
SCHEDTUNE: A Heterogeneity-Aware GPU
Scheduler for Deep Learning

Hadeel Albahar∨, Shruti Dongare∨, Yanlin Du∨, Nannan Zhao†, Arnab K. Paulρ, Ali R. Butt∨
∨Virginia Tech, USA ρBITS Pilani, K K Birla Goa Campus, India

†Northwestern Polytechnical University, China
{hadeel89, dshruti20, dourlin, butta}@vt.edu, nannanzhao@nwpu.edu.cn, arnabp@goa.bits-pilani.ac.in

Abstract—Modern cluster management systems, such as Ku-
bernetes, support heterogeneous workloads and resources. How-
ever, existing resource schedulers in these systems do not dif-
ferentiate between heterogeneous GPU resources—which are
becoming a norm—and do not support GPU sharing—which is
necessary to support emerging collocation of jobs and multi-
tenant applications. Thus the systems suffer from low GPU
resource utilization, higher queuing delays, and an increase in
application makespan, i.e., the duration between the arrival of the
first job and the completion of the last job of a workflow. This
is especially a problem in supporting crucial deep learning (DL)
applications. To this end, in this paper, we profile and analyze
DL jobs on heterogeneous GPUs, investigate the interference
caused by collocating jobs on GPUs, and use this information to
predict the GPU memory demand and job completion times. We
propose SCHEDTUNE, a machine-learning-based heterogeneity-
aware scheduler that ensures higher GPU memory utilization
and reduced out-of-memory (OOM) failures, while supporting
improved makespan. Our evaluation shows that SCHEDTUNE
GPU memory predictors and scheduler outperform the state-
of-the-art predictors by achieving 81% higher GPU memory
utilization, 100% detection and avoidance of OOM errors,
and 17.5% reduction in makespan compared to the default
Kubernetes scheduler.

Index Terms—Deep learning, Kubernetes, GPU sharing, Re-
source heterogeneity, Resource scheduling

I. INTRODUCTION

We are witnessing rapid advancements across different
aspects of machine learning (ML) and deep learning (DL),
especially an exponential growth in the number and types
of applications, scale, and utilization of novel architectures
such as compute accelerators. Increasingly, DL applications
are trained in the cloud on multi-tenant GPU clusters [24].
However, the use of on-premises self-managed clusters con-
tinues to be significant: 35% of Kubernetes users use self-
managed Kubernetes clusters according to a recent report by
RedHat [41]. These self-managed systems utilize cutting-edge
systems (e.g., container management systems) and accelerators
(e.g., GPUs) with varying computation and memory specifica-
tions. Thus, there is a growing need to manage and schedule
heterogeneous GPU resources in support of containerized-
DL/ML applications.

Container cluster orchestrators are integral to managing and
scheduling containers on any CPU and GPU resources. The
rise of containerization has led to the development of various
container cluster management systems, e.g., Kubernetes, Red

Hat OpenShift [40], and Apache Mesos [44]. Moreover, pre-
existing cluster managers have also added support for con-
tainerized applications, e.g., Docker atop Apache YARN [5].
These platforms are evolving and supporting new workloads
and using novel resources. This in turn brings a new wave
of users with more applications and complex requirements,
e.g., condensing DL applications to run on one or very few
resources. This growing popularity and application/resources
heterogeneity is furthering the gap between the capabilities of
the platforms and the needs of the users.

Existing container orchestrators are typically intended for
use by savvy developers who better understand their jobs
requirements and can request resources that ensure time and
cost efficiency. In reality, in an effort to avoid the high cost
or to reduce training time, many DL users either under-
provision or over-provision resources, especially GPUs [24].
Such unregulated provisioning leads to out-of-memory (OOM)
errors (accounting for 8.8% of total job failures [55]) or
underutilized resources [17], [24], and subsequently cause
high job queuing delays, a high makespan (i.e., the elapsed
time between the start and finish of a set of jobs), and a
high average job completion time (JCT). The developers’
tendency to request more GPU resources not only leads
to provider-side under-utilization, it also degrades training
performance for other users [15]. Exacerbating the problem
is a recent observation that around 13.5% of jobs submitted
to a GPU cluster are killed by users, wasting about 38%
of GPU time [24]. Researchers are beginning to address
these problems and have proposed solutions such as assigning
system-determined resource shares to jobs based on available
resources [22]. However, to efficiently mitigate the above
problems, we need a system management-level and GPU
heterogeneity-aware resource allocation solution, which can
learn system behavior and closely approximate and predict
GPU memory and utilization demand and manage resources
accordingly.

The challenge lies in predicting the actual workload or job
requirements, specifically GPU memory demand and GPU
core utilization demand. In this context, multiple recent works
have looked at profiling jobs. Allox [31] performs online
profiling of incoming jobs to infer resource requirements
by running a small representative sampling job. Gavel [34]
estimates jobs’ performance by mapping them to similar
previously profiled jobs. DNNMem is a recently proposed

1



6400
6600
6800
7000
7200
7400
7600
7800
8000
8200

0

500

1000

1500

2000

2500

3000

Tesla K80 RTX 2070s RTX 3070 Tesla V100 RTX 3090

M
em

or
y 

(M
B

)

Ti
m

e 
(s

ec
on

ds
)

GPU Model

Training time (seconds) Memory usage (MB)

Fig. 1. GPU memory usage and training time for 1 epoch of ResNet152 [16]
on Cifar10 [26] with 32 as the batch size on different GPUs. See Table I for
GPU characteristics.

proprietary tool that estimates GPU memory usage of DL
models [12]. Horus [54] proposes a linear equation to estimate
memory required by a DL job by considering different DL
model hyper-parameters.

A crucial shortcoming of prior works is that they do not
explicitly consider heterogeneous GPU clusters, neither do
they consider the different characteristics of heterogeneous
GPU resources. We hypothesize that predicting GPU memory
usage does not only depend on DL model characteristics, but
also on the GPU running the job, and whether it is an inference
job or a training job. To show this dependence, we trained
ResNet152 [16] on Cifar10 [26] with a batch size of 32 images
on five different GPUs for 1 epoch. We measured the training
time and the peak GPU memory demand1. As seen in Figure 1,
the memory demand and the training time vary by GPU
model. This variance is due to several reasons. When a frame-
work (i.e., PyTorch) initializes, the CUDA context (i.e., pre-
allocated GPU memory) for an application running on a GPU
differs from one GPU architecture to another and is influenced
by the streaming multiprocessors (SM) count [36]. Wang et
al. [48] report that the performance of single-node single-
GPU workloads is affected by the GPU memory bandwidth.
Moreover, Gao et al. [12] report that GPU-specific memory
allocations due to ephemeral tensors and resident buffers also
impact GPU memory usage. According to Amaris et al. [4]
application performance (e.g., execution time) is impacted by
GPU characteristics. The measurements in Figure 1 show that
GPU characteristics in Table I significantly affect the GPU
memory demand and job completion time, thus supporting our
hypothesis.

In this paper, we first profile and analyze DL jobs train-
ing performance on different GPUs. Next, we leverage the
characteristics of the DL models (e.g., input, parameters,
activations, etc.) and the characteristics of GPUs (e.g., CUDA
cores, Memory bandwidth, SM count, etc.) to train regression
models to estimate the memory demand of DL training and
inference jobs. This information is then leveraged to support
GPU sharing (i.e., collocating jobs on a GPU) and to avoid

1We use nvidia-smi [35] at 250 ms intervals during the job runtime to
measure GPU memory usage. We consider the maximum observed used
memory value as the required GPU memory.

TABLE I
THE GPUS CONSIDERED IN OUR VARIOUS TESTS AND EVALUATION, AND

THEIR KEY CHARACTERISTICS. MCS IS MEMORY CLOCK SPEED AND
MBW IS MEMORY BANDWIDTH. THE GPU MEMORY IS GIVEN IN

BRACKETS BESIDE EVERY GPU MODEL.

GPU CUDA cores Tensor cores MBW (GB/s) SMs MCS (MHz)
Tesla K80 (12GB) 2496 - 240.6 13 5012
RTX 2070s (8GB) 2560 320 448 40 14000
RTX 3070 (8GB) 5888 184 512 46 16000
Tesla V100 (16GB) 5120 640 900 80 1752
RTX 3090 (24GB) 10496 328 935.8 82 19495

performance-degrading OOM errors. Our goal is to answer the
following research questions.

1) Given a job, how much GPU memory should be allo-
cated to it without wasting resources and incurring OOM
errors?

2) What job/GPU characteristics impact memory demand
and JCT?

3) What is the impact of GPU sharing on JCT, i.e., how
does interference impact JCT? Can we quantify this
impact?

Specifically, we make the following contributions in this
paper:
• We characterize performance, measure interference, and

analyze single-node single-GPU DL training jobs and
inference jobs on different GPU models.

• We use an ML-based approach to identify GPU char-
acteristics that impact the GPU memory demand and
JCT time. We utilize these characteristics to train GPU
memory demand and JCT prediction models.

• We apply our proposed GPU memory demand prediction
models, our JCT prediction models, and our interference
analysis findings in the design of a GPU heterogeneity-
aware scheduler, SCHEDTUNE. The scheduler improves
overall efficiency of the system in a workload- and
resource-aware manner.

We evaluate SCHEDTUNE by comparing it to state-of-the-
art predictors, such as Horus [54] and Torchinfo [46]. We find
that our prediction model achieves the lowest RMSE value
and lowest average error (%). Our evaluation of SCHEDTUNE
shows that SCHEDTUNE outperforms FIFO (default Kuber-
netes) scheduler, and achieves the lowest JCTs, higher GPU
memory utilization, reduced job queuing time, and lowest
workload makespan.

II. BACKGROUND

The key technology that we use and build upon is Ku-
bernetes [27], which is a widely used open-source container
management system. Kubernetes offers powerful features such
as handling all aspects of system support for applications
such as provisioning and deployment, scheduling and resource
allocation, scaling, networking, storage, and load balanc-
ing [29]. Moreover, Kubernetes is supported by most if not
all cloud providers such as Amazon Elastic Kubernetes Ser-
vice [6], Azure Kubernetes Service [33], Google Kubernetes
Engine [13], IBM Cloud Kubernetes Service [23], Alibaba

2



100
300
500
700
900

1100
1300
1500
1700

ResN
et1

8

ResN
et3

4

ResN
et5

0

ResN
et1

01

ResN
et1

52

Dens
eN

et1
21

Dens
eN

et1
69

Dens
eN

et2
01

VGG11

VGG13

VGG16

VGG19

In
fe

re
nc

e 
tim

e 
(m

s)

DL model

Tesla K80 RTX 2070s RTX 3070 Tesla V100 RTX 3090

Fig. 2. Observed inference time of various DL
models on five different GPUs.

10

510

1010

1510

2010

2510

ResN
et1

8

ResN
et3

4

ResN
et5

0

ResN
et1

01

ResN
et1

52

Dens
eN

et1
21

Dens
eN

et1
69

Dens
eN

et2
01

VGG11

VGG13

VGG16

VGG19

Tr
ai

ni
ng

 ti
m

e 
(s

)

DL model

Tesla K80 RTX 2070s RTX 3070 Tesla V100 RTX 3090

Fig. 3. Observed training time of various DL
models on five different GPUs.

0

20

40

60

80

100

ResN
et1

8

ResN
et3

4

ResN
et5

0

ResN
et1

01

ResN
et1

52

Dens
eN

et1
21

Dens
eN

et1
69

Dens
eN

et2
01

VGG11

VGG13

VGG16

VGG19

G
PU

 U
til

iz
at

io
n 

(%
)

DL model

Tesla K80 RTX 2070s RTX 3070 Tesla V100 RTX 3090

Fig. 4. GPU utilization of inference jobs of various
DL models running on five different GPUs.

Container Service for Kubernetes [2], and HUAWEI Cloud
Container Engine [20]). Kubernetes requires user input to
specify Pod/Job resource requirements. Although the system is
capable of scheduling AMD and NVIDIA GPUs to Pods/Jobs,
Kubernetes allocates only full GPU cards to Pods and does
not support finer-grained allocation. Moreover, the default
scheduler does not differentiate between various types of GPU
models and architectures. If a user wants to run a Pod/Job on a
specific GPU node in a Kubernetes cluster, the user must label
those nodes uniquely using Node Labels. Then the user must
use Node Selectors in the Pod/Job manifest file and specify
the label of the requested node so that the scheduler knows
which node to assign [28]. The process is thus error-prone and
cumbersome and creates a high barrier-to-entry for employing
heterogeneous resources.

Kubernetes allows developers to design and implement their
preferred schedulers and deploy them into their clusters. The
system also supports running multiple schedulers simulta-
neously for individual Pod/Job. This can help to assign a
Pod/Job to a appropriately feasible node, i.e., a node that
meets the scheduling requirements for a Pod as defined by
that scheduling algorithm.

The Kubernetes scheduler requires users to configure their
job’s resource requirements to assign DL Pods/Jobs to GPU
nodes. For example, a Pod running a machine learning work-
load will be scheduled on CPU resources unless the user
specifies in the Pod/Job manifest that they require GPU
resources. The downside to this is that the GPU allocation
task is essentially offloaded to the user. While this approach
offers flexibility, not all users know how best to use the GPUs,
and they certainly cannot make globally optimal allocation as
a user only knows about their own workloads. Experienced
developers may know the requirements of their jobs mainly
after experiencing OOM errors. In that case, they usually either
reduce their training batch size to fit in the GPU memory they
have or train on a GPU with higher memory capacity. Most
users learn by trial and error and that not only wastes time but
also reduces the effective cluster GPU utilization. In contrast,
new or short-term users do not even have the tool of trial-
and-error and end up selecting wasteful and inefficient GPU
allocations.

Running DL jobs efficiently on kubernetes requires signif-
icant fine-grained user involvement. While that fine-grained
involvement is sometimes preferred, most users, whether in

cloud or on-premises, would rather have the kubernetes plat-
form itself automatically detect the cost-efficient and time-
efficient resource requirements of their submitted workload
which also saves users some configuration time. Having the
platform automatically detect and assign resources will also
benefit the cluster maintainer. Specifically, the maintainer will
have a targeted finer control on resource allocation. Its target
objective would be higher GPU utilization, faster response
time and reduced queuing time for tenants.

III. MOTIVATION

To motivate the need for SCHEDTUNE, we conduct a
study using a set of representative DL workloads. We run
training and inference jobs for computer vision models namely
ResNets [16], DenseNets [19], and VGGs [43] on five different
GPU nodes (Table I). We train the models on the Cifar10 [26]
dataset using a batch size of 32 images for one epoch, and use
models that are pretrained on the ImageNet [11] dataset for
inference jobs. We request one GPU device in the Job manifest
of every job and run jobs sequentially. Figure 2 shows the
observed inference time. We see that, for each job, there is a
lot of variance in the average inference time across the GPUs.
For instance, inference time for ResNet152 varies between
312 and 1408 milliseconds. Similarly, Figure 3 shows that
the training time also vary significantly. For instance, training
ResNet152 can take anytime between 280 and 2513 seconds.
This observed variance means that the GPU on which the job
is running impacts the completion time of the job. This also
means that the choice of GPU to run a DL job not only
affects the job completion time, it also affects the overall
cluster job throughput and queuing delays. This is because
in a scenario where all the incoming DL training jobs end
up assigned to GPUs that result in highest training time, the
cluster throughput will be lower than the scenario when every
job is assigned the available GPU that results in the lowest
training time. This variance can also slow down workflows
where jobs are dependent on completion of earlier tasks.

Next, we study the resource utilization of inference and
training jobs. Figures 4 and 5 show the GPU2 and memory
utilization of inference workloads, respectively. We see that

2We use nvidia-smi [35] at 250 ms intervals during the job runtime to
measure GPU utilization. We consider the maximum observed GPU utilization
value as the overall GPU utilization for the job.

3



0
5

10
15
20
25
30
35
40

Re
sN

et
18

Re
sN

et
34

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

D
en

se
N

et
12

1

D
en

se
N

et
16

9

D
en

se
N

et
20

1

V
G

G
11

V
G

G
13

V
G

G
16

V
G

G
19G

PU
 M

em
. U

til
. (

%
)

DL model

Tesla K80 RTX 2070s RTX 3070
Tesla V100 RTX 3090

Fig. 5. Memory utilization of inference jobs of DL
models running on five different GPUs.

40

60

80

100

Re
sN

et
18

Re
sN

et
34

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

D
en

se
N

et
12

1

D
en

se
N

et
16

9

D
en

se
N

et
20

1

V
G

G
11

V
G

G
13

V
G

G
16

V
G

G
19

G
PU

 U
til

iz
at

io
n 

(%
)

DL model

Tesla K80 RTX 2070s RTX 3070 Tesla V100 RTX 3090

Fig. 6. GPU utilization of training jobs of various
DL models running on five different GPUs.

0
20
40
60
80

100

Re
sN

et
18

Re
sN

et
34

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

D
en

se
N

et
12

1

D
en

se
N

et
16

9

D
en

se
N

et
20

1

V
G

G
11

V
G

G
13

V
G

G
16

V
G

G
19G

PU
 M

em
. U

til
. (

%
)

DL model

Tesla K80 RTX 2070s RTX 3070
Tesla V100 RTX 3090

Fig. 7. Memory utilization of training jobs of
various DL models running on five different GPUs.

the inference workloads exhibit significantly lower GPU uti-
lization compared to training jobs. Moreover, the inference
jobs only utilize 470 MB — 2722 MB of GPU memory
across all different studied GPU types. In contrast, Figures 6
and 7 show the GPU and memory utilization, respectively, for
training jobs. We note that training is a compute-intensive task,
e.g., 100% GPU utilization on RTX 3090. Thus, we see that
inference workloads can be collocated on a GPU to improve
overall utilization, but doing the same for training jobs is not
straightforward and requires further investigation.

We also repeat the experiments with a batch size of 64
images. In this case, we ran into many jobs exiting with an
OOM error. For example, training ResNet152 on Cifar10 with
64 as the batch size resulted in OOM error on Tesla K80,
RTX 2070s, and RTX 3070 GPUs, but successful completion
on Tesla V100 and RTX 3090. This is because the memory
capacity of Tesla K80, RTX 2070s, and RTX 3070 GPUs is
not enough to fit the bigger batch size. Moreover, although
both RTX 2070s and 3070 have 8 GB memory, we observed
different outcomes when training VGG16 on Cifar10 with
batch size of 64 images on RTX 2070s and RTX 3070. The
observation that the training job experiences OOM error on
RTX 2070s while successfully completing on RTX 3070 leads
to the conclusion that the GPU memory capacity is not the only
indicator for possible OOM errors. Thus, we must consider the
effect of other GPU characteristics on the memory requirement
of a job.

These experiments show that the variation in performance is
not directly associated to a specific GPU characteristic such as
the number of tensor cores, the memory clock speed (MHz),
the memory bandwidth (GB/s), the number of CUDA cores,
and the number of streaming multiprocessors (SMs), rather a
more complex relationship exists and therefore there is a need
to model such a behavior.

Finally, we test how GPU-sharing across different DL jobs
impacts performance. We utilized the Volcano [9] scheduler
and Volcano NVIDIA device plugin [21] that provide GPU
sharing capabilities. In each of the aforementioned training
jobs manifest, we request the amount of memory the job
requires when it solely runs on the corresponding GPU. We
submit the jobs at the same time. Figure 8 shows the minimum,
maximum, and average increase in training time experienced
by the collocated jobs. We noticed that each model takes

0
0.5

1
1.5

2
2.5

3
3.5

4

Max Min Avg Max Min Avg Max Min Avg

RTX 2070s RTX 3070 RTX 3090

In
cr

ea
se

 i
n 

JC
T

Two-collocated Three-collocated Four-collocated

Fig. 8. Observed maximum, minimum, and average increase in job completion
times when two, three, and four DL jobs are collocated on a GPU. We use
ResNet18, ResNet34, ResNet50, and DenseNet121 to train on Cifar10 with
8 as batch size for 1 epoch.

longer to train when the number of collocated training jobs
increase. However, the time the collocated jobs take until
they all complete is less than the time they take when they
run sequentially, each on a full GPU card. In this context,
interference is defined as the increase in job completion time
when running multiple jobs on a single GPU [47], [52], [54].
We observe that the interference is dependent on the number
of collocated jobs and varies by the GPU model, but there is
no direct pattern for inferring model-model interference.

Next, we run 528 combinations of all the different DL jobs
in our workload on RTX 2070s. The combinations of jobs are
created such that the sum total of the measured GPU memory
usage of each job in the combination does not exceed the
GPU memory, i.e., 8 GB. This is to avoid OOM. However,
we did not identify any significant associations that allow us
to quantify interference across different GPUs.

Overall, these experiments highlight the variance and dif-
ficulty in predicting GPU memory usage and collocation
conditions, and show the need for centralized cluster-level
control of GPU node assignments.

IV. DESIGN

In this section, we present the design of SCHEDTUNE, a DL
training and inference workloads scheduler for heterogeneous
GPU clusters. We employ an ML-based approach to schedule
GPU resources. We develop models to predict workload GPU
memory requirements and training/inference times. SCHED-
TUNE uses these predictions to assign GPUs to workloads so
as to yield improved completion times. SCHEDTUNE focuses

4



Controller

Monitor

Estimator Kubernetes
API Server

Volcano 
Scheduler

GPU device 
plugin

Scheduler

Training Memory 
Predictor

Training time 
Predictor

Inference time 
Predictor

Inference Memory 
Predictor

Predictors

Fig. 9. The architecture of SCHEDTUNE and components therein.

on single-node single-GPU training jobs that account for up
to 82% of datacenter workloads and are mostly the cause of
low GPU utilization [17], [48], however, its approach can be
adopted for future distributed settings.

The objectives of SCHEDTUNE include increasing the GPU
cluster throughput, reducing workload makespan, i.e., the time
elapsed from running the first job until the completion of the
last job, and eliminating OOM errors. SCHEDTUNE achieves
these goals by utilizing GPU sharing along with memory
and training/inference time predictions, and greedily assigning
most suitable GPUs to tasks.

A. SCHEDTUNE System Architecture

Figure 9 shows an overview of SCHEDTUNE architec-
ture comprising four main components, namely, GPU mem-
ory and training/inference time prediction models, con-
troller/scheduler, estimator, and monitor. Note that we build
our solution atop Volcano-equipped Kubernetes [9], which
provides support for simultaneously sharing GPUs across
multiple jobs.

The prediction models are initially trained offline (Sec-
tion IV-B), but can then be periodically fine-tuned as the
system processes future jobs and as new GPU devices are
added to the cluster. The controller is initialized with the
characteristics of the different GPU nodes in the cluster. The
controller then extracts the job characteristics (Section IV-D),
processes the user-submitted manifest and passes the extracted
DL model data and predictions to the scheduler. The sched-
uler receives the original user manifest and predictions, and
leverages the estimator to create a modified manifest that now
requests better/optimal GPU node and the predicted amount of
GPU memory on that node (Section IV-E). The GPU memory
estimator estimates the memory demand of the incoming jobs
on the different available GPU resources and predicts needed
amounts to avoid OOM errors (Section IV-C).

B. GPU Memory and Time Prediction

To seamlessly facilitate GPU sharing and job collocation,
we need to determine the amount of GPU memory that jobs
will require to avoid OOM errors in general, and especially
when collocating jobs on the same GPU. We formulate the
problem as designing a memory prediction model that can
accurately produce a memory estimate for an input DL model
with user-defined configurations such as batch size and given
GPU resources specifications.

Since we have observed a positive correlation between
model size and GPU memory utilization, we identify the

following DL model characteristics as factors affecting jobs
memory requirement:

M ∝ P,A,B, I

Where, P refers to parameters size, A refers to activations size,
B refers to batch size, and I refers to input size. The parameters
are the learnable values in the DL model such as weights
and biases. The activations are activation functions outputs.
The batch size is user configurable. The input size is defined
by the DL model. DL frameworks such as PyTorch [37] and
TensorFlow [1] provide tools, e.g., Torchinfo [46], for
detailed summaries and visual representation of the network
elements of the models. We utilize these tools to extract the
parameter size (MB), activations size (MB) and input size
(MB) of the DL model and keep a local copy for direct and
fast access.

We utilize machine learning models, specifically, nonlinear
regressors that learn to capture data correlations given a
sufficient training dataset. We design the training dataset by
considering the two identified set of factors, the memory
affecting factors of the model along with GPU device charac-
teristics. We study several non-linear regression models from
scikit-learn [38] such as Random Forest Regressor (RFR),
Gradient Boosting Regressor, Voting Regressor, XGBoost for
Regression, and Polynomial prediction. To avoid the possible
overfitting problem caused by comparatively small datasets,
we choose the simplest model, RFR, which provided best
results in our initial experimentation. To obtain accurate pre-
dictions, we resorted to omitting outliers.

We were able to determine the characteristics that have
significant effects on memory usage during training. These
GPU characteristics are number of tensor cores, memory
clock speed (MHz), memory bandwidth (GB/s), and streaming
multiprocessors (SM) count. Tensor cores are a special feature
in GPU devices that lead to developing kernels that use
more memory to speed up neural networks. Memory clock
speed (MHz) affects the allocation and deallocation policy
and thereby contributes to the memory estimation. Memory
bandwidth (GB/s) has long been understood as an important
factor in processor performance. Streaming multiprocessors
hold the executing units (i.e., CUDA cores). Similar to predict-
ing memory needs, we are able to identify GPU characteristics
that play a significant role in predicting inference and training
time as well.

To create the dataset on-which the prediction models are
trained, we perform offline profiling to measure the actual
GPU memory requirement and training/inference time of DL
jobs across five different GPU models. We populate the
training dataset with data points following this structure:
[Activations size (MB), parameters size (MB), input size
(MB), Memory bandwidth (GB/s), CUDA cores, SM count,
Memory clock speed (MHz), Tensor Cores, Target]. The Target
is either GPU memory requirement or training/inference time.
We omit the input size when training inference job datasets
for inference predictions. For jobs with OOM error outcomes,
because they are unsuccessful runs, the measured memory

5



used up to the OOM failure is inaccurate and will corrupt
the predictor’s training dataset. Instead, we utilize the memory
usage pattern for a job across the other GPUs and interpolate
the memory values that are missing due to OOM error. The
interpolation values for memory usage are higher than the
corresponding GPU memory, hence the OOM failure.

When new GPUs are added to the cluster and/or new DL
models are being trained, the scheduler allocates the GPU
with highest memory capacity to avoid OOM errors. Then,
the monitor updates the prediction datasets accordingly. Once
this happens, the prediction models can be fine-tuned at time
intervals defined by the cluster maintainer.

C. GPU Memory Estimation

To detect OOM failures, we evaluate predictions obtained
from the prediction model with the memory capacity of the
target GPU. The predicted values are restructured according to
the model’s maximum error (%) and then compared with the
actual memory capacity of the target GPU. Our tests show
this approach to be effective and provides 100% accuracy
in detecting OOM failures. Consider the following example,
if the DL model to be trained is VGG19, the batch size is
64, the target GPU is RTX 2070s (7982 MB RAM), and we
know the job failed due to OOM error. The prediction model
will return 11140 MB as predicted memory and 8.98% as
maximum error percentage. Then, the estimate is the sum of
the predicted memory and the maximum error, 12140 MB.
Here, since the target GPU’s memory capacity is 7982 MB,
the estimator predicts an OOM error.

D. Controller

Prior to operating, the controller is fed a list of different
GPU devices in the cluster along with the following char-
acteristics: the number of tensor cores, the memory clock
speed (MHz), the memory bandwidth (GB/s), the number of
CUDA cores, and the number of streaming multiprocessors
(SMs). Ideally, we should be able to extract this information
for a particular GPU either via system characteristics queries
or by crawling the GPU specification website. However, this
is currently not possible as websites such as Nvidia GPUs
specs do not contain organized data that can be scrapped and
commands such as nvidia-smi -q do not provide all the
information. Therefore, for now we provide this information
to the controller.

The controller first extracts the job name and DL model
from the job manifest. Then it extracts the parameters size
and the activations size from the DL model of inference jobs,
and extracts the parameters size, activations size, input size and
batch size from the DL model of training jobs. The parameters,
activations, and input sizes are either extracted from a local
copy (e.g., from the prediction models’ training dataset) if the
model is previously seen. Otherwise, the controller utilizes
summary tools such as Torchinfo [46] to determine this
information. Torchinfo takes as input the model name, input
dimensions, and batch size. We use the default input dimen-
sions for every model, e.g., 224 × 224 × 3 for ResNets, and

Fig. 10. ResNet18 summary results using Torchinfo [46].

use 1 as the batch size. We multiply the resulting input size
(MB) by the batch size and use the parameters size (MB) as-is
(see Figure 10). The activations are the sum of the multiplied
elements of the output shapes of every layer in the model (i.e.,
one forward pass/propagation). We multiply the activations
by 4 bytes (for each floating point value), then we convert
to megabytes to have the activations size (MB). We do not
use the activations labeled forward/backward pass size that
is provided by Torchinfo. This is because we consider it an
overestimate since memory reallocation and memory sharing
are not considered [12]. From our memory prediction design
experiments and insights from DNNMem [12], we learned
that considering the memory usage by both passes separately
results in a higher prediction error compared to considering
one pass.

The controller then passes these extracted data to the GPU
memory prediction models to return a prediction for every
distinct GPU type in the cluster using Algorithm 1. The output
is an updated manifest file and memory and time predictions,
which are then forwarded to the scheduler.

Algorithm 1 Controller
Input: Job manifest, GPU types (i: 1..n) in the cluster
Output: Job manifest with assigned node and allocated GPU

memory
1: X = extractCharacteristics(job manifest)
2: do in parallel ∀GPU Types
PMem,Time(X) = Predictors(X)
end

3: Scheduler(X, (PMem,Time(X)))

E. Scheduler

The main task of the scheduler is to determine which node
will be assigned to a job. To do so, it starts by examining
the nodes and excluding those that will not be able to fit the
job, i.e., nodes with GPU memory less than the job memory
requirement. Algorithm 2 shows the steps that are involved
in estimating the needed memory for this operation. Then the
scheduler picks the GPU node with the shortest queuing delay
of all candidate GPU nodes by evaluating Equation 2, i.e., a
GPU node that will yield the minimum JCT for the incoming

6



job.

DelayQ = Remainingrunning + Estimatedpending (1)

JCTEstimated = DelayQ + Estimatedincoming (2)

The equation calculates the estimated incoming job completion
time on candidate GPU nodes by calculating the sum of
two values for each candidate GPU: (1) The queuing time
at the candidate GPU, which is the sum of the estimated
JCTs of the queued jobs and the remaining time of the
currently running jobs (i.e., estimated JCT - elapsed time
since the start of the job); and (2) the estimated JCT of the
incoming job on the candidate GPU. The scheduler finally
updates/adjusts the user’s job manifest by adding three values:
(i) the assigned node label using the nodeSelector field;
(ii) the volcano scheduler name using the schedulerName
field; and (iii) the estimated memory demand using Volcano’s
resource name volcano.sh/gpu-memory field.

Finally, the scheduler submits the job to be run via the Ku-
bernetes API server to be scheduled by the Volcano scheduler.
The job will be monitored by the monitor when it is executed.
The default Volcano scheduler schedules the jobs in FIFO
order. However, after leveraging node selectors, our approach
effectively results in virtually maintaining a per-node queue of
tasks.

Algorithm 2 Scheduler
Input: Job manifest, job characteristics (X), time and memory

predictions (P)
Output: Job manifest with assigned node and allocated GPU

memory
1: do in parallel ∀GPU Types
EstMem,Time(X) = Estimator(X,PMem,Time)
end

2: for i in GPU nodes do
3: if EstMem(i,X) 6= OOM then
4: Candidate GPUs← (i, EstMem)
5: end if
6: end for
7: do in parallel ∀ Candidate GPUs
DelayQ = getDelayQ(EstTime(X))
end

8: (Nodeassigned, EstMem)←Min(DelayQ)
9: update job manifest

10: submit the updated manifest and monitor job

The memory and time predictions are only computed for
every different/distinct GPU type in the cluster (i.e., in a
threaded approach/in parallel), and not for every GPU node
in the cluster. The calculation of the queuing delay of all
candidate GPU nodes is a simple addition operation and
a few local lookups to get the time estimates of currently
running/queued jobs which are maintained in lists.

F. Monitor

The monitor collects job and GPU statistics by
using Kubectl logs, kubectl describe, and

nvidia-smi for future analysis and for fine-
tuning/retraining the prediction models. Upon the completion
of a job, the monitor collects the data elements of
the predictors dataset, and inserts them for later fine-
tuning/retraining (especially when new unseen jobs arrive)
and analysis. The monitor includes a per job monitoring
task, which is lightweight as it only collects the logs upon
completion of the job.

G. Interference

In our motivational study (Section III), we observed that
as the number of collocated jobs increase, the average job
completion time increases as well. Moreover, the increase
in the JCT is approximately linear with the increase in the
number of collocated jobs, and the number of collocated jobs
is also limited by the total amount of available GPU memory.
To accommodate this in our design, we use a threshold on the
number of jobs that can be collocated on a GPU. This number
depends on the type of the GPU and available memory. Our
tests show that although simple, the approach is able to deliver
good performance when collocating multiple jobs on a GPU.

V. EVALUATION

A. Testbed

We run our experiments on a self-managed on-premises
Kubernetes cluster of 5 nodes. Our focus is on heterogeneity of
the resources. Two nodes have 32-core AMD Opteron Proces-
sor, 64 GB RAM, and a NVIDIA GeForce RTX 2070s-8GB
GPU. Among the remaining three nodes, two have 64-core
Intel Xeon Processor, 192 GB RAM, and an NVIDIA GeForce
RTX 3070-8GB GPU. The last node has a 20-core Intel Core
i9 Processor, 32 GB RAM, and an NVIDIA GeForce RTX
3090-24GB GPU. Table I shows the characteristics of the
GPUs used in our setup. All the nodes are connected with
a 10 Gbps Ethernet connection. In addition to the local setup,
we also perform experiments using AWS EKS clusters, with
nodes equipped with NVIDIA Tesla K80-12GB (p2.xlarge)
and Tesla V100-SXM2-16GB (p3.2xlarge) GPUs.

In all our experiments, we deploy Kubernetes v1.18.18. We
create our on-premises cluster using v1.18.18 of kubeadm,
kubelet, and kubectl. We use Docker v19.03.13 as the con-
tainer runtime. We deploy Volcano [9] scheduler v1.3.0 and
device plugin v1.0.0 for GPU memory sharing capabilities.
We implement SCHEDTUNEas a proof-of-concept using Bash
where we employ Kubectl. We implement the predictors
in Python, and require pandas [49], scikit-learn [38], and
Joblib [25]. Although we demonstrate/showcase the prediction
models using Kubernetes, we believe that they can be applied
to other systems such as HPC and GPUaaS systems by
integrating GPU heterogeneity-aware intelligence into local
schedulers, like SLURM.

B. Workload

Our workload is made up of 360 (312 inference jobs, 48
training jobs) different DL jobs with convolutional neural net-
work models ResNets [16], DenseNets [19], and VGGs [43].

7



0
2

4
6
8
10
12

0

5

10

15

20

25

Tesla K80 RTX 2070s RTX 3070 Tesla V100 RTX 3090

O
O

M
 o

cc
ur

en
ce

s

Tr
ai

ni
ng

 ti
m

e (
ho

ur
s)

GPU Model

Succeeded on all GPUs Succeeded on the respective GPU
OOM occurrences

Fig. 11. Baseline of the total training time of training jobs and OOM
occurrences on each of the studied GPUs.

TABLE II
REGRESSOR MODEL ACCURACY FOR GPU MEMORY PREDICTION,

MEASURED USING ROOT MEAN SQUARED ERROR (RMSE), ROOT MEAN
SQUARE LOG ERROR (RMSLE), AND AVERAGE ERROR (%).

Model RMSE RMSLE Avg ERR (%)
Random Forest Regressor 118.7 0.02 1.56
Gradient Boosting Regressor 212.3 0.03 2.56
Voting Regressor 157.3 0.02 1.90
XGBoost for Regressor 232.6 0.03 2.75

All the training jobs train on the Cifar10 [26] dataset and use
SGD [42] as optimizer. The training dataset image size does
not effect the GPU memory utilization. This is because all
images are resized (i.e., preprocessed on the CPU) when the
DL model starts execution. In our predictions, the input size
is the resized size. For training jobs, we vary the batch sizes
from 8 to 64. We run the training job for one epoch only.
Here, an epoch is a single pass over the entire dataset and
is a representative of the training cycles performance on the
GPU. Our workloads utilize the DL framework provided by
PyTorch:1.8.1 with CUDA 11.1 [10] and cuDNN 8 [8].

C. Baseline

For our baseline numbers, we run our workload on the
standard Kubernetes cluster. Figure 11 shows the total training
time of sequentially running training jobs on each of the GPUs
we consider in this study. We see a significant performance
variation across the GPUs. The figure also shows the number
of occurrences of OOM errors on each GPU. We observe
that on the RTX 3090 GPU, no job fails due to OOM. This
is because the memory capacity of the RTX 3090 GPU is
significantly high compared to the memory requirements of
the jobs in the workload. However, some jobs fail on other
devices as seen. This highlights the importance of considering
the GPU device characteristics for avoiding OOM errors.

D. Prediction Models Accuracy

In our next set of experiments, we determine the accuracy of
the prediction models by measuring their Root Mean Square
Error (RMSE), Root Mean Square Log Error (RMSLE), and
average error (%). As shown in Table II, the Random Forest
Regressor achieves the lowest RMSE, RMSLE, and average
error (%) across all other regressors when training on our GPU

TABLE III
THE IMPACT OF USING DIFFERENT GPU CHARACTERISTICS: (1) CUDA

CORES, (2) TENSOR CORES, (3) MEMORY BANDWIDTH (GB/S), (4) SM
COUNT, AND (5) MEMORY CLOCK SPEED (MHZ) ON THE RFR

PREDICTION MODEL ACCURACY FOR TRAINING MEMORY USAGE.

GPU Char. RMSE RMSLE Avg ERR (%) Deviation (MB)
(1) 119.9 0.02 1.60 [-818.4, 429.3]
(2) 154.5 0.02 2.11 [-636.6, 683.3]
(3) 122.5 0.02 1.56 [-894.4, 399.2]
(4) 125.4 0.02 1.61 [-952.0, 340.6]
(5) 158.6 0.03 2.20 [-939.0, 726.4]
(1,3) 118.7 0.02 1.57 [-763.7, 322.9]
(1,3,4) 110.6 0.02 1.50 [-624.7, 356.4]
(2,3) 129.6 0.02 1.66 [-646.3, 546.3]
(2,5) 140.0 0.02 1.95 [-786.5, 550.2]
(1,2,3,4,5) 118.1 0.02 1.50 [-656.4, 347.1]

TABLE IV
ESTIMATORS ACCURACY USING A SMALLER WORKLOAD (160 JOBS - SEE
FIGURE 12) FOR FAIR COMPARISON TO MATCH WITH THE LIMITED SET OF

HORUS [54] ESTIMATES.

Estimator RMSE RMSLE Max ERR (%) Min ERR (%) Avg ERR (%)
Horus 8908.5 0.62 269.32 0.13 77.56
Torchinfo 6826.2 0.51 224.30 0.39 56.04
SCHEDTUNE 196.1 0.04 18.38 0.05 3.83

memory prediction dataset. This shows that the Random Forest
Regressor is the best suited amongst all the others, and we thus
choose it for use in SCHEDTUNE.

Next, we measure the impact/relativeness of the considered
GPU characteristics (alone and in combinations with others).
Table III shows the RMSE, RMSLE, average error (%), and
memory deviation range in MB for the studied cases as shown.
We observe that considering a combination of CUDA cores,
Memory Bandwidth (GB/s), and SM count yields the lowest
RMSE and RMSLE. Interestingly, considering all five of the
characteristics together yields the second lowest error rate.

Next, we compare our GPU memory predictions with the
actual recorded GPU memory requirement, as well as with
the predictions of two state-of-the-art systems Horus [54]
and Torchinfo [46]. For fairness, in this evaluation, we only
compare the GPU memory predictions for the values which
we could obtain from Horus given system-level differences.
We vary the batch sizes from 8 to 64. Figure 12 shows our
predictions for the RTX 2070s GPU. We see that, compared
to the existing approaches, our predictions are the closest
to the actual memory requirements. We also measure the
RMSE, RMSLE, maximum, minimum, and average error (%)
of Horus and Torchinfo predictions and compare to SCHED-
TUNE. Table IV shows the results. Finally, we also consider
a close-source tool, DNNMem [12], which reports maximum,
minimum, and average prediction errors of 23%, 7.5%, and
14.4%, respectively. Thus, SCHEDTUNE is able to perform
better than DNNMem by considering GPU characteristics.

Next, we measure the RMSE, RMSLE, maximum, min-
imum, and average error (%) of SCHEDTUNE predictors
as shown in Table V. We deploy the predictors that yield
the highest prediction accuracy. For example, to predict the

8



0
5000

10000
15000
20000
25000
30000
35000
40000
45000

8
re

sn
et

50
16

re
sn

et
50

32
re

sn
et

50
64

re
sn

et
50

8
re

sn
et

10
1

16
re

sn
et

10
1

32
re

sn
et

10
1

64
re

sn
et

10
1

8
re

sn
et

15
2

16
re

sn
et

15
2

32
re

sn
et

15
2

64
re

sn
et

15
2

8
de

ns
en

et
12

1
16

de
ns

en
et

12
1

32
de

ns
en

et
12

1
64

de
ns

en
et

12
1

8
de

ns
en

et
16

9
16

de
ns

en
et

16
9

32
de

ns
en

et
16

9
64

de
ns

en
et

16
9

8
de

ns
en

et
20

1
16

de
ns

en
et

20
1

32
de

ns
en

et
20

1
64

de
ns

en
et

20
1

8
vg

g1
6

16
vg

g1
6

32
vg

g1
6

64
vg

g1
6

8
vg

g1
9

16
vg

g1
9

32
vg

g1
9

64
vg

g1
9

M
em

or
y (

M
B)

Batch size and Model

Memory requirement SCHEDTUNE-PRED SCHEDTUNE-EST Horus Torchinfo

Fig. 12. Actual vs. predicted memory requirement for various DL models on Nvidia GeForce RTX 2070s GPU. We show the predicted and estimated (after
adding the error (%)) memory values of SCHEDTUNE.

TABLE V
ACCURACY OF SCHEDTUNE WORKLOAD PREDICTION. M REFERS TO

MEMORY AND T REFERS TO TIME. THE GPU CHARACTERISTICS (1,3,4)
ARE USED FOR TRAINING MEMORY PREDICTION AND (1,2,3,4,5) ARE

USED FOR THE THREE OTHER PREDICTIONS.

Predictor RMSE RMSLE Max ERR (%) Min ERR (%) Avg ERR (%)
Train-M 110.6 0.02 8.98 0.01 1.50
Train-T 23.6 0.03 21.85 0.00 2.50
Infer-M 9.8 0.00 5.42 0.00 0.37
Infer-T 46.5 0.05 24.36 0.00 3.35

GPU memory requirement of DL training jobs, we use the
combination (1,3,4) as defined in Table III. Overall, we see that
SCHEDTUNE is accurately able to predict resource require-
ments for the heterogeneous workloads and heterogeneous
GPUs.

E. GPU Memory Utilization

In our next test, we determine GPU memory utilization
under SCHEDTUNE. For this experiment, we submit the
jobs sequentially. Figure 13 shows the overall cluster-level
GPU memory utilization of SCHEDTUNE compared to Kube-
scheduler (the default Kubernetes scheduler). The total cluster-
level GPU memory is 56178 MB. The GPU memory utiliza-
tion of the Kubernetes scheduler is significantly low. This
is because GPU sharing is not used. Moreover, on average
six jobs exit with OOM error. This is because the Kube-
scheduler does not differentiate between the GPU devices
and does not consider DL model and GPU characteristics. In
contrast, SCHEDTUNE is able to avoid these errors and provide
successful job completion.

Figure 14 shows the cluster-level GPU utilization variation
over time for SCHEDTUNE and Kube-scheduler. SCHEDTUNE
achieves 81% (calculated as the ratio of average GPU memory
utilization by SCHEDTUNE to that of Kube-scheduler) higher
GPU memory utilization over Kube-scheduler by learning
job requirements and better matching the jobs to appropriate
GPUs.

F. Workload Makespan

Next, we study the workload makespan under SCHEDTUNE
and the Kube-scheduler. Figure 15 shows the result. We ob-
served that SCHEDTUNE took more time to choose resources;
on average the overhead was observed to be 6% in our tests.

The average overhead is skewed towards the shorter duration
of inference jobs and the number of inference jobs in our
workload, i.e., inference jobs account for 87% of our work-
load. However, by better matching resources with workload
requirements, SCHEDTUNE is able to reduce the workload
completion time by 17.5%. Additionally, all jobs complete
successfully without OOM errors. Furthermore, the makespan
under Kube-scheduler would be higher if jobs did not fail with
OOM errors. Thus, SCHEDTUNE’s advantage is ever more
pronounced than just observed from this experiment. Recall,
we calculate the makespan as the time duration between the
start of the first job and the completion of the last job in the
workload, whether it is a successful completion or failure due
to OOM.

In summary, our results show that SCHEDTUNE is able to
avoid OOM errors by performing smart heterogeneity-aware
resource scheduling, and is able to perform at par with or
better compared to the state-of-the-art GPU schedulers for DL
workloads.

VI. RELATED WORK

A number of works have explored the use of GPUs for
ML/DL workloads from a number of perspectives. In the
following, we discuss works most relevant to ours.

a) GPU cluster management: Jeon et al. [24] character-
ized and analyzed deep neural networks (DNN) training work-
loads on a multi-tenant GPU cluster. They identified special
cluster management requirements for DL workloads. Multiple
works studied cluster scheduling for ML workloads [14], [22],
[32], [39], [50], [51]. Unlike our study, all of these works
consider homogeneous GPUs.

b) Resource scheduling for heterogeneous/hybrid clus-
ters: Allox [31] introduces a scheduler that leverages the
interchangeability of CPU-GPU resources at the application
level. Allox does not take into consideration distributed jobs
or GPU heterogeneity. Moreover, Allox only considers Nvidia
K80 GPU that has a low performance compared to the state-
of-the-art GPUs. Hu et al. [18] consider both load balancing
and application-level container dependency awareness when
scheduling on a heterogeneous CPU cluster. Specifically, they
propose a scheduler that leverages container consolidation and
heuristic bin packing. Chaudhary et al. [7] proposed user-level

9



0
5

10
15
20
25
30
35
40
45

SCHEDTUNE Kube-scheduler

G
PU

 M
em

or
y (

GB
)

Schedulers

Average used GPU memory Maximum used GPU memory

Fig. 13. The overall average and maximum cluster-
level GPU memory utilization over the run time of
the workload. The total cluster-level GPU memory
capacity is 54.8 GB.

0

20

40

60

80

100

1
23

5
46

9
70

3
93

7
11

71
14

05
16

39
18

73
21

07
23

41
25

75
28

09
30

43
32

77
35

11
37

45
39

79
42

13
44

47
46

81
49

15

U
til

iz
at

io
n 

(%
)

Timestamp

Kube-scheduler SCHEDTUNE

Fig. 14. The overall cluster-level GPU memory
utilization.

0

1000

2000

3000

4000

5000

6000

SCHEDTUNE Kube-scheduler

Ti
m

e 
(s

)

Scheduler

Fig. 15. The measured workload makespan for
SCHEDTUNE vs. the default Kubernetes scheduler.

fairness in scheduling but did not consider GPU sharing like
SCHEDTUNE.

c) Sharing of GPU resources: Recent works have in-
troduced GPU sharing capabilities for Kubernetes clusters
including KubeShare [53] and Kube-knots [45]. Major cloud
providers have introduced GPU sharing capabilities such as
Volcano [9], and GPU Sharing Scheduler Extender [3]. These
solutions provide container-level GPU memory sharing of
NVIDIA GPUs. SCHEDTUNE leverages and builds on such
works to design application-attuned GPU resource scheduling.

d) Predicting GPU memory usage: Recent work has
also proposed methods on predicting the memory demand of
DL jobs. Gao et al. [12] proposed DNNMem that looked
into instruction-level memory usage that can help provide
insights into how much memory an application would use.
Similarly, Yeung et al. [54] proposed a linear equation to
estimate the memory demand and a regression model to predict
GPU utilization. However, in contrast to SCHEDTUNE, these
studies do not consider GPU heterogeneity and different GPU
characteristics in their memory prediction models.

e) Leveraging GPU characteristics: A recent work [4]
offers an experimental analysis of GPU execution time pre-
diction using machine learning models. The paper analyzes
different GPU characteristics to determine the most important
characteristics for considering in GPU execution time predic-
tion. This work is helpful to our approach, and we learn and
leverage its findings. Additionally, the results from our GPU
characteristics experiments align with the results presented
in the paper. Lattuada et al. [30] proposed leveraging the
computational power of GPUs, measured in single precision
GFlops/s, as a metric representing GPU performance. They
utilize a linear regressor to predict the training time of DL
workloads but do not consider GPU memory prediction or
GPU sharing like SCHEDTUNE.

VII. CONCLUSION

Container management systems are beginning to support
heterogeneous GPU resources. However, existing solutions are
unable to address the challenges of GPU under-utilization,
high queuing delays, subsequent low throughput, and high
makespan. Moreover, sharing GPUs across multiple applica-
tions via collocation, while needed, is not fully supported,
especially because misconfiguration of DL jobs’ GPU memory
requirements can significantly reduce performance. In this

paper, we address the above issues by designing SCHEDTUNE,
an ML-based GPU heterogeneity-aware scheduler that utilizes
DL jobs predictions for GPU memory requirement and job
completion time. The predictions consider the characteristics
of GPUs along with the characteristics of the DL model to
produce GPU-specific estimates. The evaluation of SCHED-
TUNE on representative workloads shows an 81% increase in
GPU memory utilization, 100% prevention of OOM errors,
and 17.5% reduction in makespan compared to the state-of-
the-art Kubernetes scheduler.

ACKNOWLEDGMENT

We are thankful to the reviewers and our shepherd Ana
Lucia Varbanescu for their valuable feedback. This work
is sponsored in part by the NSF under the grants: CSR-
2106634, CCF-1919113, OAC-2004751, and CSR-1838271,
by Kuwait University, and by Guangdong Basic and Applied
Basic Research Foundation No. 2021A1515110080.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in {USENIX} {OSDI}, 2016.

[2] “Container Service for Kubernetes,” Alibaba Cloud, https://www.
alibabacloud.com/product/kubernetes.

[3] “GPU Sharing Scheduler Extender,” Alibaba Cloud, https://github.com/
AliyunContainerService/gpushare-scheduler-extender.

[4] M. Amaris, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram,
“A comparison of gpu execution time prediction using machine learning
and analytical modeling,” in 2016 IEEE 15th International Symposium
on Network Computing and Applications (NCA). IEEE, 2016.

[5] “Launching applications using docker containers,” Apache
Hadoop 3.1.1, https://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/
hadoop-yarn-site/DockerContainers.html.

[6] “Amazon Elastic Kubernetes Service (EKS),” AWS, https://aws.amazon.
com/eks.

[7] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous gpu clusters for deep
learning,” in EuroSys, 2020.

[8] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[9] “Volcano: A cloud native batch system,” Cloud Native Computing
Foundation, https://www.cncf.io/projects/volcano/.

[10] “Compute Unified Device Architecture,” CUDA, https://developer.
nvidia.com/cuda-zone.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[12] Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, and M. Yang,
“Estimating gpu memory consumption of deep learning models,” in
ESEC/FSE, 2020.

10



[13] “Google Kubernetes Engine (GKE),” Google Cloud, https://cloud.
google.com/kubernetes-engine.

[14] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A {GPU} cluster manager for distributed deep
learning,” in 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), 2019, pp. 485–500.

[15] J. Han, L. Xu, M. M. Rafique, A. R. Butt, and S.-H. Lim, “A quantitative
study of deep learning training on heterogeneous supercomputers,” in
2019 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2019, pp. 1–12.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[17] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization and
prediction of deep learning workloads in large-scale gpu datacenters,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–15.

[18] Y. Hu, C. T. A. M. de Laat, and Z. Zhao, “Multi-objective container
deployment on heterogeneous clusters,” in 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2019,
Larnaca, Cyprus, May 14-17, 2019. IEEE, 2019, pp. 592–599.
[Online]. Available: https://doi.org/10.1109/CCGRID.2019.00076

[19] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017.

[20] “Cloud Container Engine (CCE),” HUAWEI CLOUD, https://www.
huaweicloud.com/intl/en-us/product/cce.html.

[21] “Volcano device plugin for kubernetes,” HUAWEI CLOUD, https://
github.com/volcano-sh/devices.

[22] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park, “Elastic resource
sharing for distributed deep learning,” in 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21).
USENIX Association, Apr. 2021, pp. 721–739. [Online]. Available:
https://www.usenix.org/conference/nsdi21/presentation/hwang

[23] “IBM Cloud Kubernetes Service,” IBM Cloud, https://www.ibm.com/
cloud/kubernetes-service.

[24] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant {GPU} clusters for
{DNN} training workloads,” in 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), 2019, pp. 947–960.

[25] Joblib Development Team, “Joblib: running Python functions as pipeline
jobs,” https://joblib.readthedocs.io/.

[26] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[27] “Kubernetes,” Kubernetes, https://kubernetes.io.
[28] “Schedule GPUs,” Kubernetes, https://kubernetes.io/docs/tasks/

manage-gpus/scheduling-gpus/.
[29] “What is Kubernetes?” Kubernetes, https://kubernetes.io/docs/concepts/

overview/what-is-kubernetes.
[30] M. Lattuada, E. Gianniti, D. Ardagna, and L. Zhang, “Performance

prediction of deep learning applications training in gpu as a service
systems,” Cluster Computing, pp. 1–24, 2022.

[31] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “Allox: compute allocation
in hybrid clusters,” in Proceedings of the Fifteenth European Conference
on Computer Systems, 2020, pp. 1–16.

[32] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and effi-
cient {GPU} cluster scheduling,” in 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), 2020, pp.
289–304.

[33] “Azure Kubernetes Service (AKS),” Microsoft Azure, https://azure.
microsoft.com/en-us/services/kubernetes-service.

[34] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “{Heterogeneity-Aware} cluster scheduling policies for
deep learning workloads,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 481–498.

[35] “Nvidia system management interface (nvidia-smi),” NVIDIA, https://
developer.nvidia.com/nvidia-system-management-interface.

[36] “Determine memory cuda context memory usage,”
Nvidia Forums, https://forums.developer.nvidia.com/t/
determine-memory-cuda-context-memory-usage/67460/12.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[39] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in Proceedings
of the Thirteenth EuroSys Conference, 2018, pp. 1–14.

[40] “Red Hat OpenShift,” Red Hat, Inc., https://www.redhat.com/en/
technologies/cloud-computing/openshift.

[41] “State of kubernetes security report,” Red-
Hat, https://www.redhat.com/rhdc/managed-files/
cl-state-kubernetes-security-report-ebook-f29117-202106-en 0.pdf.

[42] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[44] “Apache Mesos,” The Apache Software Foundation, http://mesos.
apache.org/.

[45] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das, “Kube-knots: Resource harvesting through dynamic container
orchestration in gpu-based datacenters,” in 2019 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2019, pp. 1–13.

[46] Tyler Yep, “Torchinfo: Model summary in PyTorch,” https://pypi.org/
project/torchinfo/.

[47] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling for gpu
based cloud servers using machine learning,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2016,
pp. 353–362.

[48] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and Y. Jia, “Char-
acterizing deep learning training workloads on alibaba-pai,” in 2019
IEEE international symposium on workload characterization (IISWC).
IEEE, 2019, pp. 189–202.

[49] Wes McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, Stéfan van der
Walt and Jarrod Millman, Eds., 2010, pp. 56 – 61.

[50] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), 2018, pp.
595–610.

[51] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “Antman: Dynamic scaling on {GPU} clusters for deep
learning,” in 14th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 20), 2020, pp. 533–548.

[52] X. Xu, N. Zhang, M. Cui, M. He, and R. Surana, “Characterization and
prediction of performance interference on mediated passthrough gpus
for interference-aware scheduler,” in 11th {USENIX} Workshop on Hot
Topics in Cloud Computing (HotCloud 19), 2019.

[53] T.-A. Yeh, H.-H. Chen, and J. Chou, “Kubeshare: a framework to
manage gpus as first-class and shared resources in container cloud,” in
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, 2020, pp. 173–184.

[54] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Gar-
raghan, “Horus: Interference-aware and prediction-based scheduling in
deep learning systems,” IEEE Transactions on Parallel and Distributed
Systems, 2021.

[55] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An
empirical study on program failures of deep learning jobs,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 2020, pp. 1159–1170.

11


