
Heterogeneity-Aware Adaptive Federated Learning
Scheduling

Jingoo Han‡, Ahmad Faraz Khan‡, Syed Zawad§,
Ali Anwar||, Nathalie Baracaldo Angel¶, Yi Zhou¶, Feng Yan§, Ali R. Butt‡

‡Virginia Tech, §University of Nevada, Reno,
||University of Minnesota, ¶IBM Research–Almaden

‡{jingoo, ahmadfk, butta}@vt.edu, §{szawad, fyan}@nevada.unr.edu,
||aanwar@umn.edu, ¶{baracald, yi.zhou}@ibm.com

Abstract—Federated learning (FL) is becoming an important
distributed machine learning approach that considers privacy and
security concerns while training a shared model across various
clients with localized data. One of the key challenges in FL
is heterogeneity in both hardware resources and local datasets
due to the nature of incorporating diverse clients. Given the
resource heterogeneity, the availability of participating clients is
not stable over time and their resource usage patterns become
dynamic. This leads to resource wastage and straggler issues.
Additional challenges are introduced due to data heterogeneity,
causing model biasness and poor model performance. However,
most existing FL systems are not well suited to heterogeneous
environments because those approaches are not adaptive to
various and dynamically changing resource usage patterns and
accuracy trends during training process. To this end, we propose a
heterogeneity-aware scheduling which is adaptive to the accuracy
trends and various resource usage patterns. Our proposed
scheduling provides different scheduling knobs for achieving
different goals such as resource-efficient fast training, resource
fairness, accuracy fairness, and high model performance. To the
best of our knowledge, this is the first effort to mitigate effects
of resource and data heterogeneity while providing adaptive
scheduling based on dynamically changing resource usage patterns
and accuracy trends.

Index Terms—Federated learning, Privacy-aware and secure
deep learning, Federated learning scheduling, Resource manage-
ment and scheduling, Distributed deep learning

I. INTRODUCTION

Recently, a plethora of IoT devices are being used as sources
to generate an unprecedented amount of data in our daily life,
which means that machine learning (ML) models are trained
using more abundant and sophisticated data. However, the
existing distributed training methods [1]–[3] require local data
for training to be moved from various local locations into a
central location, leading to cybersecurity risks [4]. Furthermore,
privacy laws and regulations [5], [6] prohibit data movement
between multiple locations. To address this issue, federated
learning (FL) [4] has emerged as a collaborative training
approach without sharing raw data between other devices and
locations. The main idea here is that each client1 or device
sends only local updates to a central server, while the local

||Work performed while at IBM Research–Almaden.
1The terms ’client’ and ’participant’ are used interchangeably in the paper.

raw data stays within the premises. Each client (a data party)
trains local model with its own local data, and sends learned
gradients into a central place (an aggregator) instead of sending
local data.

Deploying FL is not a trivial task. The largest challenges
lie in heterogeneity, more specifically, resource, data and
availability heterogeneity [4]. Resource heterogeneity is not
avoidable because each client or device has different computing
capability and connection bandwidth. A simple FL system
randomly selects multiple devices among available devices per
round. The training time per round is bounded by the slowest
device [7], [8]. As a result, fast devices should wait until
slow devices to complete their training process. To address
such a straggler issue, several methods [9], [10] have been
proposed. FedCS [9] addresses straggler issues by dropping
slow devices. Google [10] proposes large-scaled FL systems,
which selects more clients (e.g., 130%) and prunes slow ones.
However, these approaches lead to biased models because
information of data are missed when always dropping slow
devices. Moreover, dropping devices results in resource wastage,
making device availability one of the unique issues in FL. Due
to various users’ patterns at different local times, availability
of devices also shows different status about battery charging,
wifi connection, idle mode and so on [10]–[12]. Therefore, we
need to incorporate all of these heterogeneity-related issues
holistically into a single solution for heterogeneity-aware FL.

On top of resource heterogeneity in FL systems, each device
may have different data distribution, which imposes challenges
to obtain models with good performances trained on these
datasets in a federated way (data heterogeneity). Unlike existing
distributed training systems [1]–[3], in FL, it is highly possible
that dataset is not uniformly distributed [13], namely non-
Identical Independent Distribution (non-IID). It is well-known
that models trained on non-IID party data distribution may have
poorer model performance than those of models trained on
Identical Independent Distribution (IID) party data distribution
[13], [14]. To mitigate the above issues, the recent work TiFL
[7] proposes an adaptive tier-based approach where parties
are grouped by training latency to minimize straggler effect
due to resource heterogeneity, while introduces credits to
prevent biasness. Oort [15] introduces client selection based

on training latency and importance sampling, while providing
trade-off between system and statistical efficiency. FedProx
[16] addresses data heterogeneity by adding a proximal term
to stabilize the convergence of model training. However, these
approaches do not provide scheduling flexibility to prioritize
different goals such as resource-efficient fast training, resource
fairness, accuracy fairness, and high model performance or do
not contain mechanisms to accommodate client availability.

Additionally, FL with numerous devices leads to a new
challenge, availability of clients. In the real-world scenarios, it
is observed that up to 10,000 mobile devices can be possibly
connected into a single learning system [10]. Each device is
located geographically at different places with different time
zones, which means that the number of participating devices
is seriously discrepant regarding local time and user’s usage
pattern [11]. Many existing approaches try to select unavailable
devices without considering the availability of devices, leading
to wastes of resources.

To the best of our knowledge, existing works [7], [9], [10],
[15], [16] do not integrate availability, resource heterogeneity,
and non-IID party data distribution into a holistic approach.
Also, these approaches are not well suited to heterogeneous
environment where resource usage patterns and model perfor-
mances are dynamically changing during the training process.
To address the aforementioned issues, in this paper, we propose
a heterogeneity-aware adaptive scheduling method that can
be configured to achieve different goals such as resource-
efficient fast training, resource fairness, accuracy fairness,
and model performance, where selecting parties is conducted
based on resource usage pattern, accuracy measurement, and
availability of each party. By doing so, our work jointly
considers heterogeneity and fairness at the same time. To
support a variety of different scheduling objectives, we extend
our scheduling to incorporate fairness metrics like resource
fairness and accuracy fairness, as well as performance metrics
such as total training time and final model accuracy. For
example, according to scheduling policy, the scheduling selects
clients that spend less time on CPU for resource-efficient fast
training, whereas the scheduling chooses clients that spend
similar time on CPU for resource fairness.

In addition, our proposed scheduling method provides
scheduling knobs for achieving above mentioned various goals.
To improve the performance and fairness of the obtained model,
party selection is scheduled based on local accuracy and global
accuracy of each party. To achieve efficiency and fairness of
resource, parties are chosen based on consumption and biasness
of resource usage of each party. To the best of our knowledge,
our work is the first effort to handle heterogeneity of FL
by scheduling parties based on availability, resource usage,
and accuracy trend, while providing dynamically adaptive
scheduling to accomplish various scheduling goals such as
performance and fairness.

We summarize our major contributions as follows:
• We present a novel adaptive FL scheduling that profiles

the availability and resource usage for each client over
time, measures the model biasness and model performance,

calculates possible combinations of client selection over
time, and then determines the best client combination
weighted by scheduling knobs that consider resource
heterogeneity, fairness, and model performance.

• We design a method to measure the biasness of the global
model by quantifying clients’ benefit from the global
model and each clients’ contribution to the global model
for achieving better global model accuracy.

• We propose a method to determine the priority of a
client based on its local training data and schedule clients
dynamically based on their resource usage.

• We implement and evaluate the proposed FL scheduling
to demonstrate that the proposed scheduling provides
configurable scheduling policies for achieving better model
performance, faster training time, accuracy fairness, and
resource fairness.

II. BACKGROUND AND MOTIVATION

A. Federated Learning with Resource Heterogeneity

Due to the nature of FL systems, various devices process data
with extremely heterogeneous resources [8]. This high resource
heterogeneity has been known that it has negative effects such
as the straggler issue on performance of FL in terms of training
time and resource efficiency. According to [7], average training
time of a single round shows a difference of nearly 8x between
fastest and slowest clients. This observational study implies that
overall training time can be increased by up to 8x when slow
clients are frequently selected. FL aggregates local updates
in a synchronous way where training throughput is bounded
by slow devices [7], [8]. The single-round training time of
slow devices is longer than other devices due to their low
computing capabilities and slow communication bandwidth.
Google [10] suggests over-selection to mitigate straggler effects,
but this approach leads to a waste of resource utilization because
devices are unnecessarily allocated per round.

B. Federated Learning with Non-IID Data

Unlike traditional distributed DL systems where the whole
dataset is collected at a central location and redistributed
in a controlled way, the dataset is generally not identically
distributed among devices [13] in FL. As a result, each device
participating in FL should handle highly skewed dataset, leading
to bias according to discrepancy of dataset distribution [14]. In
non-FL systems, classes of dataset can be uniformly distributed
to each device, called Independent Identical Distribution (IID),
since the ML engineers have complete control over the system.
On the contrary, in FL, classes of dataset are not identically
distributed depending on users’ experience and preference,
known as non-Identical Independent Distribution (non-IID),
with additional restrictions imposed upon them (such as
inability to view or move them) due to privacy constraints.

C. Federated Learning with Availability Heterogeneity

One of unique characteristics of FL is that availability of
participants is very diverse according to users’ usage pattern or
status of devices [11], [12]. Devices need to meet requirements

to participate in training process for FL. For example, devices
are not available when battery life is not enough or devices
are connected to metered network. In this case, it is possible
that devices participating in a round drop out during training
time due to their unreliability. It is also known that device
availability shows daily patterns and depends on its local time
[10], [11]. Normally, devices are more available at night than
day because devices are charging, idle, and connected on wifi
at night. Google observed that difference between low and
high numbers of participants is four times within 24 hours
[10]. Even, it is also possible that some devices are in charging
on wifi connection at day according to users’ behavior. As a
result, the availability heterogeneity causes participation bias
and resource inefficiency (i.e., dropout problem), which has
negative effects on accuracy of global model [17].

D. Clients Selection

The default FL randomly selects clients per round without
considering resource situation, leading to inefficient resource
utilization, straggler effect, and accuracy reductions. To address
these problems, clients per round need to be chosen carefully
based on resource condition, heterogeneity of dataset, and
availability. FedCS [9] chooses clients as many as possible
within specific time frame, considering resource information
(i.e., training time, energy consumption). TiFL [7] chooses a
group and then randomly selects clients within the selected
group for minimizing straggler effects. Oort [15] also uses
careful client sampling to prioritize selection such that the
training completes faster with increased model performance.
However, all of these approaches do not consider fluctuations
in availability for selecting clients and scheduling training.
Additionally, these approaches do not handle fairness, which
means that a global model is biased either against or towards
specific clients. To improve fairness, bias-aware metrics needs
to be measured and clients should be selected based on them.

E. Various Resource Scenarios

Beyond heterogeneity at device level, it is possible that FL
environment is highly resource heterogeneous. As a result,
there are various resource scenarios when building FL systems.
Let’s assume that FL is processed with ample resources. A
myriad of powerful machines may be connected with super-fast
network connectors and there is no time limit on any machines.
In this case, it is reasonable to give high priority to accuracy
of the trained model. However, in the case of FL systems with
limited resources, training with low resource consumption is
more important than achieving high accuracy. Waste of resource
usage should be minimized for improving resource utilization
within limited resource environment. It is also possible that FL
is conducted with time constraints. For example, in the case of
HPC systems such as supercomputers, dedicated machines are
allocated exclusively with maximum walltime [18]. FL should
be finished within the walltime limit. Thus, overall training time
is important and final model accuracy can be sacrificed. As can
be seen in the above-mentioned cases, scheduling and client
selection in FL systems need to consider different conditions.

Fig. 1: Overview of heterogeneity-aware adaptive scheduling.

However, existing solutions [7], [15] on FL do not provide
features to achieve various goals.

III. HETEROGENEITY-AWARE ADAPTIVE SCHEDULING

A. Overall Design

The overall architecture of the proposed heterogeneity-aware
adaptive scheduling is presented in Figure 1. Our proposed
system includes additional modules, realized at the aggregator
side: client manager, profiler, and scheduler. The main role
of client manager is to interact with clients: it requests local
training, distributes global model and global evaluation data,
and aggregates local update from clients. The profiler monitors
accuracy of clients to keep track of accuracy performance and
accuracy bias, including other resource usage patterns such
as training throughput. The profiler asks all registered clients
to report both global test accuracy and local test accuracy.
The global test accuracy can be measured by using the shared
global model and clients’ local test data, whereas the local test
accuracy can be measured by using clients’ trained local model
and the global evaluation data. Then, each client sends these
accuracy results to profiler, and profiler stores the collected
accuracy results. The details of global test accuracy and local
test accuracy will be explained in subsection III-C. In each
training round, the scheduler sorts clients in descending order
based on the collected accuracy records and resource usage
patterns, and then ranks clients according to scheduling priority
weights. Scheduler selects list of clients and forwards it to
the client manager for training execution. In the following
subsections, we discuss the details of clients selection.
B. Proposed Scheduling: Heterogeneity-Aware Adaptive
Scheduling

We propose a scheduling algorithm for FL, named
Heterogeneity-Aware Adaptive Scheduling. The main idea is to
select participating clients per round based on their availability
and training throughput, and dynamically adjust the client
selection according to the accuracy measurements at both
global and local levels, which mitigates straggler problems
and biasness of trained model. Furthermore, scheduling policy
is dynamically configured by scheduling knobs that prioritize
different objectives such as resource efficiency, resource
fairness, accuracy fairness, and model performance. The details
of our proposed scheduling algorithm is shown in Algorithm
1. Initially, availability and training latency of each client

Algorithm 1: Heterogeneity-Aware Adaptive Schedul-
ing.

Input: r: current round to be scheduled, R: total
number of rounds, I: the interval of measuring
accuracy, K: total number of clients, Acckglobal:
global test accuracy of client k, Accklocal: local
test accuracy of client k

1 begin
2 Profile availability of each client over time;
3 Profile training latency of each client;
4 for each round r = 0 to R - 1 do
5 if r%I == 0 and r >= I then
6 for each client k = 0 to K - 1 do
7 Acckglobal,

Accklocal ← measure_accuracy();
8 end
9 end

10 Calculate objective function using availability,
training latency, Acckglobal, and Accklocal of
each client;

11 Rank all clients based on objective function;
12 Select subset of clients per round;
13 Train selected clients;
14 end
15 end
16 Function measure_accuracy()
17 Sends global evaluation data and global model to all

clients;
18 Train global model on local data;
19 Measure Acckglobal by testing local model on global

evaluation data;
20 Measure Accklocal by testing global model on local

test data;

is profiled (lines 2–3). Per intervals of I rounds, global test
accuracy and local test accuracy are measured and collected
from each client (lines 5–9). Then, the scheduler calculates
objective function, sorts all clients, and selects subset of clients
to be trained per round (lines 10–12). The client manager
trains the selected clients (line 13). The measure_accuracy is a
function to return global test accuracy and local test accuracy
of each client. The details of how to measure them will be
explained in subsection III-C. The objective function used in
the algorithm will be discussed as below.

1) Objective Function: Let’s suppose that we have four
clients, such as A, B, C, and D. These clients have different
computing performances and show changing patterns of client
availability. Training latency of each client is 1, 2, 3, and 4.
Availability over rounds is shown in Table I.

We want to run for a total of 5 rounds, with 2 clients selected
per round. For round 1, the client A is not available, while
other clients can be chosen. We can come up with possible
combination of clients for round 1 (i.e., BC, CD, and BD). For
each possible combination, variance of training latency is cal-

TABLE I: Availability of 4 clients over rounds.

Client
Round 1 2 3 4 5

A 0 1 1 0 1
B 1 1 0 1 0
C 1 0 1 1 1
D 1 0 1 0 1

culated via population variance (i.e., σ2 = 1
N

∑N
i=1(xi − µ)

2)
: 1.69, 3.19, 2.75. Thus, the combination of BC shows the
least variance. We find the least variance per round, so that
the least amount of difference between resource usage can be
minimized by finding an optimal combination per round. Thus,
objective function can be as below:

ObjectiveFunction = argmin
k∈K

{var(Rk)} (1)

Rk indicates resource usage for client k. Additionally, we can
consider total resource usage. Sum of training latency of pos-
sible combination is 5, 7, and 6 for BC, CD, BD, respectively.
Therefore, BC is the best combination for minimizing total
usage of resources. In this case, objective function for sum of
resource usage can be as below:

ObjectiveFunction = argmin
k∈K

{sum(Rk)} (2)

In case of the above example, the combination of BC is the
best option in terms of both resource variance and resource
consumption. However, unlike the above-mentioned example,
it is possible that total resource usage and resource fairness do
not lead to the same scheduling decision. To handle this case,
the following multi-objective optimization can be considered
with weight priorities (i.e., w1, and w2).
ObjectiveFunction = argmin

k∈K
{W1∗sum(Rk)+W2∗var(Rk)}

(3)
Now, we have a scheduler that focuses on resource consumption
while reducing drop-outs. Additionally, model performance and
biasness can be considered for fast and fair convergence of
trained global model. Our proposed method to measure the
model accuracy and biasness is explained in detail in subsection
III-C. If we have values of model accuracy and accuracy
fairness, we can consider these values for our new objective
function. Thus, final objective function can be presented as:
ObjectiveFunction=argmin

k∈K
{W1 ∗sum(Rk)+W2 ∗var(Rk)

+W3 ∗sum(Bk)+W4 ∗sum(Pk)}
(4)

Bk and Pk indicate bias for client k and model performance for
client k, respectively. Bk and Pk can be obtained by measuring
global test accuracy and local test accuracy, respectively. The
details of how to measure global test accuracy and local test
accuracy will be discussed in the following subsection. Each
weight (i.e., w1, w2, w3, and w4) is user-defined and can be
optimized according to user’s preference.

C. Accuracy Performance and Fairness

Due to data heterogeneity (i.e., non-IID), only focusing
on resource consumption may lead to slow down accuracy

convergence although training time is reduced. In terms of
model performance, all clients do not contribute equally to
training global model (as has been pointed out by many works
such as [7], [15]), which indicates that better contributing
participants should be selected with higher priority to achieve
better model performance. Also, we notice that all clients
do not benefit equally from global model, which means that
we need to check whether global model performs well on
all clients to achieve accuracy fairness. Accuracy fairness
means that trained model benefits fairly to all participating
clients in terms of model performance, without being biased to
specific clients. However, both contribution and biasness of each
participant are unknown a-priori. This leads us to the following
questions - How can we measure performance contribution of
a participant? How can we measure performance benefit to a
participant? To answer these questions, we propose the two
following metrics: (1) global test accuracy, and (2) local test
accuracy. The global test accuracy is the global accuracy of
local model to measure contribution of a participant through
IID dataset, while the local test accuracy is the local accuracy
of global model to measure biasness of a participant through
non-IID dataset. Both of the two metrics mentioned above (i.e.,
global test accuracy and local test accuracy), are measured
per interval and clients are selected dynamically considering
both model accuracy and fairness. Currently, these metrics are
measured by local clients to keep privacy and security.

1) Global Test Accuracy: The global test accuracy is
used to evaluate contributions of clients for achieving high
model performance. Scheduler sends small unbiased evaluation
dataset (IID) to each participant, and each local participant
performs training locally on the evaluation dataset to measure
global test accuracy of its own local model. To prevent
communication overhead, the evaluation dataset is transferred
only once at beginning and is reused when calculating the
global test accuracy. If some participants show higher global
test accuracy than others, we can define these participants as
high performance participants. Thus, the global test accuracy
on local model shows how well the locally trained model
performs compared to other clients.

2) Local Test Accuracy: The local test accuracy is used to
evaluate biasness of clients for achieving accuracy fairness. If
performance of global model is poor on a specific participant,
the participant needs to be chosen more frequently for better
fairness. However, it is not easy to check fairness of the
global model, even the fairness is changing over rounds. To
evaluate biasness of each client, local test accuracy of global
model can be measured on test dataset (non-IID) sampled from
local participant data. If global model shows higher local test
accuracy on a participant, global model is biased towards the
participant. Thus, the local test accuracy of global model shows
how much global model is biased towards a client.

3) Ranking Model Performance: For scheduling clients in
each round, all clients participating in FL are given ranks on
the basis of three metrics, and then three rank vectors are
formed. The three rank vectors

−→
R ,
−−−−−→
Accglobal, and

−−−−−→
Acclocal

represent ranks of all clients on the basis of resources, global

test accuracy, and local test accuracy, respectively. The ranks are
calculated according to user preferences set via the scheduling
knobs. For example, for achieving higher global accuracy,
w4 > w1, w2, w3 ranks are given such that clients with higher
global accuracy are given higher ranks.

−→
R = sortasc{∀r ∈ R} (5)

−−−−−→
Accglobal = sortdesc{∀A ∈ Accglobal} (6)
−−−−−→
Acclocal = sortasc{∀A ∈ Acclocal} (7)

After the calculation of ranks, Rk, Bk, and Pk of the equation 4
can be calculated as below:

Rk =

−→
R

n(n− 1)/2
(8)

Pk =

−−−−−→
Accglobal
n(n− 1)/2

(9)

Bk =

−−−−−→
Acclocal

n(n− 1)/2
(10)

In equations 8, 9, and 10, n means the total number of clients.
Scores of all possible combinations are calculated using the
objective function (Equation 4), and then a subset of clients is
selected based on an optimal score among all possible subsets.

D. Resource-fair Scheduling

Resource usage biasness happens when resource hetero-
geneity exists between participating clients. It leads to waste
of resource when grouping clients randomly. To address this
problem, resource usage biasness needs to be considered when
selecting participants. In our proposed approach, profiling
of resource usage is performed for each participant. Then,
with availability pattern and resource usage, all possible
combinations of participants selection are ranked. The scheduler
chooses a combination that requires minimum usage bias
(Equation 1). Furthermore, resource usage itself needs to be
considered to minimize total resource consumption (Equation 2).
Thus, the scheduler chooses a combination according to both
resource consumption and resource bias. However, in some
cases, a combination might show a little variance between
resource usage, while it consumes more resources than other
combinations. It means that total resource usage and resource
fairness do not lead to the same scheduling decision. To
handle such a situation, multi-object optimization for least
resource consumption and fair resource allocation is conducted
by scheduler using multiple weight priorities (Equation 3).

E. Availability Awareness

Each participant has its own different usage pattern and
shows discrepancy in availability over time. Previous ap-
proaches choose participants randomly or selectively, but does
not focus on availability of each participant. As a result, existing
approaches have possibility of dropout issues or resource waste.
For example, Google’s approach [10] selects more participants
than a target number because some of them are dropped due to
changing client status. However, this approach leads to waste

of resources because it requests training to participants that will
not be aggregated into global model. Unlike most of existing
approach, we consider heterogeneous availability to reduce
dropout issues. First, availability of each client is profiled
during specific times, and collected by profiler. Then, scheduler
checks the profiled availability pattern of each participant and
selects participants that are available on a per-round basis.
This scheduling approach prevents unavailable clients to be
chosen and mitigates dropout problems. Our proposed approach
selects participants to be available for specific rounds so that
resource wastes of participating clients can be prohibited. We
assume that availability of most clients shows regular pattern,
but if some clients begin to show different patterns, the profiler
updates availability of the clients.

F. Priority-based Clients Selection

We design the objective function (Equation 4) where four
factors (i.e., resource consumption, resource variance, model
performance, and accuracy fairness) are considered to make a
scheduling decision. Simply, the goal of scheduling is typically
to minimize an output of the objective function (Equation 4).
Each factor has different weights (i.e., w1, w2, w3, and w4)
that decide how to prioritize decision making and are set by
a user. Before calculating the objective function, clients are
sorted according to accuracies (i.e., global test accuracy, local
test accuracy), and resource usage (e.g., CPU consumption).
All possible combinations are listed based on availability of
all clients. Then, an optimal combination per round is chosen
through calculation using multiple weights. Additionally, we
introduce heuristic to reduce calculation overhead that comes
from a large number of combinations. Instead of selecting the
target number of participants at the same time, the heuristic
divides calculation into several portions. It selects partial
number of participants because its possible cases of partial
participants are much less than the original combinations. This
process is repeated until the number of selected participants
matches the target number.

IV. EVALUATION

We evaluate our scheduling on a CPU cluster using different
scheduling options. We compare our scheduling option with
the default random selection. The highlights of our evaluation
are as follows:

• Accuracy scheduling option improves reached final accu-
racy by up to 57.4%, compared to the random selection.

• Fast scheduling option reduces overall training time by
up to 39.5%, compared to the random selection.

• Fair accuracy scheduling option shows the lowest variance
(1.0%) of clients’ local accuracy for achieving accuracy
fairness.

• Fair resource scheduling option shows the lowest variance
(0.045%) of clients’ resource consumption for achieving
resource fairness.

A. Experimental Setup

1) Testbed: Our testbed is built by deploying 200 clients
on a CPU cluster as a proof of concept case study, where
each client has its own exclusive CPU core. We implement our
scheduling on top of the IBM FL framework [19] version 1.0.4,
using Keras [20] and TensorFlow [1] as a back-end library.

2) Model: We use a simple CNN [21] model for evaluating
our proposed scheduling algorithm. The CNN model consists
of 3 layers: a 5x5 convolution layers with 32 channels and
ReLu activation followed by a MaxPooling layer of size 2x2,
a 5x5 convolution layers with 64 channels and ReLu activation
followed by a MaxPooling layer of size 2x2, and one fully-
connected layer with 2,048 units and ReLu activation.

3) Datasets: We use three image classification datasets for
evaluating our scheduling algorithm: FEMNIST [22], CIFAR10
[23], and MNIST [24].

• FEMNIST: FEMNIST dataset is a handwritten image
dataset of alphabet letters and numbers, which are 28x28
gray-scale images consisting of 62 different classes.

• CIFAR10: CIFAR10 dataset contains 60,000 RGB images,
which are 32x32 resolution images of 10 classes. Each
class corresponds to different categories of objects.

• MNIST: MNIST is composed of handwritten digit images
of 10 classes (a digit from 0 to 9).

4) Training hyperparameters: SGD [25] is used as the local
optimizer for training local data in each local device. As the
default training parameters of the LEAF [22] framework, initial
learning late and batch size are set to 0.004 and 10, respectively.
We train a CNN model on FEMNIST dataset for 500 rounds,
while we train the model on CIFAR and MNIST dataset for
100 rounds because accuracy saturated at around 100 rounds. In
each round, 10 clients are selected among 200 clients to train
the CNN model and sends updated weights to an aggregator.
We set the number of local epochs to 1.

5) Heterogeneous setup: We split all clients into 6 groups
with different percentages. As the previous work [7], we
configure different CPU frequency and allocate different
numbers of CPUs to each group as Table II. The percentage

TABLE II: Heterogeneous resource setup.
Group CPU per client CPU frequency (GHz) Clients

A 1.0 3.2 20
B 1.0 2.5 20
C 1.0 2.3 10
D 1.0 2.0 10
E 0.8 1.4 70
F 0.4 1.4 70

of two lower groups (i.e., E, F) is 70 % in total, because
most of participating devices are very slow in real-world FL
scenarios. For heterogeneous data distribution, we use the non-
IID distribution of FEMNIST dataset in LEAF. In a similar
way, we make the non-IID training dataset of CIFAR10. For
evaluating highly heterogeneous distribution of MNIST dataset,
we divide the MNIST dataset unevenly and limit the number
of classes to either 2 or 3 classes. Each client has either 2 or
3 classes, instead of including total 10 classes of MNIST. For

all three datasets, we set the number of data points to 200 per
client.

6) Scheduling policies: We evaluate four different schedul-
ing policies of our proposed heterogeneity-aware adaptive
scheduling approach: (1) fast, (2) fair resource, (3) fair
accuracy, and (4) accuracy. These policies are defined by
selection weights ratios as Table III. Each weight prioritizes
training throughput, resource fairness, accuracy fairness, and
model performance, respectively. We name the default random
selection as vanilla that has been used by the default FedAvg [4].
Fast policy selects only fastest clients in each round according
to measurement of training latency. Fair resource policy
considers variance of resource usages (i.e., CPU consumption
per round) and selects clients that consume similar CPU
resources. Fair accuracy policy minimizes difference of model
performances among all participated clients, which provides
fair model performance. Accuracy policy concerns only model
performance, which selects clients showing high accuracy
results.

TABLE III: Scheduling policy configurations.
Policy Selection weights ratio

W 1 W 2 W 3 W 4
vanilla N/A N/A N/A N/A
fast 1.0 0.0 0.0 0.0
fair resource 0.0 1.0 0.0 0.0
fair accuracy 0.0 0.0 1.0 0.0
accuracy 0.0 0.0 0.0 1.0

7) Metrics: We use a variety of metrics to evaluate our
scheduling approach.
Performance. To evaluate performance improvement, we
measure total training time and final model accuracy, which are
the same metrics used by other studies [7], [15]. We measure the
overall training completion time to finish federated training to
reach a predefined target round. After the training is completed,
we measure both the final model accuracy of global model and
local accuracy of each client.
Accuracy fairness. For accuracy fairness, we measure averaged
variance of each client’s local accuracy. This metric suggests
that how much the trained model is biased to clients. Thus,
low variance means the trained model provides better accuracy
fairness.
Resource fairness. For resource fairness, our target metric is
resource variance that is measured by the variance of each
client’s CPU resource consumption. The each client’s CPU
resource consumption can be calculated as: total number of
cores × core frequency. When the scheduler chooses clients
that show similar resource usage patterns, difference of training
time between clients is reduced, improving fairness of resource
consumption. We also measure total CPU consumption, the total
sum of each client’s CPU resource consumption. It shows how
much resource-fair scheduling prevents a waste of resource.

B. Experimental Results

In this subsection, we evaluate and demonstrate the efficiency
of our proposed scheduling method. The performance of the
proposed approach is tested against the default FedAvg [4]
that is one of the most widely used FL algorithms [26]. The

FedAvg randomly selects clients without considering either
heterogeneity or availability.

1) Overall performance: We evaluate performance of pro-
posed scheduling approach in terms of training time and model
accuracy in environments with resource and data heterogeneity.
Figure 2a shows overall training time of each scheduling
policy. As we expected, fast takes shorter training time (285
minutes) than other options (446∼600 minutes), achieving an
improvement of 39.5%, compared to vanilla. Vanilla selects
clients randomly, whereas fast chooses fast clients on the
purpose. On the contrary, fair accuracy and accuracy policies
take longer times than vanilla and fast. This is because it is
possible that these policies (i.e., fair accuracy and accuracy)
select slower clients for either accuracy fairness or model
performance, regardless of training throughput. We evaluate
the final model accuracy of 500-round training. We measure
two different accuracy types: (1) global accuracy, and (2) local
accuracy. For global accuracy, aggregator evaluates global
model using test data set located on aggregator. For local
accuracy, each client evaluates global model using its own
local test data and sends its accuracy result to aggregator. In
terms of global accuracy, figure 2b shows that accuracy policy
reaches the highest (61.0%). Accuracy shows 3.6% higher
accuracy than vanilla. Fast and fair accuracy options show
low accuracy results (i.e., 52.0% and 51.2%). These options
select fast clients and low-accuracy clients, respectively, without
considering model accuracy. According to our measurement
of local accuracy, accuracy policy reaches the highest of
averaged local accuracy (77.4%), while fast reaches the lowest
of averaged local accuracy (73.5%). As can be seen in Figure
2c, in accuracy case, there are more clients showing lower
local accuracy (50%∼55%), compared to fair accuracy policy.
This is because these low performance clients are selected less
frequently than high performance clients. It means that local
datasets of these low performance clients are less contributed to
training the global model. As we expected, fair accuracy policy
shows more fair distribution compared to other policies, while
showing lower averaged local accuracy (75.6%) than accuracy
policy (77.4%). Fast policy shows limited improvement (73.5%)
among the policies because it does not consider either model
performance or bias. Unlike vanilla, proposed scheduling
approach considers availability and schedules clients to prevent
drop-outs. Thus, it helps achieving higher accuracy than
vanilla’s random selection. Evaluation on availability awareness
is shown in Subsection IV-B4.

2) Accuracy fairness: FL trains model using non-IID data
tightly coupled with each client. Trained model cannot guaran-
tee fair performance to all participating clients. It is possible
that trained model shows biased accuracy when evaluating
the model on local dataset of each client. Thus, it is one of
important factors to provide stable model accuracy without
bias. Figure 3 shows that fair accuracy option provides lowest
variance (1.0%). The fair accuracy policy aims to provide
bias-resistant training where bias is measured by accuracy of
global model on local test data (i.e., local test accuracy). On
the other hand, fast and accuracy options show high variance

 0
 100
 200
 300
 400
 500
 600

Vanilla
Fast

Fair Resource

Fair Accuracy

Accuracy

Tr
ai

ni
ng

 ti
m

e
[m

in
ut

e]

(a) Training time 500 rounds

 50

 52

 54

 56

 58

 60

 62

Vanilla
Fast

Fair Resource

Fair Accuracy

Accuracy

Ac
cu

ra
cy

 [%
]

(b) Global accuracy 500 rounds

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8 0.9 1.0

C
D
F

Local	accuracy	(%)

Vanilla
Fast

Fair	Resource
Fair	Accuracy

Accuracy

(c) Local accuracy 500 rounds

Fig. 2: Comparison results for different scheduling policies on FEMNIST with resource and data heterogeneity.

0.8

1.0

1.2

Vanilla
Fast

Fair Resource

Fair Accuracy

Accuracy

Av
er

ag
ed

 v
ar

ia
nc

e
[%

]

Fig. 3: Averaged variance of accuracy at 200 rounds for
different scheduling policies on FEMNIST with resource and
data heterogeneity.

 0
 2
 4
 6
 8

 10
 12

Vanilla
Fast

Fair Resource

Fair Accuracy

Accuracy

To
ta

l C
PU

 c
on

su
m

pt
io

n
[1

03]

(a) Total CPU consumption 500 rounds

 0

 10

 20

 30

 40

 50

Vanilla
Fast

Fair Resource

Fair Accuracy

Accuracy

Av
er

ag
ed

 v
ar

ia
nc

e
[%

]

(b) Averaged variance 500 rounds

Fig. 4: CPU resource consumption for different scheduling
policies on FEMNIST with resource and data heterogeneity.

because these options consider performance of throughput and
accuracy, instead of fairness. Scheduling decision for reducing
bias is adaptively changed per specific rounds according to the
measurement of local test accuracy.

3) Resource fairness: We evaluate how resource fairness
is affected by different scheduling polices. We first measure
total CPU consumption of 500 rounds training (Figure 4a).
As expected, fair resource consumes lower CPU resources
than vanilla because it selects clients with similar patterns of
CPU resource consumption. Training latency of each client
is similar and it minimizes idle status of each client. In the
case of random selection, fast clients should wait until slow

devices are finished, which leads to unnecessary resource waste.
To support the above result, we also check variance of CPU
resources (Figure 4b). Fair resource shows lowest variance
(0.045%), while vanilla, fair accuracy, and accuracy show
much higher variance, such as 48.4%, 45.7%, and 51.3%,
respectively. Fast shows higher variance (0.77%) than fair
resource, but it also shows much lower variance, compared
to vanilla. This is because fast chooses fast clients with high
CPU consumption without selecting slow clients. As a result,
it reduces variance of resource consumption between clients
because it selects clients that shows similar resource usage
patterns (i.e., fast devices). On the other hand, vanilla selects
clients that show different resource usage patterns (i.e., fast and
slow devices) at the same round, which shows high variance.

4) Availability awareness: As we mentioned in Section III-E,
our scheduling design supports availability-aware participants
selection. We evaluate our proposed availability-aware mecha-
nism by comparing final model accuracy of the baseline and our
availability-aware scheduling cases. Figure 6 shows the result
of averaged local accuracy. While vanilla shows 71.9% of local
accuracy, our proposed availability-aware scheduling shows
76.3% of local accuracy, resulting in 6.1% of improvement. The
vanilla scheduling does not consider states of participants, and
thus some of participants are absent during training, leading
to accuracy drop. On the other hand, our availability-aware
approach does selects participants that are highly available
during training rounds.

5) Interval and training time: Next, we conduct experiment
of accuracy scheduling option to evaluate the trade-off between
training performance and scheduling interval (Figure 5). As we
expected, training time is linearly increasing with the increase
of intervals. In the Figure 5a, training times of 20-round, 10-
round, and 5-round intervals are 504, 600, and 764 minutes,
respectively. In the Figures 5b and 5c, global accuracy and
local accuracy of 20-round interval are 60.8% and 76.7%,
respectively, whereas global accuracy and local accuracy of
5-round interval are 61.4% and 77.4%, respectively. Thus,
frequent scheduling interval leads to longer training time,
while it improves global accuracy and averaged local accuracy.
However, averaged local accuracy is saturated at interval value
of 10 rounds.

 0
 100
 200
 300
 400
 500
 600
 700
 800

20 rounds

10 rounds

5 rounds

Tr
ai

ni
ng

 ti
m

e
[m

in
ut

e]

(a) Training time

60

61

62

20 rounds

10 rounds

5 rounds

Ac
cu

ra
cy

 [%
]

(b) Global Accuracy

76

77

78

20 rounds

10 rounds

5 rounds

Ac
cu

ra
cy

 [%
]

(c) Averaged Local Accuracy

Fig. 5: Comparison results for different intervals of accuracy option on FEMNIST.

 60

 65

 70

 75

 80

Vanilla Availability-aware

Ac
cu

ra
cy

 [%
]

 Fig. 6: Averaged local accuracy at 500 rounds for vanilla and
availability-aware scheduling on FEMNIST.

 0
 20
 40
 60
 80

 100

Fast
Fair Resource

Fair Accuracy

Accuracy

Ru
nt

im
e

[%
]

Training
Measurement

Calculation

Fig. 7: Breakdown of runtime overhead 500 rounds.

6) Runtime overhead: We measure runtime routines such
as scheduling calculation, measurement overhead of training
latency and accuracy, and training computation. Figure 7
shows runtime overhead of each policy. Scheduling calculation
is lower than 1% (0.4%∼0.9%). In cases of fast and fair
resource, measurement overhead is very low (i.e., 0.6% and
0.9%) because it only measures training latency at the first
round, not repeating measurement of accuracy per interval.
On the other hand, fair accuracy and accuracy policies repeat
measurement of accuracy per interval for adaptively scheduling
clients selection based on accuracy information. As a result, it
leads to overhead of 27.8%.

10

20

30

40

50

60

 0 20 40 60 80 100

Ac
cu

ra
cy

 (%
)

Round

Vanilla
Fast

Fair Resource
Fair Accuracy

Accuracy

Fig. 8: Global accuracy at 100 rounds for different scheduling
policies on CIFAR10.

7) Comparison for CIFAR10 dataset: We measure model
accuracy using CIFAR10 dataset to check if the proposed
scheduling approach can be applied to other datasets. Figure
8 shows global accuracy results of each scheduling policy.
Compared to the result of FEMNIST, CIFAR10 also shows
similar accuracy trends. As expected, accuracy option shows the
best (56.6%), providing an improvement of 10.5%, compared
to vanilla option. On the other hand, Fast option shows lower
accuracy (50.6%) than other options. Compared to vanilla case,
the fast option shows higher accuracy at early rounds, but it
saturates because fast does not consider data quality of clients.

 0

 20

 40

 60

 80

 100

3 2

Ac
cu

ra
cy

 (%
)

Classes per client

Vanilla Accuracy

Fig. 9: Global accuracy at 100 rounds for vanilla and accuracy
option on MNIST.

8) Data heterogeneity: To evaluate the effect of the proposed
accuracy option on data heterogeneity, we measure global
accuracy when data distribution is highly heterogeneous. For
varying data heterogeneity, we use MNIST dataset as test
dataset and vary the number of classes per each client between
2 and 3 classes, instead of 10 classes. Figure 9 shows the
result. In the case of vanilla, global accuracy of 2 classes is
much lower than global accuracy of 3 classes. This is because
when data is more heterogeneous, it causes accuracy drop
[7]. In both cases, accuracy option improves global model
accuracy by 9.3% and 57.4%, respectively, compared with
vanilla. Therefore, accuracy scheduling option is more effective
on high heterogeneous data.

V. RELATED WORK

There already exists a plethora of work on mitigating the
effect of heterogeneity for federated learning (FL). FedCS
[9] addresses straggler issues by dropping slow devices. [10]
proposes large-scaled FL systems, which chooses more clients
and throws out slow ones. However, these approaches lead
to bias on achieved accuracy because information of slow
devices is missed. Additionally, dropping devices makes
wastes of resources. Some research starts to study on effects

of heterogeneity on FL. FedProx [16] addresses resource
heterogeneity by allowing partial results, instead of dropping
slow devices. TiFL [7] minimizes straggler effects by tiering
parties based on training latency. Based on estimation models,
[27] adjusts the number of local epochs that is globally applied
to all parties. Oort [15] selects clients based on criteria such
as training latency and importance sampling. [12] argues
that different users’ behavior leads to unreliable drop-out
of devices. However, none of the existing works suggests a
heterogeneity-aware adaptive method where scheduling policy
is configured by scheduling knobs for achieving various FL
goals, as well as considering availability of each device,
resource heterogeneity, and data heterogeneity. Unlike the
existing approach, our scheduling approach considers fairness
of resource and accuracy for scheduling clients in FL systems.
Also, our proposed approach addresses model bias issues
by dynamically adjusting clients selection based on profiling
measurement of local accuracy. Thus, our work is the first
effort to handle heterogeneity in resource and data of FL by
adaptively selecting clients while scheduling parties according
to weighted scheduling options.

VI. CONCLUSION

In this paper, we have proposed a heterogeneity-aware
adaptive scheduling algorithm that provides various scheduling
policies to meet various performance and fairness objectives
while dynamically addressing heterogeneity in both resource
and data for efficient and fair FL systems. Unlike existing
random selection leading to drop-off or straggler issues, our
proposed approach minimizes drop-off of devices per round
based on client availability, and chooses subset of devices for
achieving different scheduling goals such as resource efficiency,
resource fairness, accuracy fairness, and model performance.
We introduce how to check accuracy performance and accuracy
biasness among registered devices, which measures global test
accuracy and local test accuracy, each meaning contribution
of each local device and biasness against each local data,
respectively. For achieving either resource efficiency or resource
fairness, our scheduling algorithm selects subset of devices
using resource usage patterns. For achieving either accuracy
fairness or model performance, our proposed approach adap-
tively and dynamically schedules participating devices based on
measurement of accuracy performance and accuracy biasness.
The result shows that our approach achieves an improvement
over existing random client selection by 57.4% in reached
accuracy and by up to 39.5% in training time, according to
scheduling policies.

ACKNOWLEDGMENT

This work is sponsored in part by the NSF under the
grants: CSR-2106634, CCF-1919113, OAC-2004751, and CSR-
1838271.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proc. USENIX OSDI, 2016.

[2] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in Proc.
USENIX OSDI, 2014.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” NIPS, vol. 25, pp. 1223–1231, 2012.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[5] G. D. P. Regulation, “General data protection regulation (gdpr),” Intersoft
Consulting, Accessed in October, vol. 24, no. 1, 2018.

[6] A. Act, “Health insurance portability and accountability act of 1996,”
Public law, vol. 104, p. 191, 1996.

[7] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou,
H. Ludwig, F. Yan, and Y. Cheng, “Tifl: A tier-based federated learning
system,” in Proc. ACM HPDC, 2020.

[8] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala, “Fedat:
a high-performance and communication-efficient federated learning
system with asynchronous tiers,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–16.

[9] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE ICC, 2019.

[10] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

[11] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[12] C. Yang, Q. Wang, M. Xu, S. Wang, K. Bian, and X. Liu, “Heterogeneity-
aware federated learning,” arXiv e-prints, pp. arXiv–2006, 2020.

[13] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in International Conference on Learning
Representations, 2020.

[14] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[15] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in Proc. USENIX
OSDI, 2021.

[16] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proc. MLSys, 2020.

[17] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in
Proc. ICML, 2019.

[18] J. Han, M. M. Rafique, L. Xu, A. R. Butt, S.-H. Lim, and S. S. Vazhkudai,
“Marble: A multi-gpu aware job scheduler for deep learning on hpc
systems,” in Proc. IEEE/ACM CCGRID, 2020.

[19] H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni,
Y. Ong, J. Radhakrishnan, A. Verma, M. Sinn et al., “Ibm federated
learning: an enterprise framework white paper v0. 1,” arXiv preprint
arXiv:2007.10987, 2020.

[20] N. Ketkar, “Introduction to keras,” in Deep learning with Python.
Springer, 2017, pp. 97–111.

[21] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
and L. Jackel, “Handwritten digit recognition with a back-propagation
network,” NIPS, vol. 2, 1989.

[22] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[23] G. H. Alex Krizhevsky, Vinod Nair, “CIFAR-10 dataset,”
https://www.cs.toronto.edu/ kriz/cifar.html, 2014.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[25] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[26] J. Yao, Z. Dou, and J.-R. Wen, “Fedps: A privacy protection enhanced
personalized search framework,” in Proceedings of the Web Conference,
2021, pp. 3757–3766.

[27] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

	Introduction
	Background and Motivation
	Federated Learning with Resource Heterogeneity
	Federated Learning with Non-IID Data
	Federated Learning with Availability Heterogeneity
	Clients Selection
	Various Resource Scenarios

	Heterogeneity-Aware Adaptive Scheduling
	Overall Design
	Proposed Scheduling: Heterogeneity-Aware Adaptive Scheduling
	Objective Function

	Accuracy Performance and Fairness
	Global Test Accuracy
	Local Test Accuracy
	Ranking Model Performance

	Resource-fair Scheduling
	Availability Awareness
	Priority-based Clients Selection

	Evaluation
	Experimental Setup
	Testbed
	Model
	Datasets
	Training hyperparameters
	Heterogeneous setup
	Scheduling policies
	Metrics

	Experimental Results
	Overall performance
	Accuracy fairness
	Resource fairness
	Availability awareness
	Interval and training time
	Runtime overhead
	Comparison for CIFAR10 dataset
	Data heterogeneity

	Related Work
	Conclusion
	References

