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Abstract—Emerging big data applications comprise rich multi-
faceted workflows with both compute-intensive and data-intensive
tasks, and intricate communication patterns. While MapReduce
is an effective model for data-intensive tasks, the MPI program-
ming model may be better suited for extracting high-performance
for compute-intensive tasks. Researchers have recognized this
need to employ specialized models for different phases of a
workflow, e.g., performing computations using MPI followed by
visualizations using MapReduce. However, extant multi-cluster
approaches are inefficient as they entail data movement across
clusters and porting across data formats. Consequently, there is
a crucial need for disparate programming models to co-exist on
the same set of resources.

In this paper, we address the above issue by designing
GERBIL, a framework for transparently co-hosting unmodified
MPI applications alongside MapReduce applications on the same
cluster. GERBIL exploits YARN as the model agnostic resource
negotiator, and provides an easy-to-use interface to the users.
GERBIL bridges the fundamental mismatch between YARN and
MPI by designing an MPI-aware resource allocation mechanism.
We also support five different optimizations: minimizing job
wait time, achieving inter-process locality, achieving desired
cluster utilization, minimizing network traffic, and minimizing
job execution time, all in a multi-tenant environment. Our
evaluation shows that GERBIL enables MPI executions with
performance comparable to a native MPI setup, and improve
compute-intensive applications performance by up to 133% when
compared to the corresponding MapReduce-based versions.

I. INTRODUCTION

MapReduce [7] has emerged as the de facto distributed pro-
cessing model for big data analytics due to its ease-of-use and
ability to scale. Although a wide-range of applications, such
as web crawling and text processing [23] and log querying [4],
benefit from the MapReduce model, there exists numerous rich
data analytics workflows that can not be fully or efficiently
captured using MapReduce. Consider Metagenomics [40], a
life science workflow that consists of clustering and multi-
dimensional scaling operations that involve parallel linear al-
gebra computations [45]. Such compute- and communication-
intensive jobs entail intricate communication patterns that
cannot be captured by only the shuffle supported in MapRe-
duce. For such applications, the well established Message
Passing Interface (MPI) [13] is more suitable due to its ability
to support any communication pattern. Moreover, MPI has
proved its mettle in large-scale high-performance scientific
computing (HPC). However, simply porting the I/O-intensive
data analytics workflow to MPI is impractical, given the
demonstrated ability of MapReduce to deliver high-throughput
for data-intensive workloads. Moreover, a MapReduce appli-
cation has the added advantage of being able to run on public

cloud services, e.g., Amazon AWS [1], which removes the
need for dedicated in-house clusters and lower the barrier-to-
entry for users. Consequently, a new two-cluster paradigm is
emerging, wherein the compute-intensive tasks of a workflow
are run using MPI on traditional HPC clusters, and then
the data is moved to a MapReduce cluster for data-intensive
processing [42]. This is undesirable due to unnecessary dual
maintenance of two kinds of clusters. Moreover, such settings
entail performance degrading manual copying of data from
one model to another, e.g., from the cluster file systems of
HPC to HDFS [42] for Hadoop/MapReduce.

An alternative approach is to port MPI applications to
MapReduce, either via auxiliary libraries [3], [6], [29], [38],
[52] or by re-designing parallel algorithms using MapReduce
APIs [39], [44], [50], [51]. Though promising, this approach
is not always possible without completely redesigning well-
established applications [50], which undermines the effort
done in validating and developing the original applications. A
promising development here is the evolution of the standard
monolithic Hadoop design [2] into YARN [48] via decoupling
of resource management from task management. YARN lays
the foundation for supporting diverse programming paradigms
and not just MapReduce on the managed resources. However,
while YARN is programming model agnostic in concept, it is
based on refactored code from Hadoop 1.0 [48], and inherits
many of the design decisions and implementation aimed at
supporting only the MapReduce model.

In this paper, we address the above issues by designing
GERBIL, a YARN-based framework for transparently co-
hosting unmodified MPI applications alongside MapReduce
applications on the same set of resources. Enhancing YARN
to host MPI applications allows realization of rich data an-
alytics workflows as well as efficient data sharing between
the MPI and MapReduce models within a single cluster.
GERBIL enables fine-grained application-to-model matching
and has the promise to significantly improve performance and
ease-of-use. Users can leverage say an MPI matrix multi-
plier with a MapReduce log analysis, both within a single
workflow running on an integrated cluster without manual
hacking. GERBIL hides the low-level details such as resource
negotiations and management of dual models from the users,
while supporting user-specified task allocation strategies, e.g.,
optimizing for minimum job wait time, inter-process locality,
or desired cluster utilization, in a multi-tenant environment.
Moreover, there is a great interest from the open source
Hadoop community to embrace MPI as a first class citizen
on YARN [43]. GERBIL aims to deliver on this promise.



We faced several challenges when designing GERBIL.
YARN provides for customized application management com-
ponent (application master, AM) that can be exploited to sup-
port multiple programming models. First, we need to design an
AM that manages the life cycle of allocated resources and the
assignment of MPI processes to the allocated resources in an
efficient way, requiring in-depth understanding of YARN and
its interactions. Second, we found that there is a significant
difference in the design and resource management principles of
MapReduce and MPI, precluding a straightforward extension
of YARN to support MPI. For example, YARN allocates
resources based on heart beats from node managers, which
results in long resource allocation time and can lead to
significantly long MPI application launching compared to a
native MPI cluster. Third, we have to address cases where
available resources are not enough to assign all tasks of an MPI
application. A naive solution of waiting for more resources
to become available, and not using the currently available
resources, can lower cluster utilization and increase application
turn-around time. We propose resource over-subscription so as
to allow an MPI application to start albeit in a degraded mode
due to sharing/over-subscription of the underlying resources.

Specifically, this paper makes the following contributions:

• We identify a fundamental mismatch between YARN
resource negotiation mechanism and the MPI program-
ming model (Section II). We found that the MapReduce-
tailored, container-based resource negotiation protocol in
YARN does not work well for MPI applications that in
essence require gang resource allocation.

• We present the design and implementation of GERBIL

(Section III and Section IV), which supports traditional
MPI job submission semantics as well as allocation of
cluster resources to MPI jobs via negotiating with YARN
and transparently launching the applications.

• We present five resource provisioning strategies for GER-
BIL for multi-tenant environments (Section III-C). Such
flexible resource provisioning helps in executing the MPI
applications based on various cluster utilization goals
such as minimizing application launching time, reducing
network traffic and increasing cluster resource utilization.

• We conduct an in-depth performance study of GERBIL on
an 19-node cluster [21] using representative applications
(Section V). Our experiments show that GERBIL can
run MPI applications with performance comparable to
the native MPI setup. The runtime overhead of GERBIL,
mostly incurred by the resource negotiation with YARN,
is observed to be constant and would become negligible
when amortized across long-running applications.

II. ENABLING TECHNOLOGIES

In this section, we describe MPI and YARN, which serve
as the enabling technologies for GERBIL.

A. The MPI Framework

MPI (Message-Passing Interface) [13] uses explicit mes-
sages to coordinate between distributed processes. In our work,
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Fig. 1. Steps of launching an application in YARN.

we use the publicly available MPICH [16]. MPICH pro-
vides several internal process managers [27] such as Gforker,
Remshell, SMPD, Hydra [11], and MultiPurpose Daemon
(MPD) [30] that we use in our prototype. A typical MPI job is
submitted through the mpiexec command, which also accepts
arguments such as a machine file or number of processes to
use. The process manager then spawns connected daemon
processes on participating nodes, which prepare the com-
munication environment, handle process binding, and spawn
the application MPI processes. The process manager also
handles tasks such as signal forwarding and I/O forwarding,
and cleanup upon task completion. The MPI model does
not provide resource management mechanisms, and relies on
systems such as Portable Batch System (PBS), SLURM [37],
Torque [47], Moab [14] and Cobalt [32].

B. YARN

YARN [48], the second generation Hadoop release, has
two key components: a global ResourceManager (RM) that
provides resource management across all available resources
and allocates resources for applications, and a per-application
ApplicationMaster (AM) that manages the allocated resources
and handles job scheduling and monitoring. The RM leaves
the control over the applications to their associated AMs.
YARN uses a container abstraction to allocate and manage
resources. The containers provide some degree of performance
isolation and guarantees for application execution. Figure 1
shows the steps involved in running an application on YARN.
A user submits jobs through a client to the RM by providing:
(a) application submission context containing ApplicationID,
user, queue, and other information needed to start the AM; and
(b) container launching context (CLC) that specifies resource
requirements (Memory/CPU), job files, security tokens, and
other information needed by the AM to run. The RM then
allocates the requested container, starts the AM in the con-
tainer, and passes control to the AM that can then request
more containers from the RM as needed.

Although YARN is designed as a flexible and scalable
resource manager, it is not well-suited for MPI for two reasons.
First, YARN does not provide support for gang scheduling
needed by MPI jobs, which can lead to long waiting time
before an MPI job can start. Second, fine-grained resource
container allocation in YARN can lead to multiple containers
allocated to a single physical node. This creates challenges for
the MPI process manager design, as traditional MPI setups
support only one manager process per node.
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Fig. 2. GERBIL architecture for running MPI on YARN.

III. SYSTEM DESIGN

In this section, we first discuss the objectives of GERBIL

design. Then, we give an overview of our architecture and
describe the major components of GERBIL, followed by a
discussion on how I/O and fault tolerance can be supported.

A. Design Objectives

The key design objectives of GERBIL are as follows.
Transparent System Interface: We want to ensure that

GERBIL allows unmodified MPI and MapReduce applications.
This is crucial for increasing the efficacy of our approach
and easier adoption by the users, as any solution requiring
modifications either to YARN or to MPI will induce additional
maintenance difficulties or burden the application developers.

Ease of Use: MPI is the extant parallel programming frame-
work for scientific computing, and users are already familiar
with its process model and job submission semantics. We aim
to preserve this ease-of-use and familiar user experience by
enabling MPI-like interactions in GERBIL.

MPI-Aware Container Allocation: As explained earlier
(Section II), the fine-grained container allocation in YARN
does not match well with the gang allocation requirement
of MPI applications. It is crucial for GERBIL to provide
MPI-aware resource allocation atop the fine-grained resource
allocation of YARN to mitigate this problem.

Tunable Allocation Strategy: GERBIL is aimed at multi-
tenant environments, which entails adapting the resource al-
location strategy based on dynamic cluser resource utilization
and user demands. For example, the user may opt for mini-
mizing job wait time, increasing overall resource utilization, or
achieving better inter-process locality to reduce data movement
across nodes. To facilitate this, GERBIL must support a flexible
and extensible interface that would allow users to specify the
allocation strategy best suited to their applications.

B. Architecture Overview

Figure 2 shows the architecture of GERBIL. We leverage
YARN to manage the cluster, and allocate and launch contain-
ers on which MPI jobs would be run. We use the allocation
to first provision a temporary MPI “cluster” (tMc) for each
submitted MPI job. A tMc is composed of a set of containers
that RM and GERBIL allocate, including a special container
for the associated AM, and exists only for the duration of
the associated job. GERBIL then instantiates tMc with an
execution environment similar to that of a traditional MPI
cluster. This ensures that no modifications or re-compilation
is needed for running MPI jobs on the allocated resources

Options Arguments

-a, --mpi MPI executable file
-l, --list MPI application list file
-n, --processes number of processes
-p, --priority proirity of the MPI application
-f, --hostfile nodes/processes description file
-r, --relax allocation algorithm to be used
-o, --oversubscribe oversubscribe resources
-i, --arguments arguments for the MPI application
-k, --kill YARN application ID to terminate

TABLE I: Command-line arguments supported by GERBIL-Client.

comprising tMc. Moreover, multiple tMc’s can co-exist with
each other as they host different applications.

GERBIL consists of three main components. GERBIL-Client
is responsible for accepting user command-line arguments and
providing the parameters and environments needed by YARN
to launch GERBIL-AM. GERBIL-Client provides an MPICH
compatible application launching interface shown in Table I.
This allows MPI applications to transparently utilize YARN
managed resources. After a user submits an MPI job, GERBIL-
Client sets up the necessary environment for executing the ap-
plication. The client then constructs the application submission
context, including command line information, for the RM that
schedules an available container and launches GERBIL-AM.
At this point, control is handed over to GERBIL-AM.

GERBIL-AM is the customized application manager that
handles execution of MPI jobs on YARN. This component
requests needed containers from the YARN RM, manages
the life cycles of allocated containers, assigns processes to
containers based on user-specified allocation policies, and
launches a GERBIL-Container on each allocated container.
GERBIL-Containers launch associated MPI process manager,
set up the MPI execution environment, and monitor the re-
source usage of MPI processes running within the containers.

C. User-Specified Container Allocation Modes

Table II shows the different modes supported by GERBIL,
which allows the users to request cluster resources with
specific characteristics. In the alloc_relax_none mode, a
user submits an MPI host file describing the list of preferred
hosts and the number of processes to run on each host. In
this case, GERBIL strictly respects the specified requirements,
requests one container per listed host and assigns exactly the
number of processes per node as specified in the host file. This
mode gives users fine-grained control over process allocation.
The flip side is that when any one of the specified hosts
does not have sufficient capacity to support the requested
containers, GERBIL-Client has to wait until the resources
become available for starting the GERBIL-AM. Here, users
opt for control at the cost of potentially increased allocation
latency. Alternatively, users can only specify the number of
processes needed for their MPI jobs in the alloc_relax_all
mode, where GERBIL freely allocates the nodes based on
resource availability throughout the cluster. However, such
flexibility comes at the cost of potential loss in data locality
as containers are now assigned to arbitrary nodes.



Relaxation Mode:
(alloc_relax_)

Location Distribution Node Count

none · · ·
loc × · ·
dist · × ·
loc+dist × × ·
all × × ×

TABLE II: Container request modes in GERBIL. For each mode,
‘×’ and ‘·’ denote whether a factor is relaxed or not, respectively.
Here, location, distribution, and node count means the location (i.e.,
nodes on which processes are launched), the distribution (number) of
processes per node, and the total number of nodes used to service a
request, respectively.

The aforementioned allocation modes represent the two
extreme cases of container allocation in GERBIL. To support
a wider range of application needs as well as to mitigate the
allocation latency due to the lack of gang scheduling support in
YARN under multi-tenancy, GERBIL also supports three more
container allocation modes with varying degree of flexibility as
shown in Table II. These modes allow relaxing the requirement
for the location of processes (alloc_relax_loc), distribu-
tion of processes per node (alloc_relax_dist), or both the
location and distribution but not the number of requested nodes
(alloc_relax_loc+dist). The different allocation modes
provide users with flexibility to run their MPI applications
based on different application characteristics by providing
the appropriate host file and allocation mode arguments. For
example, for communication-intensive MPI applications, it is
preferred to allocate the containers and nodes close to each
other so that the communication between processes on dif-
ferent machines does not involve multiple network hops. This
can be achieved by using the alloc_relax_dist mode. Sim-
ilarly, for CPU-intensive MPI applications where the location
of the processes is not crucial, the alloc_relax_all mode
provides for more flexibility and faster allocation. However,
if the user wants performance guarantee, she can ensure a
minimum number of compute nodes is allocated to the job
by using the alloc_relax_loc+dist mode. Thus, the main
purpose of supporting multiple allocation modes is to reduce
application launch time without compromising their needs.

D. Container and MPI Process Management

GERBIL-AM is responsible for deciding the number and
size of containers to request, as well as employing strategies
for assigning processes to containers based on user-specified
allocation mode and currently available cluster resources. The
actual resource negotiation with the RM is done by GERBIL-
AM using container requests and leases, communication for
which are piggybacked on AM-RM heartbeat messages. To
minimize the container launching time, we pack all the needed
information, e.g., the number, size and location of the contain-
ers, etc., within a single heartbeat message. This information
is used to assign processes to hosts depending on the allocated
resource capabilities and the user-specified container allocation
mode. GERBIL-AM then manages the application life cycle
and affects policies to automatically recover from any failures.

1) Container Allocation and Process Assignment: MPI
process management mechanisms force GERBIL to have only
one container per node per MPI job, as only one MPI process
manager per node is allowed per job. If multiple MPI processes
are to be spawned on a node, they are all run inside the same
container running on the node. Thus, while a node can have
multiple containers each for a different MPI application, each
application can have only one container per node. Moreover,
keeping all the processes of an application in one container
per node makes it easy for the GERBIL-Container to monitor
and track the whole process tree, and determine the resource
utilization of all the processes within the container. Thus,
GERBIL-AM only requests one container per node for each
MPI application, and assigns one or more MPI processes
within each container. This is also beneficial in limiting the
impact of YARN container allocation overhead on GERBIL as
we show in our evaluation (Section V-F). Since GERBIL may
host multiple MPI processes in a single container, the optimal
size, e.g., the amount of memory and the number of vCPUs,
of different containers can vary depending on the number of
processes assigned to the container. For example, GERBIL

attempts to allocate twice as much capacity, e.g., memory
and vCPUs, to a container with two processes compared to
a container that hosts just one process.

2) Resource Oversubscription: GERBIL-AM compares
container allocation requests against available resources to
detect oversubscription, which occurs if the number of re-
quested resources exceeds the available resources. Such over-
subscription may occur under any of the resource allocation
modes described earlier in Section III-C. GERBIL handles
such scenarios depending on the user command line option
oversubscription. If the option is set to false,—and the
requested resources do not exceed the max capacity of the
setup, which results in an error—GERBIL simply waits until
sufficient resources become available before allocating the
container. If the option is set to true (default), GERBIL-AM
runs the MPI runtime in an oversubscription mode, i.e., it
allows different containers/processes to compete for the same
resources. The goal is to avoid the unpredictable wait times
for resources to become available.

Different implementations of MPI handle such over-
subscription related performance degradation differently. In
OpenMPI [19], the degraded mode can be controlled
by Modular Component Architecture (MCA) parameter
mpi_yield_when_idle. In MPICH v1.1 or later, users can
configure the system to control whether to perform in a
degraded mode or to keep the performance but sacrifice the
intra-node communication. Oversubscription can sometimes
be beneficial, especially in competitive environments, e.g.,
modest levels of oversubscription has been shown to improve
system throughput by 27% [36].

3) Container Allocation Algorithms: We design five
container allocation algorithms in GERBIL-AM based on
the five allocation modes described in Section III-C, namely
ALGO_relax_none, ALGO_relax_loc, ALGO_relax_dist,
ALGO_relax_loc+dist, and ALGO_relax_all.



Algorithm 1: Container allocation – common functions

Input: hostfile, relax, total nproc, cluster list
begin

{m, v} ← minimum MEM, vCPU from YARN config;
sort_list_descend(cluster list);
if hostfile exists then

np← total nproc;
local list← new localList;
for each (node, nproc) in hostfile do

node size← node.get size();
size← {m× nproc, v × nproc};
switch relax do

case “none”
ALGO_relax_none();

case “loc”
ALGO_relax_loc();

case “dist”
ALGO_relax_dist();

case “loc+ dist”
ALGO_relax_loc+dist();

if relax == “dist”||relax == “loc+ dist” then
round_robin(local list, np);

combine_containers(local list);

else
/* relaxed allocation */

ALGO_relax_all();
combine_containers(cluster list);

Function combine_containers(list)
for each node in list do

if node.get num containers() > 1 then
combine containers into one;

Function round_robin(list, np)
while np > 0 do

node, node size← get first node from list;
if node size < {m, v} then

degraded← true ;

request_container(node, {m, v});
sort_list_descend(list);
np−−;

Algorithm 1 and Algorithm 2 show the steps taken during
the container allocation process when supporting the five
allocation modes. We set the oversubscription option to a
default of true in our algorithms.

The input variables of Algorithm 1 are: (i) the host file path,
hostfile, that contains a list of {node, nproc} pairs where
node is a host and nproc is the number of processes to run
on the node; (ii) the relaxation mode relax; (iii) the total
number of processes to use total nproc; and (iv) the cluster
list cluster list that specifies the available nodes and is
retrieved by GERBIL-AM from the YARM RM. This algorithm
retrieves the value of the minimum allocation of memory m
and virtual cores v from the YARN configuration file and
uses this information as the basic resource allocation unit.
However, users can change the value of {m, v}. By default,

Algorithm 2: Container allocation – mode implementation

Function ALGO_relax_none()
if node size ≥ size then

request_container(node, size);

else if node size > {m, v} then
request_container(node, node size);
degraded← true ;

else
request_container(node, {m, v});
degraded← true ;

local list.add(node);

Function ALGO_relax_loc()
top node← get the top node from cluster list;
top size← cluster list.get size(top node);
if top size ≥ size then

request_container(top node, size);

else if top size > {m, v} then
request_container(top node, top size);
degraded← true ;

else
request_container(top node, {m, v});
degraded← true ;

local list.add(top node);
cluster list.remove(top node);

Function ALGO_relax_dist()
local list.add(node);

Function ALGO_relax_loc+dist()
top node← get the top node from cluster list;
local list.add(top node);
cluster list.remove(top node);

Function ALGO_relax_all()
round_robin(cluster list, total nproc);

a single process is assigned a unit of {m, v} resources, while
nproc processes are assigned with nproc× {m, v} resources.
We also support a user option that, if set to ’true,’ implies
that the system should sort the nodes from the cluster list
in a descending order based on their available resources. We
give higher priority to memory than CPU, as over-committing
memory would cause extra disk I/Os and worse performance
degradation than over-committing CPU resources. Thus, a
node is ranked higher if it has more amount of free memory.
If two nodes have the same amount of memory, then the node
with more free virtual cores is ranked higher.

ALGO relax none: When the user specifies a host
file with hosts and number of processes per host with
alloc_relax_none mode, containers are requested strictly
based on the user’s request. For each node node in the host
file, GERBIL-AM adds it to a list of nodes to use, local list,
and calculates the needed resources size as {m, v}×nproc. If
the available resources node size of node is greater than size,
GERBIL-AM requests a container of size size. If node size is
smaller than size but greater than {m, v}, GERBIL requests a
container of size node size. Otherwise, it requests a container
of size {m, v}. Note that the last two cases result in over-
committing of the container resources.



ALGO relax loc: If the user selects mode
alloc_relax_loc, the process distribution per node is
respected but the specified hosts may be different depending
on availability. GERBIL-AM retrieves the needed nodes from
the top of the cluster list to ensure a higher probability of
getting the desired resources. The remaining process is the
same as before. Finally, every time a container is requested
on a node, the node is removed from the cluster list and
added to local list.

ALGO relax dist and ALGO relax loc+dist: Under the
modes alloc_relax_dist and alloc_relax_loc+dist,
GERBIL-AM first builds the local list from the hostfile or
the specified number of nodes from the top of the cluster list
for ALGO relax dist and ALGO relax loc+dist, respectively.
Next, processes are assigned to the set of nodes in a round-
robin fashion, where a process is assigned one {m, v} resource
at a time, and the process repeats until all of the total nproc
processes have been allocated.

ALGO relax all: If the user only specifies the number of
processes, GERBIL-AM employs round-robin process assign-
ment using all the nodes in the cluster list.

Under all algorithms, if any of the nodes have resources
less than the minimum {m, v}, the algorithm is blocked until
more resources become available. Whenever over-subscription
is detected, degraded is marked as true. Finally, GERBIL-
AM checks the local list or cluster list to combine multiple
containers on the same node into one. This is done by adjusting
the container size to make sure that only one aggregated
container is requested per node per MPI job.

Since the algorithms are based on a snapshot of the available
cluster resources, it is possible that the availability changes
after a request has been issued but not serviced. The request
can stall due to unavailability of actual resources. In order
to reduce such wait time, we do not change the containers
that are already allocated. Rather, we issue new requests for
the remaining containers and wait until all new containers are
allocated before launching the MPI job.

E. Discussion

a) Supporting HDFS I/O: GERBIL supports any dis-
tributed file system that is compatible with MPI. For clusters
that are not equipped with a distributed file system, GERBIL

supports reading and writing of data from direct attached
storage by transparently transferring data between local stor-
age and the default YARN distributed file system, HDFS.
Moreover, alternative shared file systems such as fuse-dfs [15],
HDFS NFS Gateway [10], GPFS [46], and GFS [33] can
be also employed. Users can also leverage the HDFS native
library to handle I/O in their programs directly. Nevertheless,
it has been shown [31] that maintaining a conventional dis-
tributed shared file system on a commodity PC cluster, i.e.,
resources that typically support YARN, is operationally cheap
compared with the performance cost of HDFS.

b) Handling Failures: Failures are the norm and not
an exception in large-scale clusters. Thus, it is crucial to
understand the failure behavior of our approach. In case

of GERBIL-AM failure, YARN automatically relaunches the
application master. Upon relaunch, GERBIL-AM requests the
needed containers again and re-starts the MPI application
automatically. This would be a heavyweight process and akin
to cluster failure, e.g., due to power or networking loss, in
traditional MPI setup. However, a more common failure is
that of a container.

Container failure can lead to the failure of the hosted
MPI job. GERBIL leverages built-in MPI fault tolerance to
handle such job failures. There are a number of efforts in the
MPI community to provide fault tolerance in case of process
failure or communication failure, and help MPI programmers
achieve resilience both at the application level and at the
MPI framework level. To this end, techniques such as group
communication can be used to write a robust MPI applica-
tion [35]. MPI/FT [28] considers task redundancy to provide
fault tolerance, while FT-MPI [34] adopts a dynamic process
management approach. Moreover, different MPI implementa-
tions deliver different fault tolerance mechanisms. Users can
register various built-in error handlers and customized handlers
in different MPI implementations. For communication failures,
techniques such as message re-transmission, message logging
and automatic message rerouting have been developed [25],
and can be used alongside GERBIL as needed.

Finally, checkpointing is widely supported for MPI job
abort/recover in different MPI implementations [16], [19].
GERBIL supports checkpointing with different MPI implemen-
tations. For example in MPICH, GERBIL configures MPICH
to checkpoint with BLCR [5]. Both manual and automated
checkpointing with an interval can be configured in GERBIL.
Although failures are handled by MPI, GERBIL-AM provides
automated job restart without user intervention. GERBIL-AM
first communicates with RM and checks whether sufficient
number of containers are available based on the container
allocation mode. Unless under heavy cluster load, the AM
requests containers with the same size to replace the failed
containers, after which the jobs are restarted.

IV. IMPLEMENTATION

We have implemented GERBIL with YARN Hadoop-2.2.0
and MPICH-v1.1rc1, though GERBIL can be easily extended
to use other MPI implementations. For job submission, we
extended the YARN standard client object, YarnClient, to
GERBIL-Client that passes user specified arguments to YARN
RM for launching GERBIL-AM.

1) GERBIL-Container: The GERBIL-Container encapsu-
lates our MPI-specific handling mechanism and is responsible
for starting the MPI MPD. The MPD in turn retrieves the
appropriate CLC, and starts the MPI processes. We monitor
the MPD through YARN NM and inform GERBIL-AM when
the job is complete and the results are available.

2) GERBIL-AM: GERBIL-AM is responsible for requesting,
allocating, and managing the containers, initiating the MPI
runtime environment and launching MPI jobs. Figure 3 shows
the different components of GERBIL-AM and their interac-
tions. GERBIL-AM communicates with all of the associated
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Fig. 3. GERBIL components and their interactions.

containers via RPC. To this end, an RPC Server is run within
the GERBIL-AM and each of the launched container runs an
RPC client. Communication such as when containers are ready
for execution, when MPD has been launched/completed, and
when a job is completed, is exchanged via the RPC Server.
The Container Allocator implements the container allocation
algorithms described in Section III-D3 to request needed
containers from the YARN RM. The Container Launcher
initiates the containers with the requisite execution environ-
ment, process/executable dependencies such as classpath, the
application launching command, and arguments included in
the CLC. The container launcher then sends the CLC to an
appropriate NM and starts the associated GERBIL-Container.
The Job Launcher starts the MPI job after GERBIL-AM
has received the allocated containers and process assignments,
using the following command:

mpiexec -hosts <number of host nodes> <host n ><number of

processes> ... <mpi application> <-other options>

Upon job completion, GERBIL-AM collects the results
(and writes them to HDFS), and returns the control back to
GERBIL-Client, thus completing the process.

V. EVALUATION

A. Experimental Setup

We evaluate GERBIL using a 19 node (1 Master, 18 slaves)
test cluster [21], where each node contains two Intel Quad-
core Xeon E5462 2.8 GHz processors, 12 MB L2 cache,
8 GB memory and one 320 GB Seagate ST3320820AS P
SATA disk. Nodes are connected using 1 Gbps Ethernet. The
GERBIL-AM component is configured to use 3072 MB of
memory and 2 cores. Each of the slave nodes has 6144 MB
memory available for containers, with a minimum allocation of
1536 MB and 1 core. Thus, each node can have 4 containers,
for a total of 70 containers available in our setup. We use
MPICH version 1.1rc1 with NFS for native MPI setup, and
Hadoop-2.2.0 for GERBIL with NFS to support MPI-IO where
needed in addition to HDFS. In the following, we conduct each
experiment four times and report the average values.

B. Performance Comparison of GERBIL and Native MPI

In our first experiment, we compare the performance of
GERBIL against native MPI. Here, we run only one job at
a time to isolate the performance differences. For each appli-
cation, we launch 18 containers using alloc_relax_none

mode in GERBIL with one container per node and one process

per container. Correspondingly for native MPI, we run 18
processes with one process per node.

First, we use MPI example programs CPI, MatrixMultiply,
2D-FFT and PrimeCount, which take small input and have
relatively small execution time. For MatrixMultiply and 2D-
FFT we use randomly generated input matrices, while CPI and
PrimeCount need no input. Figure 4 shows the comparison of
running these small applications using GERBIL versus native
MPI cluster. We observe that GERBIL imposes a significant
overhead (about 9 seconds) for all of the applications. To
further understand this, Figure 5 shows the detailed execution
time breakdown of the observed execution time overhead.

The AM Start phase involves job admission control,
scheduling and container allocation for GERBIL-AM. Since
we have only one job running at a time, this metric measures
the RM overhead of YARN. The Container Allocation phase
involves container negotiations between GERBIL-AM and the
RM (dictated by 1 Hz heartbeat messages of YARN) as well
as the container allocation time. The Container Ready phase
involves container lease verification with the NM, configuring
and instantiation of GERBIL-Container, loading the appropriate
CLC, and starting the MPI daemon process. MPI Execution is
the actual MPI job execution time. Finally, Finishing up shows
the time used for cleaning up the containers and completion
of GERBIL-AM and the job. We observe that while the MPI
execution time is similar under GERBIL and native MPI, it is
the YARN functions that incur the overhead.

Next, we repeat the experiment using six large MPI ap-
plications from the SPEC MPI 2007 benchmark [20]. These
applications conduct large simulations from different domains,
and have small input size (less than 50 KB) but employ
complicated simulation algorithms. Figure 6 shows the results,
which for this case shows only 0.3% average overhead across
the applications under GERBIL compared to the native MPI.
We also studied the breakdown for these applications as
before, and as seen in Figure 7, compared to the MPI execution
time the overhead is negligible.

These experiments show that the overhead of GERBIL is
mainly due to YARN and would depend on the number of
containers requested and not on the duration of the job. As
discussed in Section III, GERBIL only allocates one container
per node for hosting the MPI tasks, and thus the overhead is
fixed (about 9s for our setup). Consequently, for the typical
long-running MPI jobs, the overhead of GERBIL versus native
MPI is amortized across job duration and becomes negligible.

C. Performance Comparison of GERBIL and MapReduce

In our next test, we compare GERBIL performance to
MapReduce by running two compute-intensive applications:
Pi calculation using Monte-Carlo (Pi-MC) and BaileyBorwein-
Plouffe (Pi-BBP) algorithms with the same input parameters.
we implemented the algorithms using an MPI version for
GERBIL and a MapReduce version. We use 18 processes or
mappers for each job in out test. Figure 8 shows that compared
to MapReduce, GERBIL improves the average job execution
time by 133% and 121% for Pi-MC and Pi-BBP, respectively.
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Next, we selected the Pi-MC application and repeated the
experiment with increased computational load by increasing
the number of iterations. Figure 9 shows the job execution time
under the MapReduce version normalized to that of MPI on
GERBIL. We observe that GERBIL achieves a speedup of up to
2.3×. These tests illustrate that, as expected, GERBIL offers a
better alternative than MapReduce for compute-intensive jobs.

D. Performance Impact of GERBIL Container Allocations

In our next set of experiments, we study the container
allocation time and application execution time under the five
algorithms of Section III-D3 in a multi-tenant environment. We
carefully devise this test to investigate the numerous factors
that impact these times, e.g., current cluster utilization, input
data size, job arrival, etc. We first partition the cluster nodes
into three groups Group A, B and C with 8, 6, and 4 nodes,
respectively. We then launch a background job, BG1, with
an approximate running time of 6 minutes on Group A, and
BG2 (2 minute) on Group B. The background jobs can be
MapReduce jobs, MPI jobs, or other jobs that run alongside
the target MPI application. The background jobs consume
all the containers in Groups A and B. Next, we wait for 5
seconds after the submission to ensure that BG1 and BG2 have
started running within the containers. Then we submit one MPI
application, Pi-MC (Section V-C) to the cluster, using one of
the five different allocation modes. Each instance requests 16
total containers and two nodes per Group, with 3, 3 and 2
containers per node from Groups A, B and C, respectively.
Table III shows the allocated container distribution on 6 of the
18 nodes for Pi-MC. We repeat the experiment for five times
running Pi-MC with different allocation modes.

Figure 10 shows the container allocation and job execution
times. Pi-MC has to wait for BG1 to finish before running
under both alloc_relax_none and alloc_relax_dist

modes, as no resources are available in Group A. Similarly,
even though 4 nodes can be allocated in Group C under

Group A Group B Group C

Nodes n1 n2 n3 n4 n5 n6

BG1 4 4 0 0 0 0
BG2 0 0 4 4 0 0

Pi-MC 3 3 3 3 2 2

TABLE III: Container allocation distribution with backgroud jobs
BG1, BG2 and Pi-MC MPI job.
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alloc_relax_loc, the job has to wait until the remaining
2 become available in Groups A or B. Thus, the waiting time
is non-deterministic depending on other jobs in the system. A
similar behavior is observed under alloc_relax_loc+dist
as well. Finally, as expected, the job is able to use all of the
available resources in Group C under alloc_relax_all and
exhibit the fastest performance. Note that the execution time
of Pi-MC is the same under all cases. This is because this
application is not sensitive to locality and there is no oversub-
scription. For applications that are sensitive to such factors, the
five algorithms provide useful trade-offs to minimize the end-
to-end application execution time, e.g., increasing allocation
time to reduce execution time via better locality.



 1

 2

 3

 4

 5

 6

 7

 8

 9

 10  20  30  40  50  60  70

S
lo

w
d
o
w

n

Number of Processes

Fig. 11. Slowdown due to over-
subscription with increasing num-
ber of processes, normalized to
alloc_relax_all.

 2

 4

 6

 8

 10

 12

1x108 2x108 3x108 4x108 5x108 6x108

S
lo

w
d
o
w

n

Number of iterations

Fig. 12. Slowdown due to over-
subscription with increasing num-
ber of iterations, normalized to
alloc_relax_all.

 5

 10

 15

 20

 25

 30

 35

70 140 210 280 350

A
ve

ra
g
e
 jo

b
 e

xe
cu

tio
n
 t
im

e
 (

s)

Number of Mappers/Processes

Gerbil
MapReduce

Fig. 13. GERBIL vs. MapRe-
duce execution time under over-
subsciption.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 20  40  60  80  100  120  140

S
lo

w
d
o
w

n

Number of containers

Fig. 14. Container allocation
slowdown of YARN RM normal-
ized to alloc_relax_all.

E. Impact of Oversubscription

In the next set of experiments, we investigate the per-
formance penalty of oversubscription. For this purpose,
we request an increasing number of processes under
alloc_relax_none and force oversubscription by asking
for all of the processes on a single node. We compare the
results with the same requests under alloc_relax_all,
where the requests are distributed to different nodes and no
oversubscription occurs. Figure 11 shows the impact on Pi-MC
execution time as the degree of oversubscription is increased,
and shows a linear relation as more and more processes content
for the same resources under alloc_relax_none.

Next, we repeated the experiment with the max of 70 pro-
cesses as the computation is increased via increased number
of iterations. In Figure 12, we observe that the slowdown of
oversubscription remains unaffected (approximately 8.8×) by
the computation load, and depends only on the number of
competing processes.

YARN does not implement oversubscription for MapRe-
duce. In case a MapReduce job has more tasks than the
available capacity, it is queued until all the needed resources
become available, even though such gang scheduling is not
required for MapReduce. GERBIL mitigates this by employing
oversubscription. In our next test, we study the impact of over-
subscription on reducing allocation waiting times by compar-
ing GERBIL with MapReduce. We run both the MPI GERBIL

and MapReduce versions of Pi-MC with 10 K iterations with
70 containers, i.e., the max in our setup. Figure 13 shows
the results with increasing number of requested container-
s/processes. We see that while GERBIL immediately launches
the required processes by oversubscribing them, MapReduce
is unable to run all the mappers, instead running them in
waves. Consequently, the execution time increases linearly
under MapReduce but is effectively constant under GERBIL.

F. Impact on Application Launch Time

In our next experiment, we investigate the container launch
overhead of the default YARN RM container allocator com-
pared to GERBIL using alloc_relax_all. For this purpose,
we request an increasing number of containers each with
100 MB memory and 1 CPU core to a max request of
143(8 × 18 − 1) containers possible on our setup. For each
request, we measure the time it takes for the allocation to
complete under the two cases. Figure 14 shows the slowdown
in the YARN RM allocation normalized to GERBIL under
alloc_relax_all as the number of requested containers is
increased. Since the default container allocator works at the
rate of heartbeat messages and can only allocate 18 containers
at one time,—i.e., one container request per heartbeat to each
of the 18 nodes in our setup—the allocation time increases
linearly as more containers are requested. In contrast, GERBIL

needs only one container per node to run multiple MPI
processes; it can always allocate the needed containers in one
heartbeat regardless of the number of processes. Thus, our
design provides for mitigating long launching times as long
as the user does not request additional constraints, i.e., under
alloc_relax_all.

VI. RELATED WORKS

A number of recent works focus on bringing MPI and
MapReduce models together. Ye et al. [51] proposed a modi-
fied OpenMPI that allows MPI jobs to run on Hadoop clusters
via the Hadoop streaming [8] interface. Bai [26] implemented
a hybrid framework of iterative MapReduce and MPI. These
approaches have used Hadoop 1.0, and are limited in scope
or are specialized. In contrast, GERBIL leverages the state-
of-the-art YARN and provides general-purpose support for
unmodified MPI applications on YARN. Conversely, projects
such as MapReduce-MPI [12], DataMPI [41], and MR+ [18]
supports MapReduce or Hadoop-friendly data-intensive jobs
on MPI resources. However, these approaches do not port
the well-established ecosystem around Hadoop, and thus are
limited in utility. In contrast, GERBIL brings the entire MPI
support to YARN and thus is expected to have easier transition
and faster adaptation. The closest concept to GERBIL is
Hamster [9], which was originally left unfinished but has
recently been worked on by Yang et al. [17]. While Hamster
also aims to support MPI applications on YARN, GERBIL is
different and unique in its focus on efficiently provisioning and
allocating resources. GERBIL also provides different resource
allocation strategies that allow users to better match the
resource allocation to the needs of their applications.

A number of works [22], [24], [49] also provide better appli-
cation workflow processing by generating multi-language and
multi-environment sub-workflows that can then be executed on
clusters supporting the language/environment, and are comple-
mentary to GERBIL. However, GERBIL supports execution of
two different models on the same set of resources and offers
an integrated solution that avoids issues of supporting multiple
types of resources/clusters and unnecessary data movement.



VII. CONCLUSION AND FUTURE WORK

Co-hosting multiple programming models on the same re-
sources helps avoid expensive data movement between clusters
and greatly reduces workflow processing time. In this paper,
we present GERBIL, a framework that supports the MPI pro-
gramming model on YARN and enables execution of unmod-
ified MPI applications on YARN managed resources along-
side MapReduce applications. Our evaluation shows that the
overhead of GERBIL is mainly due to the YARN framework
and is observed to be constant regardless of the size of the
applications. This is promising, as the overhead will become
negligible when amortized over long-running applications. In
our future work, we plan to extend GERBIL’s static container
management to consider dynamic cluster usage and runtime
application profiling. We are also exploring techniques to
reduce container allocation times of YARN to help mitigate the
observed MPI instantiation latency. In our future work, we aim
to enhance GERBIL to automatically select the best allocation
strategy for applications based on their characteristics.
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