
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE
6884

TreeCNN and NILMTK Unite: Illuminating Energy
Efficiency in Real-World Scenarios

Sabiha Afroz
Computer Science Department

Virginia Tech, Blacksburg, USA
sabihaafroz@vt.edu

Buvana Ramanan, Manzoor Khan
Autonomous Systems Research Department

Nokia Bell Labs, Murray Hill, USA
{buvana.ramanan, manzoor.a.khan}@nokia-bell-labs.com

Ali R. Butt
Computer Science Department

Virginia Tech,
Blacksburg, USA

butta@cs.vt.edu

Abstract— Efficiently managing electricity supply and demand,
especially during peak times to minimize waste, remains a key
challenge for the electric grid. An effective solution involves
incentivizing users to shift their shiftable loads, such as dishwash-
ers and washing machines, to off-peak periods. Non-Intrusive
Load Monitoring (NILM) provides a cost-effective and pragmatic
approach for detailed appliance energy consumption insights.
Among Deep Learning models, TreeCNN has shown superior
performance compared to RNN and traditional CNN models in
energy disaggregation. However, its evaluation has been limited
to the Dataport dataset. To fully assess TreeCNN’s capabilities,
comprehensive testing with diverse datasets like REDD, UK-
DALE, DRED and others is essential. Additionally, integrating
TreeCNN into NILMTK, a dataset standardization tool, enables
thorough comparisons with 16 formatted datasets and other
disaggregation algorithms. In this work, we integrated TreeCNN
into NILMTK toolkit and benchmarked, providing valuable
insights into its effectiveness and real-world usability.

Index Terms—Non-Intrusive Load Monitoring, load disag-
gregation, smart energy management, demand response, Arti-
ficial Intelligence, Machine Learning, Deep Learning, TreeCNN,
NILMTK, CNN, smart meter, Sequence-to-Point, REDD, UK-
DALE

I. INTRODUCTION

The world is currently facing energy shortages [1] and
carbon emission problems [2]. Statistics show that, on average,
20-30% [3] of a building’s energy is wasted. However, research
studies indicate that optimal use of electric appliances can re-
duce energy consumption by up to 20% [4]. Consumers cannot
effectively reduce energy usage just by looking at monthly
electricity bills. To understand the electricity consumption of
each household appliance, they need detailed consumption
data for each device. Therefore, detailed analysis reports can
motivate users to change their behavior regarding unnecessary
electricity consumption. Additionally, old or faulty appliances
consume more electricity, increasing bills. In this scenario,
aggregated monthly bills do not help clients identify inefficient
appliances which contribute most to electricity costs. Hence,
disaggregated energy consumption data would help consumers
identify malfunctioned appliances and replace them with new
ones.

Due to the increasing demand [5] for electricity, grid oper-
ators face challenges in load balancing. To address this, many
countries are installing smart meters [6] to obtain detailed
electricity usage patterns. With this detailed data analysis,
power suppliers can generate accurate predictions. Consumers
can use these predictions to adjust their behavior and use elec-
tricity more efficiently. Moreover, power companies can also
incentivize clients for optimal usage. For example, consumers
could shift their electricity usage to off-peak hours, earning
incentives from power companies and reducing their electricity
bills. Electricity bills are significantly higher during peak
hours, so shifting usage can result in substantial electricity
savings. Therefore, it is very crucial to break down aggregate
energy to appliance specific usage.

There are two approaches to load monitoring [7], [8]: 1)
Intrusive Load Monitoring (ILM) and 2) Non-Intrusive Load
Monitoring (NILM). ILM measures each appliance’s energy
consumption by attaching sensors to each device. Although
this method provides accurate readings, it is costly and requires
high maintenance. Conversely, the NILM method [9] calcu-
lates disaggregated loads for each appliance using the total
electricity consumption data from a smart meter. Hart [9] first
introduced the NILM approach. While NILM is less accurate
than ILM, it is more cost-effective and avoids ILM’s disad-
vantages. Consequently, NILM is gaining popularity within
the research community.

Combinatorial Optimization (CO) [10] is an early algorithm
used for NILM. It aims to find the optimal set of operational
states that best reconstruct the total power consumption of a
house. However, CO is susceptible to transients, an increasing
number of devices, and devices with similar characteristics.
State-based mathematical models, such as the Factorial Hidden
Markov Model (FHMM), have shown notable performance
for NILM [11]. FHMM analyzes aggregate power signals to
estimate the hidden operational states of each appliance, con-
sidering their state continuity over time [12]. While FHMM-
based methods effectively disaggregate periodic loads, they
perform less well with appliances that have short or infrequent
operating cycles [7]. Additionally, state-based models incur
high computational costs if a household has many appliances

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

97
9-

8-
35

03
-6

24
8-

0/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a6

23
23

.2
02

4.
10

82
55

84

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6885

with many power states [13].
Deep Neural Networks (DNNs) excel in natural language

processing, computer vision, and speech recognition. Recog-
nizing the potential of DNN models for NILM, researchers
adapted convolutional neural networks (CNN) [14] and long
short-term memory (LSTM) models [15] for load disaggrega-
tion, achieving better results compared to mathematical models
[8]. C. Zhang [16] proposed a Sequence-to-Point (Seq2Point)
neural network based on CNN, which outperformed existing
state-of-the-art models. The Seq2Point method is a real-time
energy disaggregation technique that uses a sliding window of
aggregate energy to predict the midpoint value of appliance
consumption within that window [17].

Smart meter specifications worldwide indicate that most
smart meters sample data at an hourly rate [18]. Therefore,
source-separation algorithms must process low sampling rate
time series data. Y. Jia [19] proposed a tree-structured neural
network model based on CNN, which outperformed Recurrent
Neural Network (RNN) [20] and traditional CNN models in
energy disaggregation on low frequency data. However, the
authors used only the Dataport [21] dataset for benchmarking.
This raises several questions: How does the TreeCNN model
compare with other state-of-the-art models like Seq2Point
[16]? Can it generalize across different publicly available
datasets such as REDD [22] and UK-DALE [23]?

NILMTK [24] is a popular open-source toolkit that helps
researchers compare new algorithms with existing energy
disaggregation algorithms, reproduce experimental results, and
compare across different datasets in a standard form. This
toolkit also provides various measurement metrics. We aimed
to incorporate the TreeCNN disaggregation model into this
toolkit to benchmark it against existing models and facili-
tate future comparisons with new algorithms. Benchmarking
TreeCNN across different datasets and models will help us
understand its generalization capabilities and performance
with different types of appliances.

Our main contributions are:
• Integrating the TreeCNN model into the open-source

NILMTK toolkit. For this integration, we preprocessed
the time series data into higher-dimensional data suitable
for the TreeCNN model.

• Comparing the performance of TreeCNN with three en-
ergy disaggregation models: 1) CO, 2) FHMM, and 3)
Seq2Point.

• Evaluating the performance of the TreeCNN model with
five public datasets: 1) REDD, 2) UK-DALE, 3) DRED
4) Smart*, and 5) IDEAL.

This paper is organized as follows: Section II provides a
detailed overview of various existing NILM models. Section
III outlines the steps for integrating the TreeCNN model
into the NILMTK toolkit. Section IV discusses the dataset
selection, appliance selection, evaluation metrics, experimental
setup, and results. Section V points out some limitations of
TreeCNN model, scope for improvement and comparative
analysis with Seq2Point. Finally, Section VI summarizes the
findings and suggests directions for future research.

II. BACKGROUND & MOTIVATION

A. What is Energy Disaggregation?
With the disaggregation approach, we can collect the en-

tire building’s energy usage and then determine the energy
consumption for each appliance, such as HVAC units, dish-
washers, and refrigerators. Knowing each appliance’s energy
consumption has many advantages. Residents can estimate
each appliance’s contribution to their electric bill and iden-
tify any malfunctioning appliances. This feedback can also
motivate behavioral changes. For example, since electricity
prices are higher during peak hours, users could run heavy
appliances during off-peak hours. Electricity distributors, after
observing the forecast, can offer incentives to users to shift
their workload to off-peak hours, benefiting both parties. As
energy is not an unlimited resource, this approach helps reduce
energy waste. The recent boom in smart meters is creating
opportunities for better energy disaggregation.

B. Combinatorial Optimization (CO)
G. Hart [10] first introduced the CO algorithm for non-

intrusive load monitoring. Suppose there are n appliances. Let
x(t) be an n-component Boolean vector representing the state
(ON or OFF) of the n appliances at time t. The aggregated
power at time t is the total sum of the power of individual
appliances that are ON. This problem can be formulated as a
CO problem (1) [10]:

x̂(t) = argmin
x

|P (t)−
n∑

i=1

xiPi| (1)

In this context, Pi denotes the p-vector representing the
power consumed by the ith appliance during its operation,
while P (t) refers to the p-vector of power at time t. The
objective is to minimize the difference between the observed
power and the predicted power. This is an NP-complete
“weighted set” problem that can only be solved by exhaustive
search when the size of n is small. This approach struggles
to identify simultaneous state changes of multiple appliances
[7].

C. Factorial Hidden Markov Model (FHMM)
The load disaggregation problem can be modeled as a

Hidden Markov Model (HMM) [25], [26]. An HMM consists
of two types of variables: observed variables and hidden
variables. The sequence of hidden variables forms a Markov
process, where hidden variables represent each appliance’s
state (ON, OFF), and observed variables represent power usage
in NILM. A FHMM is more suitable for modeling time series
generated by several independent processes. FHMM [27] is a
generalization of HMM, featuring multiple independent hidden
state sequences, with each observation depending on multiple
hidden variables. To design the model, we need four compo-
nents: 1) A finite set of hidden states x = x1, x2, x3, ..., xN , 2)
A transition matrix t, representing the probability of changing
states, 3) An emission matrix e, representing the probability
of emitting an observation, 4) An initial state probability
distribution π = {πi}.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6886

D. Sequence-to-Point(Seq2Point)

Kelly and Knottenbelt [20] proposed the Sequence-to-
Sequence (Seq2Seq) model in 2015, which improved per-
formance compared to existing machine learning models. In
2017, C. Zhang [16] introduced the Seq2Point model based on
CNN, which outperformed Seq2Seq. Seq2Point model takes a
mains window Yt:t+W−1 and outputs the midpoint element
xm of the corresponding window for the target appliance,
where m = t+⌊W/2⌋. Seq2Point generates a single prediction
for each step. For each time step prediction, the model must
iterate through each sample in the window, leading to multiple
predictions for the same data input. This approach requires
significant calculations and computational power, making the
process time-consuming [17].

E. TreeCNN

NILM algorithms work with high frequency (MHz range),
mid frequency (KHz range), and low frequency (less than 1
Hz) data. While high frequency data captures the entire signal,
its collection is costly [17], [28]. However, the widespread
deployment of smart meters has facilitated access to low
frequency data. Y. Jia [19] proposed the TreeCNN NILM
model for low frequency data. This DNN model uses CNN
to capture regular temporal energy consumption patterns in
households. The tree structure of the algorithm isolates the pat-
tern learning of each appliance, avoiding magnitude variance
problems and separating known from unknown appliances.
This model outperformed low frequency models like RNN
and basic CNN models. RNNs suffer from vanishing gradient
problem and lack parallel computation capabilities [16], [29].

Different appliances exhibit distinct temporal patterns. For
example, microwaves follow an hourly usage pattern during
meal times, while dryers display a daily pattern due to periodic
use. Modeling hourly time-series data as a one-dimensional
sequence is insufficient to fully describe appliances. Instead,
this data should be viewed as a high-dimensional compound
of various temporal patterns. The TreeCNN model uses CNN
to create spatial filters from hourly energy data, seen as a 2-D
matrix. These filters distinguish appliances with unique tem-
poral patterns. For instance, filters for microwaves emphasize
the hourly dimension, for dryers the daily dimension, and for
HVAC a combination of both. This allows aggregate readings
to be projected into their corresponding appliance usage.

The tree structure of the TreeCNN model iteratively decom-
poses each appliance’s energy consumption from the aggregate
energy. Each node of the TreeCNN model is a CNN model.
During the convolution phase, the CNN model takes the aggre-
gate input and reduces it to a denser representation, extracting
temporal patterns from the sparse and granular data, resulting
in a lower-dimensional, denser matrix. In the deconvolution
phase, the decoder reverses the encoder’s actions to reconstruct
the input. So, the root node of the tree takes aggregate energy
data as input and regenerates its associated appliance’s energy
consumption as output. The difference between the input and
output is then passed down to the child node of the tree as input

UK-DALE

NILMTK-
DF (1D Time
Series Data)

Training

Disaggregation

Model

Metrics

TreeCNN
NILMTK Model Interface

Data Interface

NILMTK Toolkit

REDD

Smart*

IDEAL

DRED

Preprocessed
Data (High

dimensional)

Fig. 1: TreeCNN model incorporation pipeline in NILMTK
toolkit.

to reconstruct the next associated appliance’s energy consump-
tion. Large energy-consuming appliances overshadow low
energy-consuming appliances, so placing these low energy-
consuming appliances at the end of the tree alleviates this
issue. Additionally, unknown energy consumption introduces
errors in energy disaggregation. Therefore, the tree structure
of this model views unknown energy consumption as a special
appliance to give a more accurate estimation of the observed
appliances. Since finding the optimal tree structure is an NP-
complete problem, the authors of the TreeCNN paper [19]
employed a greedy approach to determine an optimal tree
structure.

F. Non-Intrusive Load Monitoring Toolkit (NILMTK)

In 2014, N. Batra proposed an open-source toolkit called
the Non-Intrusive Load Monitoring Toolkit (NILMTK) for
the NILM research community [24]. Implemented in Python,
NILMTK provides a complete pipeline from datasets to ac-
curacy metrics. Publicly available datasets come in various
formats, making it difficult for researchers to compare their
algorithms across different datasets. NILMTK addresses this
issue by using a standard NILMTK-DF data format and
includes sixteen data converters to standardize public data.

NILMTK also implements benchmarking algorithms such
as CO, FHMM, Seq2Point, and Seq2Seq, allowing researchers
to compare their algorithms with state-of-the-art models. This
has improved the reproducibility of experimental results. Ad-
ditionally, NILMTK offers standard accuracy measurement
metrics, including Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and F1 score.

The toolkit follows a modular structure and provides APIs
for detailed analysis of each dataset, enhancing understanding.
It is also well-documented [30], making it easy to add new
algorithms or dataset converters.

III. METHODOLOGY

The authors of the TreeCNN model [19] tested it using the
Dataport [21] dataset and compared its performance against
RNN and traditional CNN models. To explore whether this
model can generalize across other datasets and how it com-
pares to benchmark algorithms such as CO and Seq2Point,
we integrated the TreeCNN model into the NILMTK toolkit.
NILMTK is an open-source platform with comprehensive

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6887

documentation [30] for integrating new source disaggrega-
tion algorithms. Integrating the TreeCNN model into the
NILMTK toolkit consists of two key steps: 1) Preprocessing
the NILMTK-DF, and 2) Creating the TreeCNN model class.
Fig. 1 illustrates the TreeCNN model integration pipeline in
the NILMTK toolkit.

A. Preprocessing the Data

Publicly available datasets vary in formatting and labeling.
NILMTK-DF is a standardized dataset format inspired by
the REDD dataset format. Existing datasets can be converted
into this standard format for use with the NILMTK tool.
Once imported, NILMTK retains the data in memory as the
NILMTK-DF data structure. NILMTK-DF stores electricity
data, relevant metadata, and other sensor data such as gas,
water, and temperature. This hierarchical structure is main-
tained as a Pandas DataFrame, indexed by time, and includes
columns for physically measured quantities like active power
for each appliance, mains (from the grid), circuits, etc.

The TreeCNN model works with hourly energy data due
to its key properties: sparsity and regularity across multiple
temporal dimensions, significant variation in energy consump-
tion magnitudes across different appliances, and the presence
of unknown consumption sources [19]. Since the TreeCNN
model is designed for high-dimensional hourly time series data
([Number of houses * Appliance No * Number of Days *
Hours in a Day]), preprocessing is necessary before training
the model. We defined a preprocessing function that takes
Pandas DataFrame data and converts it to hourly data. Once the
data conversion is complete, we feed the data to the TreeCNN
model for training. This allows the TreeCNN model to work
with any dataset available in the NILMTK toolkit.

B. Model Inclusion

NILMTK’s disaggregation algorithms are located in the
‘nilmtk/nilmtk/disaggregate/’ directory and are implemented
as Python classes. We created a class ‘TreeCNN’ that extends
the Disaggregator superclass and implements all required
methods. In this class, we used the ‘partial fit’ (training
method) and ‘disaggregate chunk’ methods. In the ‘ init ’
function, we set ‘self.MODEL NAME’ to ‘TreeCNN’, which
describes our algorithm name. The ‘TreeCNN’ class is then
imported in the ‘ init .py’ file located within the ‘nilmtk/
nilmtk/disaggregate/’ directory. Fig. 2 shows the TreeCNN
model class algorithm in NILMTK toolkit.

The TreeCNN algorithm needs to learn how appliances
consume energy from existing data. Disaggregation algorithms
typically require appliance-level data from the building to be
disaggregated (supervised) or from other buildings (unsuper-
vised). The ‘train jointly’ method in the ‘api.py’ class receives
a MeterGroup data object containing a list of ElecMeter ob-
jects. This function extracts the Pandas DataFrame time series
data of aggregated power and each appliance’s power from the
MeterGroup data. The mains and submeter data are then sent
to the ‘partial fit’ function of the TreeCNN model class for
training. The trained model is stored in volatile memory and

import torch

class TreeCNN(Disaggregator):
 def __init__(self, params):

 self.MODEL_NAME = 'TreeCNN'
 self.save_model_path = params.get('save-model-path', None)
 self.load_model_path = params.get('pretrained-model-path',None)

 def partial_fit(self, train_main, train_appliances, do_preprocessing=True,
 **load_kwargs):

 hd_data = self._preprocess_data(train_main, train_appliances)
self.train_model(hd_data)

def disaggregate_chunk(self, mains):
hd_data = self._preprocess_data(mains)
test_prediction_list = self.test_model(hd_data)
return test_prediction_list

def _preprocess_data(self, mains, appliances = None):
#converts to one dimensional time series data to hourly high

dimensional data
…
return hd_data

def train_model(self, hd_data):
#train the TreeCNN model with hd_data
…

 def test_model(self, hd_data):
 test_prediction_list = []
 #test the TreeCNN model with hd_data
…
return test_prediction_list

Fig. 2: TreeCNN model Python class in NILMTK toolkit.

will be lost once the disaggregator object is destroyed. The
‘import model()’ and ‘export model()’ methods can be used
to create persistent models, allowing a model to be loaded
from or saved to disk, facilitating incremental training on large
datasets and sharing of pretrained models within the research
community.

The trained TreeCNN model uses the ‘disaggregate chunk’
method to generate predictions for each appliance. This
method returns predictions as a Pandas DataFrame, with
columns representing individual appliances and rows corre-
sponding to time instants. The returned DataFrame’s indexes
must precisely match those of the input parameter DataFrame.
Subsequently, ‘api.py’ class utilizes this prediction data from
‘disaggregate chunk’ method to compute various performance
metrics.

IV. EVALUATION

A. Dataset Selection

We selected five publicly available datasets—REDD, UK-
DALE, DRED, Smart*, and IDEAL—for training and evaluat-
ing NILM models. Table I characterizes these low-frequency
datasets, all of which are measured in residential setups.

The Reference Energy Disaggregation Data Set (REDD)
[22], was first published in 2011, contains both aggregated
and sub-metered data from six households over several weeks.
The UK-DALE dataset [23], published by the UK recording
Domestic Appliance-Level Electricity project, comprises data
from five households collected from 2012 to 2017, including
both aggregate demand and ground truth demand for each
appliance.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6888

The Dutch Residential Energy Dataset (DRED) [31] from
the Netherlands records both aggregated and appliance-level
energy consumption from one household over a couple of
months, with data collected every second. The Smart* dataset
[32], published in 2012, provides a variety of environmental
and operational data from three homes, measuring appliance
power and total consumption in kilowatts. The IDEAL data
corpus [33], published by the University of Edinburgh’s School
of Informatics, includes data from 255 UK homes over a
23-month period, with 39 of these homes containing both
aggregated and sub-metered appliance data.

B. Appliances Selection

For our experiments, we considered the fridge, dishwasher,
washing machine, microwave, and kettle appliances from the
UK-DALE dataset. The REDD and Smart* datasets lack kettle
data, while the DRED dataset includes only one building
with fridge, washing machine, and microwave data. For the
IDEAL dataset, we have taken fridge, dishwasher and washing
machine appliances. These appliances significantly impact
total power consumption and represent a diverse range of
device types. The fridge remains constantly ON, whereas the
dishwasher, washing machine, and similar appliances switch
ON and OFF. Low sampling rates pose challenges for ON/OFF
appliances because they may only be used briefly within an
hour, which is a key reason why existing NILM algorithms
often struggle with low sampling rate data.

C. Evaluation Metrics

Energy disaggregation research covers a wide range of
application area. To meet this need, NILMTK [24] offers a
collection of metrics that encompass both general detection
metrics and those specific to energy disaggregation. For our
research work, we have considered MAE [16], [24] and RMSE
[24], [29] to measure and compare the performance of different
energy disaggregation model. MAE and RMSE measure the
precision of energy disaggregation, with RMSE being more
sensitive to outliers.

Mean Absolute Error: It is defined by the sum of the
differences between the predicted power x̂

(n)
i and the actual

power x(n)
i of appliance n in each time slice t, divided by the

appliance’s total energy x
(n)
t consumption (2).

∑
t |x

(n)
i − x̂

(n)
i |∑

t x
(n)
t

(2)

Root Mean Square Error: It is calculated between the
predicted power x̂

(n)
i and the actual power x

(n)
i of appliance

n observed over T times (3).√
1

T

∑
t

(x
(n)
i − x̂

(n)
i)2 (3)

Lower MAE and RMSE values indicate better performance.

D. Experimental Setup

We compared the TreeCNN model with other baseline
algorithms, including CO, FHMM, and Seq2Point, measuring
MAE and RMSE parameters. For the TreeCNN model, we
used 3000 epochs, while Seq2Point was run for 50 epochs with
a batch size of 64. Details of the hardware and software config-
urations are provided in Table II. The TreeCNN model works
with hourly data. And, the TreeCNN model constructs a tree
structure using different appliances. Finding the optimal tree
structure is an NP-complete problem [19]. In our experiments,
we used four different orders of appliances to form the tree
structure for the model. From these, we identified the optimal
tree structure to plot the TreeCNN graph. Additionally, we
averaged the energy disaggregation results from all four tree
structures to create the TreeCNN Avg plot. Table III provides
details of the training and testing building data for each dataset.
It also includes the optimal appliance order for TreeCNN,
which was chosen from the four possible orders used in our
experimental setup.

E. Experimental Results

Our evaluation spans three key scenarios: (1) same build-
ing training and testing, (2) cross-building evaluation within
the same dataset, and (3) cross-dataset generalization. While
traditional mathematical models (CO and FHMM) generally
underperformed across all scenarios, we focus our analysis
on comparing the deep learning approaches - TreeCNN and
Seq2Point. We will use the following abbreviations for ap-
pliances throughout: Fridge (F), Dishwasher (DW), Washing
Machine (WM), Microwave (MW), and Kettle (K).

In the DRED dataset (Case 1), as shown in Fig. 3a,
TreeCNN demonstrated superior performance for ON/OFF
devices, with notably low MAE values of 3.43 and 7.89
for WM and MW respectively. The model’s CNN filters
effectively captured both weekly patterns (WM) and daily
patterns (MW), despite the potential overshadowing effect of
high-power appliances. Fig. 3b further highlights TreeCNN’s
superior prediction performance with RMSE values of 52.11
and 45.02 for WM and MW respectively. This performance
demonstrates TreeCNN’s ability to handle appliances with
different temporal patterns simultaneously.

For the Smart* dataset (Case 1, Building 3), we split data
into training (2014-01-01 to 2014-06-30) and testing (2014-
07-01 to 2014-08-30) periods. As shown in Fig. 4a, Seq2Point
achieved the lowest MAE (0.052) for the F, while TreeCNN
showed consistent performance across all appliances, though
with 26% higher MAE for DW compared to baseline models.
The RMSE values (Fig. 4b) for DW, WM, and MW are
almost identical between the models, indicating that both deep
learning approaches handle power variation similarly for these
appliances.

The REDD dataset evaluation (Case 2) focused on cross-
building generalization, with training on buildings 2, 3, 5 and
testing on building 1. During the period from 2011-04-01
to 2011-05-30, WM power consumption in buildings 2 and
5 ranged between 0-6 Watt, indicating infrequent use. Fig.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6889

TABLE I: Dataset Information

Dataset Number of
Buildings Institution Location

Appliance
Sample
Frequency

Aggregate
Sample
Frequency

REDD 6 MIT Massachusetts, US 3s 1s
UK-DALE 5 Imperial College London, UK 6s 1-6s
DRED 1 TUDelft Netherlands 1s 1s
Smart* 3 UMass Western Massachusetts, US 1s 1s
IDEAL 255 University of Edinburgh UK 5s 1s

0

20

40

60

80

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

MAE for DRED dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Washing Machine Microwave
Disaggregation categories

(a) MAE measurement

0

20

40

60

80

100

120

140

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

RMSE for DRED dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Washing Machine Microwave
Disaggregation categories

(b) RMSE measurement

Fig. 3: MAE & RMSE measurements of DRED dataset for
Case 1 (Building 1 data is splitted into training (July 05,
2015, to October 30, 2015) and testing (November 01, 2015,
to December 05, 2015) periods).

TABLE II: System Configurations

OS Ubuntu 22.04 LTS
CPU 2x Xeon Silver 4314 (16c, 32t)
GPU Nvidia A40
Memory 192 GB
Storage 4x 960GB NVMe SSD
Python 3.8.17
PyTorch 2.0.0

5a shows both CNN-based models significantly outperformed
traditional approaches, with Seq2Point showing exceptional
performance across all four appliances, achieving a 56.96%
reduction in MAE for F compared to FHMM. This superior
performance stems from better handling of varying power
consumption patterns between buildings. The RMSE results
(Fig. 5b) further highlight the strong performance of TreeCNN
and Seq2Point. Additionally, we verified MAE for FHMM and
Seq2Point algorithms for F, DW appliances with the men-
tioned training and testing setup from [34], which validates
our implementation’s consistency.

In the UK-DALE dataset (Case 2), Fig. 6a demonstrates that
TreeCNN maintained consistent performance with MAE rang-
ing from 34 to 46 across all five appliances, while Seq2Point
achieved the lowest MAE (≈7) for WM. As shown in Fig.
6b, both models handled sharp power usage peaks effectively,
particularly evident in kettle disaggregation where traditional
approaches struggled with short, intense bursts of activity. Our
measured MAE aligned for Seq2Point for F, DW with the
reported training and testing setup from the paper [34].

The IDEAL dataset (Case 2) evaluation (Fig. 7a) highlighted
TreeCNN’s strength in handling WM (MAE ≈64) but revealed
limitations with DW (MAE >90) due to diverse usage patterns.
We observed that power consumption range of WM in testing
unseen data differs from training data, with sharp consump-
tion peaks present in the dataset. TreeCNN outperformed
Seq2Point by 2.8x for WM, suggesting better handling of
operational cycles. Fig. 7b demonstrates TreeCNN’s superior
performance for F and WM appliances, though it struggles
with DW (RMSE ≈350).

Finally, in our cross-dataset experiment (Case 3) using UK-
DALE for training and REDD for testing, Fig. 8a shows
both CNN models demonstrated superior generalization ca-
pabilities. TreeCNN excelled in MW prediction (MAE <25)
but struggled with DW (MAE ≈80) due to varying power
consumption patterns between the UK-DALE and REDD
datasets. The hierarchical tree structure of TreeCNN shows

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6890

TABLE III: Training & Testing Information about Datasets

Dataset Trained on Building
Data Tested on Building Data Appliances Order for

TreeCNN
DRED 1 1 F, WM, M
Smart* 3 3 F, DW, WM, MW
REDD 2, 3, 5 1 F, WM, DW, MW
UK-DALE 1, 5 2 F, DW, WM, MW, K
IDEAL 136, 175 105 F, WM, DW
UK-DALE
& REDD 1, 2 (UK-DALE) 1 (REDD) F, WM, DW, MW

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

MAE for Smart* dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine Microwave
Disaggregation categories

(a) MAE measurement

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

RMSE for Smart* dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine Microwave
Disaggregation categories

(b) RMSE measurement

Fig. 4: Smart* dataset’s MAE & RMSE measurements for
Case 1 (The power measurement for this dataset is in kilowatts,
so the MAE and RMSE values for all models are below 1).

0

20

40

60

80

100

120

140

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

MAE for REDD dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine Microwave
Disaggregation categories

(a) MAE measurement

0

50

100

150

200

250

300

350

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

RMSE for REDD dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine Microwave
Disaggregation categories

(b) RMSE measurement

Fig. 5: REDD dataset’s MAE & RMSE results for appliances
F, DW, WM and MW for Case 2.

limitations in capturing diverse DW patterns efficiently. Fig.
8b illustrates Seq2Point’s consistent performance across all ap-
pliances, attributed to its sequence-to-point learning approach
that better handles complex temporal sequences. Additionally,
our measured MAE for F, WM appliances for CO, FHMM,
and Seq2Point are consistent with the paper [35] findings.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6891

0

50

100

150

200

250

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

MAE for UK-DALE dataset for disaggregation categories
CO FHMM TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher WashingMachine Microwave Kettle
Disaggregation categories

(a) MAE measurement

0

100

200

300

400

500

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

RMSE for UK-DALE dataset for disaggregation categories
CO FHMM TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher WashingMachine Microwave Kettle
Disaggregation categories

(b) RMSE measurement

Fig. 6: UK-DALE dataset experiment for five household
appliances F, DW, WM, MW and K for Case 2.

F. Inference Time Measurement

Trained NILM models are deployed in systems to provide
predictions for unseen household appliance data. The time it
takes for a trained model to generate a prediction for a sample
is called inference time, which is critical because users expect
rapid forecasts that can handle many requests efficiently. To
better understand this metric, we measured the serving time for
one sample using the Smart* dataset, focusing on the fridge ap-
pliance, which is common in every household. We trained four
algorithms—CO, FHMM, Seq2Point, and TreeCNN—using
data from the building 1, covering the period from 2014-07-01
to 2014-09-30. We recorded the inference time for 100 samples
and averaged the results in milliseconds. Table IV shows
the measured inference times for the four models. Both CO
and FHMM models took around 47 milliseconds per sample.
FHMM uses a probabilistic model with fixed hidden states
and transition probabilities, while CO involves solving an
optimization problem based on precomputed patterns. Both of
these models employ relatively straightforward mathematical
operations for inference. These factors contribute to their short
inference times. Seq2Point model took an average of 120
milliseconds per sample. As a DNN model with many CNN

0

50

100

150

200

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

MAE for IDEAL dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine
Disaggregation categories

(a) MAE measurement

0

100

200

300

400

500

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

RMSE for IDEAL dataset for disaggregation categories
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine
Disaggregation categories

(b) RMSE measurement

Fig. 7: MAE & RMSE values of appliances F, DW and WM
for the IDEAL dataset under Case 2 scenario.

layers, Seq2Point’s inference process involves passing data
through multiple layers of neurons, requiring numerous matrix
multiplications and nonlinear transformations. This complexity
results in a longer inference time compared to simpler models
like CO and FHMM. TreeCNN model took approximately 70
milliseconds per sample. TreeCNN uses fewer CNN layers
than Seq2Point and employs a hierarchical tree structure to ef-
ficiently capture temporal patterns in appliances. This balance
between capturing detailed temporal patterns and maintaining
efficiency results in a medium inference time, longer than CO
and FHMM but shorter than Seq2Point. These results highlight
the trade-offs between model complexity and inference time,
with simpler models being faster but potentially less accurate,
and more complex models being slower but more capable of
capturing intricate patterns in the data.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6892

0

20

40

60

80

100

120

140

160
M

ea
n

Ab
so

lu
te

 E
rro

r (
M

AE
)

MAE for UK-DALE (Train) & REDD (Test) datasets
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine Microwave
Disaggregation categories

(a) MAE measurement

0

50

100

150

200

250

300

350

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

RMSE for UK-DALE (Train) & REDD (Test) datasets
CO
FHMM

TreeCNN TreeCNN_Avg Seq2Point

Fridge Dishwasher Washing Machine Microwave
Disaggregation categories

(b) RMSE measurement

Fig. 8: MAE & RMSE values for appliances F, DW, WM
and MW for Case 3 (Trained with the UK-DALE dataset and
tested with the REDD dataset).

TABLE IV: Inference Time for NILM Models

Model Name Inference Time (ms)
CO 47.8
FHMM 47.92
Seq2Point 120.03
TreeCNN 70.76

V. DISCUSSION

A. Limitations, Insights and Scope for Improvement

Our comprehensive evaluation of TreeCNN across multiple
datasets reveals several key limitations and opportunities for
enhancement. First, while TreeCNN excels in single-building
scenarios, its performance degrades when generalizing across
different datasets, particularly for appliances with varying
power consumption patterns. This limitation stems from the
model’s rigid tree structure, which, once optimized for a
specific building’s temporal patterns, may become subopti-

mal when applied to significantly different usage contexts.
The model particularly struggles with appliances exhibiting
sharp power consumption peaks (e.g., dishwashers) or highly
variable usage patterns across households. This challenge is
compounded by the current greedy approach for determining
tree structure, which may not achieve global optimality. To
address these limitations, several promising directions for
improvement emerge: (1) implementing an adaptive tree struc-
ture that can dynamically adjust based on observed patterns
and real-time performance metrics, (2) incorporating attention
mechanisms to better handle varying appliance importance and
temporal patterns, and (3) developing transfer learning capabil-
ities to improve cross-dataset generalization. Additionally, the
integration of contextual features such as time of day, seasonal
patterns, and geographical factors could enhance the model’s
ability to capture more complex usage patterns. The current
implementation’s assumption of consistent temporal patterns
may not hold across different cultural or geographical contexts,
suggesting the need for more sophisticated pattern recognition
mechanisms.

B. Comparative Analysis with Seq2Point

Our experimental results demonstrate fundamental trade-
offs between TreeCNN and Seq2Point models, rooted in
their architectural differences and reflected in their perfor-
mance characteristics. While TreeCNN achieves superior per-
formance in single-building scenarios through its recursive
decomposition approach, Seq2Point demonstrates more robust
generalization across different datasets and buildings. This dif-
ference stems from their core architectural designs: Seq2Point
excels at capturing localized temporal coherence through
its sliding window mechanism, enabling accurate predictions
for ON/OFF appliances with sharp and infrequent power
consumption peaks. Its sequence-to-point learning approach,
which predicts a target appliance’s power consumption for
a specific point within a window, effectively reduces error
accumulation that can plague hierarchical models. TreeCNN,
conversely, employs a hierarchical decomposition strategy that
recursively reduces aggregate power readings into appliance-
specific patterns. While this approach is particularly effective
for continuous appliances like refrigerators and scenarios
with regular, well-separated appliance patterns, it can struggle
with appliances exhibiting sporadic usage patterns due to
residual propagation through the tree structure. This archi-
tectural distinction manifests in computational differences as
well - Seq2Point requires approximately 120 milliseconds
for inference compared to TreeCNN’s 70.76 milliseconds.
Though this 50 milliseconds difference may seem minimal
for offline applications, it becomes significant in large-scale
deployments processing millions of data points. The choice
between these models thus depends on specific application
requirements: TreeCNN is more suitable for single-building
deployments requiring faster inference and handling stable
usage patterns, while Seq2Point’s robust error handling and
temporal coherence make it better suited for multi-building
deployments and cross-regional applications where consistent

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

6893

generalization is paramount. Future research could potentially
bridge this gap by developing hybrid approaches that combine
TreeCNN’s hierarchical efficiency with Seq2Point’s robust
temporal pattern recognition capabilities.

VI. CONCLUSION

In this paper, we integrated the TreeCNN model into
the NILMTK toolkit and evaluated its performance against
baseline models across diverse datasets. TreeCNN excelled
in single-building scenarios by effectively isolating appliance
patterns with its hierarchical decomposition, achieving low
MAE and RMSE for both ON/OFF and continuous appliances.
However, its performance diminished in cross-building and
cross-dataset evaluations, particularly for irregular or vari-
able appliance usage patterns like dishwashers. Compara-
tively, Seq2Point demonstrated better generalization across
datasets due to its sequence-to-point architecture, albeit with a
slightly higher inference time (120ms vs. 70ms). Deep learn-
ing models like TreeCNN and Seq2Point outperform tradi-
tional approaches in NILM, but TreeCNN’s limitations—rigid
tree structure, error propagation, and suboptimal generaliza-
tion—highlight opportunities for improvement. Future work
will focus on adaptive tree structures, transfer learning for
cross-dataset generalization, and pretraining on unlabeled data
to enhance its performance.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insight-
ful comments and feedback. This work has been partially
funded by NSF grants CSR-2106634, CSR-2312785, CCF-
1919113, and OAC-2004751, along with UKRI-EPSRC grant
EP/X035085/1.

REFERENCES

[1] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy
consumption information,” in Energy and buildings 40, no. 3, 2008, pp.
394–398.

[2] S. S. Sharma, “Determinants of carbon dioxide emissions: empirical
evidence from 69 countries,” in Applied energy 88, no. 1, 2011, pp.
376–382.

[3] “Energy star: Save energy,” https://www.energystar.gov/buildings.
[4] E. Aydin, D. Brounen, and N. Kok, “Information provision and energy

consumption: Evidence from a field experiment,” in Energy Economics
71, 2018, pp. 403–410.

[5] T. N. et al., “Recent Challenges and Methodologies in Smart Grid
Demand Side Management: State-of-the-Art Literature Review,” in
Mathematical Problems in Engineering 2021, no. 1, 2021, p. 5821301.

[6] Y. W. et al., “Review of smart meter data analytics: Applications,
methodologies, and challenges,” in IEEE Transactions on Smart Grid
10, no. 3, 2018, pp. 3125–3148.

[7] S. C. et al., “Nonintrusive load monitoring based on self-supervised
learning,” in IEEE Transactions on Instrumentation and Measurement
72, 2023, pp. 1–13.

[8] L. Yin and C. Ma, “Interpretable Incremental Voltage-Current Repre-
sentation Attention Convolution Neural Network for Nonintrusive Load
Monitoring,” in IEEE Transactions on Industrial Informatics 19, no. 12,
2023, pp. 11 776–11 787.

[9] G. W. Hart, “Nonintrusive appliance load data acquisition method:
Progress report,” in MIT Energy Laboratory, 1984.

[10] G. W. Hart, “Nonintrusive appliance load monitoring,” in Proceedings
of the IEEE 80, no. 12, 1992, p. 1870–1891.

[11] J. Z. Kolter and T. Jaakkola, “Approximate inference in additive factorial
hmms with application to energy disaggregation,” in Artificial intelli-
gence and statistics, 2012, pp. 1472–1482.

[12] L. Mauch and B. Yang, “A novel DNN-HMM-based approach for
extracting single loads from aggregate power signals,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 2384–2388.

[13] J. H. et al., “MSDC: exploiting multi-state power consumption in non-
intrusive load monitoring based on a dual-CNN model,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 37, no. 4, 2023,
pp. 5078–5086.

[14] J. C. et al., “Temporal and spectral feature learning with two-stream
convolutional neural networks for appliance recognition in NILM,” in
IEEE Transactions on Smart Grid 13, no. 1, 2021, pp. 762–772.

[15] L. Mauch and B. Yang, “A new approach for supervised power dis-
aggregation by using a deep recurrent LSTM network,” in IEEE global
conference on signal and information processing (GlobalSIP), 2015, pp.
63–67.

[16] C. Z. et al., “Sequence-to-point learning with neural networks for non-
intrusive load monitoring,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 32, no. 1, 2018.

[17] B. G. et al., “Deep learning based non-intrusive load monitoring for a
three-phase system,” in IEEE Access 11, 2023, pp. 49 337–49 349.

[18] “Staff Report. 2017,” in 2017 Assessment of Demand Response and
Advanced Metering.

[19] Y. Jia, N. Batra, H. Wang, and K. Whitehouse, “A tree-structured neural
network model for household energy breakdown,” in The World Wide
Web Conference, 2019, pp. 2872–2878.

[20] J. Kelly and W. Knottenbelt, “Neural NILM: Deep neural networks
applied to energy disaggregation,” in Proceedings of the 2nd ACM
international conference on embedded systems for energy-efficient built
environments, 2015, pp. 55–64.

[21] O. P. et al., “Dataport and NILMTK: A building data set designed for
non-intrusive load monitoring,” in IEEE global conference on signal and
information processing (GlobalSIP), 2015, pp. 210–214.

[22] J. Z. Kolter and M. J. Johnson, “REDD: A public data set for energy
disaggregation research,” in Workshop on data mining applications in
sustainability (SIGKDD), San Diego, CA, vol. 25, no. Citeseer, 2011,
pp. 59–62.

[23] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic
appliance-level electricity demand and whole-house demand from five
UK homes,” in Scientific data 2, no. 1, 2015, pp. 1–14.

[24] N. B. et al., “NILMTK: An open source toolkit for non-intrusive load
monitoring,” in Proceedings of the 5th International Conference on
Future Energy Systems, 2014, pp. 265–276.

[25] W. L. et al., “Industrial load disaggregation based on Hidden Markov
Models,” in Electric Power Systems Research 210, 2022, p. 108086.

[26] W. K. et al., “A hierarchical hidden markov model framework for home
appliance modeling,” in IEEE Transactions on Smart Grid 9, no. 4,
2016, pp. 3079–3090.

[27] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models
machine learning,” in Kluwer Academic Publishers, 1997.

[28] P. H. et al., “Review on deep neural networks applied to low-frequency
NILM,” in Energies 14, no. 9, 2021, p. 2390.

[29] Z. S. et al., “Multiscale self-attention architecture in temporal neural
network for nonintrusive load monitoring,” in IEEE Transactions on
Instrumentation and Measurement 72, 2023, pp. 1–12.

[30] “NILMTK documentation,” https://github.com/nilmtk/nilmtk/tree/
master/docs/manual.

[31] A. S. U. Nambi, A. R. Lua, and V. R. Prasad, “LocED: Location-aware
energy disaggregation framework,” in Proceedings of the 2nd ACM
International Conference on Embedded Systems for Energy-Efficient
Built Environments, 2015, pp. 45–54.

[32] S. B. et al., “Smart*: An open data set and tools for enabling research
in sustainable homes,” in SustKDD, August 111, no. 112, 2012, p. 108.

[33] M. P. et al., “The IDEAL household energy dataset, electricity, gas,
contextual sensor data and survey data for 255 UK homes,” in Scientific
Data 8, no. 1, 2021, p. 146.

[34] J. H. et al., “InFocus: Amplifying critical feature influence on non-
intrusive load monitoring through self-attention mechanisms,” in IEEE
Transactions on Smart Grid 14, no. 5, 2023, pp. 3828–3840.

[35] N. B. et al., “Towards reproducible state-of-the-art energy disaggrega-
tion,” in Proceedings of the 6th ACM international conference on systems
for energy-efficient buildings, cities, and transportation, 2019, pp. 193–
202.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 14,2025 at 16:38:50 UTC from IEEE Xplore. Restrictions apply.

