

Write BW
MB/s

Read BW
MB/s

IOPS # of
devices

PCIe SSD 245 533 70k 3
HDD 46 61 3.5k 27

TABLE II
REPRESENTATIVE HADOOP APPLICATIONS USED IN OUR STUDY.

Application Map Reduce Number
Input Output Output Mapper Reducer

NutchIndex 1.5 GB 2.8 GB 1 GB 1 81
Bayes 128 MB 256 KB 4.5 GB 16 1
Kmeans 1 GB 64 KB 1 GB 20 1
Hive-bench 5 GB 3.2 GB 256 MB 8 16
PageRank 128 MB 1 GB 12.5 MB 16 8
Sort 3 GB 11.5 GB 3 GB 64 8
TeraGen – – 15 GB 16 0
TeraSort 15 GB 15 GB 15 GB 249 8
WordCount 12 GB 30 GB 12 KB 102 8

B. Benchmark Applications

We have used 10 applications from the well-known Hadoop

HiBench Benchmark Suite [12] in our study. These applica-

tions are representative of batch processing jobs, iterative jobs

and interactive querying jobs. Table II lists the applications,

and for each summarizes parameters such as the input and

output data size, and the number of mappers and reducers.

C. Observing the Effect of Storage on Performance

In our first set of experiments, we analyze the performance

of our benchmark applications under four different storage

configurations as shown in Table III. The input parameters of

the applications are specified in Table II. The results discussed

below are average of five executions; the standard deviation

across the executions was observed to be negligible.

Figure 2 shows the performance of our test applications un-

der storage configurations Config-1 and Config-2. We observe

that under Config-2, the jobs perform 12% faster on average

over Config-1. On closer examination, we find that NutchIndex,

Bayes, Sort and TeraSort experience an average performance

improvement of 19.7%, while the other applications only see

an average performance improvement of 2.9%. This validates

that all applications do not benefit uniformly from the exclu-

sive use of the SSD tier. Moreover, by monitoring the disk

accesses we find that NutchIndex, Bayes, Sort and TeraSort

contribute 60% of the total disk usage under Config-2, while

all the other applications combined only contribute 40%.

Therefore, if we were to place the input and intermediate data

for only these four applications in the SSD tier and use the

HDD tier for all other applications, we will be able to achieve

an average performance improvement of 11% over Config-1.

D. HDFS Enhancement

In our next experiment, we evaluate how our HDFS en-

hancements from hatS impact VENU. To validate our place-

ment and retrieval policy, we first ran TeraGen to generate

10 GB (160 blocks) of data distributed across different nodes.

We parsed the HDFS logs to determine the placement policy

TABLE III
DIFFERENT STORAGE CONFIGURATIONS USED IN OUR STATIC PROFILING.

Configuration HDFS data Intermediate data

Config-1 HDD HDD
Config-2 SSD SSD

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

NutchIndex
Bayes

Kmeans
Hive-agg.

Hive-join
Pagerank

Sort Teragen
Terasort

Wrodcount

T
im

e
 (

s
)

Applications

Config-1
Config-2

Fig. 2. Application completion times under Config-1 and Config-2.

and found that the distribution of blocks was similar to that

of the default HDFS policy. However, more than half of the

blocks under the default policy were spilled into the SSD tier,

whereas under the VENU placement policy all blocks were

located only in the HDD tier. We prefetched the data into the

SSD tier and observed that the additional cost of prefetching

was negligible (similar to time taken by the creation of the

file). We do not quantify the cost of prefetching into a faster

tier as such techniques have been evaluated extensively in prior

work [16]. To validate the retrieval policy, we ran Grep over

the data set. Figure 4 shows the tier locality of the accessed

data. In the default policy, more than 68% of the data accessed

is local data, while only 39% of the data accesses are for

the SSD tier. In the proposed policy, all the data is accessed

from the SSD tier, while 24% of the data is local to the node

accessing it. We further analyzed the effect of these policies

on performance using the DFSIOE benchmark. Figure 3 shows

the overall I/O throughput for each of the map tasks, as well

as the average I/O rate across all map tasks. We observe that

both the default and the VENU policies have similar write

performance, while VENU policies show 100% improvement

in the read throughput and 47% improvement in the average

I/O rate for reads.

E. Performance Analysis of VENU

In the next set of experiments, we evaluate the overall

performance of VENU through whole-system simulation.

1) Trace Driven Simulation: For our simulation, we re-

played Facebook-like traces synthetically generated by sam-

pling historical MapReduce cluster traces. These are repre-

sentative of traces generated from a Facebook cluster from

October 2010 for a period of one and half months and are

provided by Chen et. al. [5]. The available workload is one

day in duration and contains 24 historical trace samples, each

of 1 hour long.

The traces contain the record of accesses to approximately

18,000 files (along with filenames) constituting a total input

size of 1548 TB. The size of the shuffle data generated is

210

 0

 10

 20

 30

 40

 50

 60

 70

 80

Default VENU Default VENU

M
B

/s

DFSIO-Write DFSIO-Read

Average I/O rate
Throughput

Fig. 3. Overall I/O throughput and average I/O rate per map task in
TestDFSIOE benchmarks under default policy and VENU.

 0

 20

 40

 60

 80

 100

 120

 140

 160

SSDTier HDDTier SSDTier HDDTier

#
 o

f
b
lo

c
k
s

Default Policy VENU Policy

Local
Remote

Fig. 4. The breakdown of reads based on tier and network proximity observed
under default policy and VENU.

375 TB and the output data generated is 755 TB. 55% of

files are accessed more than once while the other 45% are

accessed only once. The highest number of accesses to any

file is 721. These files are accessed by 25,500 jobs, with 1075

jobs accessing the files every hour.

In our simulation we set RT = 1 hour, i.e., the perfor-

mance predictor ran once every hour, generating a new set

of popularity predictions and moving the most popular files

to the SSD tier. This created a new HDFS layout on every

interval. Our simulation incorporates various factors including

the impact of replication, contentions while accessing a data

file, and advantages of distribution of data along with those

observed in Section IV-C. Figure 5 shows the completion time

across the four fixed storage configurations from Table III and

VENU. We see that although VENU is 5% slower than Config-2,

VENU uses 5.5× less storage than that under Config-2.

Figure 5 shows the completion time across the four fixed

storage configurations from Table III and VENU. We observe

that Config-2 is the fastest, 14% and 3% better compared to

Config-4 and Config-3, respectively. Whereas VENU is 10%

and 6% faster than Config-1 and Config-3, respectively. We

see that although VENU is 5% slower than Config-2, VENU

uses 5.5× less storage than that under Config-2.

2) Implementation Test: In order to validate the results from

our simulation, we perform tests on a real mid-sized cluster

described in Section IV-A. Our workload is generated from

traces described in Section IV-E1 and a slice of this workload

(lasting for approximately 3 hours) is executed. We replace the

jobs in the trace with the benchmark applications (Table II).

We note that our implementation results do not include the

Performance Predictor component, as the length workload is

too small to observe any significant advantages. For the same

 90

 100

 110

 120

 130

 140

 150

Conf-1 Conf-2 VENU
 0

 500

 1000

 1500

 2000

 2500

 3000

T
im

e
 (

d
a
y
s
)

S
to

ra
g
e
 C

a
p
a
c
it
y
(T

B
)

Exe. Time
Storage Provisioned

Fig. 5. Effectivenes of the Performance Predictor with increasing SSD
capacity.

 2

 2.5

 3

 3.5

 4

Config1 Config2 VENU

T
im

e
 (

h
rs

)

Execution Time

Fig. 6. Observed performance benefit on a real testbed.

reason, we also limit our SSD capacity to be 10% of the

available storage. VENU existed in an independent node (so as

to avoid influence of Predictor’s computations on the running

job) and communicated with the master node to modify the

storage configurations. Figure 6 shows the observed results.

We observe that VENU is 11% faster than Config-1 and 6%

slower than Config-2, while utilizing 63% less SSD storage

capacity than Config-2.

V. RELATED WORK

Several recent projects [20], [24], [8], [21] focus on tiered

storage for general purpose enterprise computing, mainly due

to ease of management and business value. These systems

typically employ SSD based caching atop disks that forms

the bulk of storage substrate. This is done in order to get

higher I/O rates and cost per performance [13] from SSDs

while achieving optimal cost per capacity [13] from HDDs.

While these works are complimentary to ours, in VENU we aim

to provide similar data management solutions for the Hadoop

ecosystem based on the unique characteristics therein.

The impact of SSDs on the performance of HDFS has

been studied in many contexts in recent works. Borthakur

et. al. [4] studied the impact of using SSDs in HDFS for

supporting Apache HBase [10]. Harter et al. [9] extend this

work to simulate the use of SSDs with several caching, logging

and structural enhancements and observed 3.5× reduction in

latency. Few recent works [14], [13], [9], [19] have also began

to focus on the use of SSDs as an effective storage alternative

to store intermediate Hadoop data for improving performance.

Our own hatS [16], φSched [17], and HDFS Issue #

2832 [11] both call for enabling support for heterogeneous

storage devices in HDFS. They propose a re-design of HDFS

into a multi-tiered storage system that seamlessly integrates

211

heterogeneous storage technologies such as HDDs and SSDs

into HDFS and propose data placement and retrieval policies in

order to exploit different storage devices. While these enhance-

ments have introduced ways for HDDs and SSDs to co-exist

in HDFS, they do not provide a viable solution for managing

data movement between HDDs and SSDs. VENU is unique in

its ability to understand and exploit the characteristics of the

Hadoop applications and propose appropriate storage policy

for both intermediate data and HDFS data across tiers based

on their I/O characteristics and usage patterns. AptStore [18]

and Scarlett [1] have proposed usage pattern-based replication

schemes for Hadoop, but the suggested heuristics have not

been shown to apply to SSD based systems.

VI. CONCLUSIONS

We have presented the design and implementation of VENU,

a dynamic data management tool for Hadoop. VENU aims

to improve overall I/O throughput via effective use of SSDs

as a cache, not for all data, but for only the workloads

that are expected to benefit from SSDs. We observe that

managing all Hadoop data in a uniform manner results in

increased storage overhead or reduced read throughput. We

exploits the heterogeneity in access patterns to achieve overall

improvement in I/O throughput by storing the popular files

in SSD tier. We evaluate our implementation of VENU on

a medium-sized cluster and show that VENU achieves 11%

improvement in application completion times when 10% of

its storage provided by SSDs.

ACKNOWLEDGMENT

This work is sponsored in part by the NSF under the

CNS1422788 and CNS1405697 grants.

REFERENCES

[1] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris. Scarlett: Coping with skewed content
popularity in mapreduce clusters. In Proc. ACM EuroSys, 2011.

[2] Apache Software Foundation. Hadoop, 2011. http://hadoop.apache.org/
core/.

[3] D. Borthakur. Facebook has the world’s largest hadoop
cluster!, 2010. http://hadoopblog.blogspot.com/2010/05/
facebook-has-worlds-largest-hadoop.html.

[4] D. Borthakur. Hadoop and solid state drives, 2012. http://hadoopblog.
blogspot.com/.

[5] F. Chen, D. A. Koufaty, and X. Zhang. Hystor: making the best use of
solid state drives in high performance storage systems. In Proc. ACM

SC, 2011.
[6] S. S. Chu and C. V. Ho. Self-recovering erase scheme to enhance flash

memory endurance, Mar. 21 1995. US Patent 5,400,286.
[7] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.
[8] S. Feldman and R. L. Villars. The information lifecycle management

imperative. IDC White Paper, 2006.
[9] T. Harter, D. Borthakur, S. Dong, A. S. Aiyer, L. Tang, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Analysis of hdfs under hbase: a
facebook messages case study. In Proc. FAST, 2014.

[10] A. HBase. The apache hadoop project.
[11] HDFS-2832. Enable support for heterogeneous storages in hdfs, 2012.

https://issues.apache.org/jira/browse/HDFS-2832.
[12] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai. Hibench: A representative

and comprehensive hadoop benchmark suite. In Proc. ICDE Workshops,
2010.

[13] K. Kambatla and Y. Chen. The truth about mapreduce performance on
ssds. In Proc. USENIX LISA, 2014.

[14] S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee. A case for flash
memory ssd in hadoop applications. In IJCA, volume 6, 2013.

[15] R. Kaushik, M. Bhandarkar, and K. Nahrstedt. Evaluation and analysis
of greenhdfs: A self-adaptive, energy-conserving variant of the hadoop
distributed file system. In Proc. IEEE CloudCom, 2010.

[16] K. Krish, A. Anwar, and A. R. Butt. hats: A heterogeneity-aware tiered
storage for hadoop. 2014.

[17] K. Krish, A. Anwar, and A. R. Butt. φsched: A heterogeneity-aware
hadoop workflow scheduler. 2014.

[18] K. Krish, A. Khasymski, A. R. Butt, S. Tiwari, and M. Bhandarkar.
Aptstore: Dynamic storage management for hadoop. In Proc. IEEE

CloudCom, 2013.
[19] S. Moon, J. Lee, and Y.-s. Kee. Introducing ssds to the hadoop

mapreduce framework. In Proc. IEEE cloud, 2014.
[20] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron.

Migrating server storage to ssds: analysis of tradeoffs. In Proc. ACM

EuroSys, 2009.
[21] M. Peterson. Ilm and tiered storage. Storage Networking Industry

Association, 2006.
[22] Pivotal. Analytics workbench, 2010. http://www.analyticsworkbench.

com/.
[23] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber.

Extending ssd lifetimes with disk-based write caches. In Proc. USENIX

FAST, 2010.
[24] G. Zhang, L. Chiu, C. Dickey, L. Liu, P. Muench, and S. Seshadri.

Automated lookahead data migration in ssd-enabled multi-tiered storage
systems. In Proc. IEEE MSST, 2010.

212

