
On the Use of Containers in High Performance Computing Environments

Subil Abraham†, Arnab K. Paul†, Redwan Ibne Seraj Khan, Ali R. Butt
Virginia Tech

{subil, akpaul, redwan, butta}@vt.edu

Abstract—The lightweight nature, application portability,
and deployment flexibility of containers is driving their
widespread adoption in cloud solutions. Data analysis and deep
learning (DL)/machine learning (ML) applications have espe-
cially benefited from containerization. As such data analysis is
adopted in high performance computing (HPC), the need for
container support in HPC has become paramount. However,
containers face crucial performance and I/O challenges in HPC.
One obstacle is that while there have been HPC containers,
such solutions have not been thoroughly investigated, especially
from the aspect of their impact on the crucial HPC I/O
throughput. To this end, this paper provides a first-of-its-kind
empirical analysis of state-of-the-art representative container
solutions (Docker, Podman, Singularity, and Charliecloud) in
HPC environments. We also explore how containers interact
with an HPC parallel file system like Lustre. We present the
design of an analysis framework that is deployed on all nodes
in an HPC environment, and captures CPU, memory, network,
and file I/O statistics from the nodes and the storage system.
We are able to garner key insights from our analysis, e.g.,
Charliecloud outperforms other container solutions in terms
of container start-up time, while Singularity and Charliecloud
are equivalent in I/O throughput. But this comes at a cost, as
Charliecloud invokes the most metadata and I/O operations
on the underlying Lustre file system. By identifying such
trade-offs and optimization opportunities, we can enhance
HPC containers performance and the ML/DL applications that
increasingly rely on them.

Keywords-Container Performance, High Performance Com-
puting, Parallel File Systems, HPC Storage and I/O

I. INTRODUCTION

Containers are experiencing massive growth as the de-
ployment unit of choice in a broad range of applications
from enterprise to web services. This is especially true for
leveraging the flexibility and scalability of the cloud envi-
ronments [1]. Extant data analysis including deep learning
(DL) and machine learning (ML) are further driving the
adoption of containerized solutions. Containers offer highly
desirable features: they are lightweight, comprehensively
capture dependencies into easy-to-deploy images, provide
application portability, and can be scaled to meet application
demands. Thus, containers free the application developers
from lower-level deployment and management issues, allow-
ing the developers to focus on their applications and in turn
significantly reduce the time-to-solution for mission-critical
applications.

† Made equal contribution to this work.

Modern data analysis is compute and I/O hungry [2],
[3] and require massive computing power, far beyond the
capabilities of what a scaled-up single node can provide.
At the same time, more and more scientific workflows rely
on DL/ML to analyze and infer from scientific observations
and simulations data. Thus, there is a natural need for
data analysis and I/O-intensive DL/ML support in HPC. A
challenge to this end is that modern DL/ML software stacks
are complex and bespoke, with no two setups exactly the
same. This leads to an operations nightmare of addressing
library, software, and other dependencies and conflicts. To
this end, enterprise data analysis solutions have adopted con-
tainers given their ability to encapsulate disparate services
that can be orchestrated together, reused, and reinstantiated
transparently. Thus, efficiently supporting containers in HPC
systems will provide a suitable and effective substrate for the
crucial data analysis tasks.

The use of containers is being explored in the HPC envi-
ronment, and have produced benefits for large scale image
processing, DL/ML workloads [4]–[6], and simulations [7].
Due to user demand and ease of use, containers are also
becoming an integral part of HPC workflows at leadership
computing facilities such as at Oak Ridge [8] and Los
Alamos [9] national laboratories. Currently available HPC
container solutions include Singularity [10], Podman [11],
Shifter [12], and Charliecloud [13]. Among these, Singu-
larity and Charliecloud are designed especially to make the
best use of HPC resources.

In addition to meeting the computing needs of HPC
applications, containers have to support the dynamic I/O
requirements and scale, which introduce new challenges
for data storage and access [14]–[17]. Moreover, different
container solutions incur different overheads. Therefore, it
is crucial to analyze the interaction of containers with the
underlying HPC storage system—one of the most important
HPC resources. The knowledge gained can help build an
effective ecosystem where both parallel file systems (PFS)
and containers can thrive. There have been several works
that have examined the performance of containers on HPC
systems [7], [18]–[23]. There have also been studies on
parallel file systems for use in cloud environments [24]–[28].
However, to the best of our knowledge, existing works have
not studied the behavior of HPC storage system, especially
the parallel file system, in service of containers.

In this paper, we examine the performance of different

container solutions on a parallel file system. We present
a framework to analyze different representative container
solutions running atop HPC storage. The framework collects
and compares performance metrics from both client and
storage nodes, including CPU, memory, network, and file
system usage. We also collect metadata and I/O statistics
gathered from the PFS. We focus on file I/O, specifically
analyzing the effects of I/O operations made by containers.
We use the containerized image of Sysbench [29] to run
CPU, memory, and file I/O benchmarks. We also use real-
world representative HPC workloads such as HaccIO [30]
and IOR [31] to explore the I/O impact of the studied
containers.

We study four extant container solutions: Docker, Pod-
man, Singularity, and Charliecloud. The HPC PFS that we
selected for our analysis is Lustre [32], as it is the most
widely used file system in HPC [33]. According to the
latest Top 500 list [34], Lustre powers ∼60% of the top 100
supercomputers in the world, and will power Frontier [35],
the world’s first exascale supercomputer. While the analysis
is based on the experiments on the Lustre file system, the
results can be easily extended to other HPC file systems. Our
analysis shows that Charliecloud gives better performance
in terms of container startup time. Both Singularity and
Charliecloud give similar I/O throughput on the Lustre file
system. However, when analyzing the number of requests
that arrive at Lustre’s metadata and object storage servers,
Charliecloud fares the worst. Our aim is to provide insights
to help both HPC practitioners and system administrators
so that they can obtain best I/O performance when running
HPC container solutions.

II. BACKGROUND

In this section, we give an introduction to the container
technology, and describe some of the commonly used con-
tainer solutions. We also describe HPC parallel file systems,
especially the architecture of Lustre file system.

A. Containers

Containers differ from other virtualization methods like
KVM [36] that explicitly virtualize the hardware and run
separate kernels. In contrast, containers on the same node
share the same kernel. Containers are able to provide a
VM like isolation through the use of cgroups [37] and
namespaces [38]. As a result, a container can provide the
necessary isolation between applications without the heavy
resource utilization of a virtual machine, in turn allowing
many more containers than VMs to run simultaneously on
a node.

Containers provide the ability to read and write data (I/O)
by bind-mounting a directory in the container to a directory
on the node that hosts the container. Therefore, container
I/O to a directory actually takes place on the underlying
host bind-mounted directory.

Beyond isolation, arguably the main benefit of container-
ization is the ease of packaging the application and all of its
dependencies in a readily deployable format. This advantage
is particularly useful for HPC, where such packaging makes
deployment of ML/DL significantly easier by freeing the
users from installing and managing software dependencies
in complex HPC systems.

B. Containerization Solutions

1) Docker: Docker [39] is one of the most popular
container solutions. Although approaches such as LXC [40]
have been around for a long time, it was Docker that
popularized containerization as a better and more efficient
solution for providing isolation for applications, especially
in the cloud computing setting. Figure 1a shows a simplified
architecture overview of Docker.

However, a number of drawbacks in Docker has lim-
ited its enthusiastic adoption in HPC environments. Firstly,
the approach depends on an always-on Docker daemon
that the Docker client (e.g. the Command Line Interface
(CLI)) interacts with to perform container operations. This
daemon spawns the containers as child processes, which
make it a single point of failure and can possibly lead to
orphaned containers in case the daemon crashes. The entire
container management ecosystem of Docker rests inside
this single daemon, making it bloated and unsuitable for
mission-critical HPC deployments. Docker also needs root
permissions to run. This almost always contradict with the
HPC center policies that disallow such permissions to avoid
execution of harmful arbitrary code. In addition, Docker
stores its images split up into a number of read-only layers.
When a Docker container is started from an image, the
daemon uses OverlayFS [41] to create a union of all of its
layers and creates a read-write layer at the top. However, a
parallel file system such as Lustre does not support Over-
layFS. So an image must be explicitly downloaded and run
from a supported local file system—a step that introduces
unnecessary overhead and limits scalability. Docker also
does not provide useful support for native MPI operations
that are often needed for typical HPC applications.

Storing of Docker images in the Lustre file system have
also been proposed [42]. However, this solution involved
an inefficient way of abusing the device-mapper driver and
creating loopback devices in Lustre so that the data-root can
be pointed to those devices. The device-mapper driver is now
deprecated and will be removed in future Docker releases,
so such a solution is also not future-proof.

2) Podman: Podman [43] provides a comprehensive con-
tainer solution similar to Docker. The main driving force
for the development of Podman has been the need to avoid
having a privileged management daemon used in Docker.
Podman replaces the daemon-client architecture of Docker
with individual processes that run the containers, and uses
conmon [44] to provide the necessary monitoring and debug-

(a) Docker (b) Podman (c) Singularity (d) Charliecloud

Figure 1: Architecture of the studied container solutions.

ging capabilities. Figure 1b shows the overview of Podman
architecture.

Podman can also run rootless containers through the use
of user namespaces [45], which ensures additional security
and separation among containers, especially in HPC scenar-
ios.

Podman, however, also relies on OverlayFS to store and
run containers similar to Docker. The layer structure of the
Podman images is OCI compliant, but the dependence on
OverlayFS is a roadblock for storing images on distributed
file systems in HPC environments as discussed earlier.

3) Singularity: Singularity [10] is a container frame-
work tailored specifically for HPC environments. Its goals
are to provide isolation for workloads while preventing
privilege escalation, offer native support for MPI, Infini-
band, and GPUs, and support ease of portability and
reusability through distributing container images as a single
SquashFS [46] file. Thus, Singularity can store images and
run containers from the Lustre file system. Figure 1c shows
the overview of Singularity.

A key feature of Singularity is its focus on security such
as root file system encryption, as well as cryptographically
signing containers images. Singularity containers are read-
only by default and all write operations can only be done via
bind-mounted directories. These features make Singularity
attractive for HPC systems.

4) Charliecloud: Another HPC-focused containerization
solution is Charliecloud [13], which also provides native
MPI support similar to Singularity. Charliecloud differs from
Singularity in that Charliecloud focuses on simplicity of
architecture instead of portability. Its primary aim is to
provide a way to encapsulate dependencies with minimal
overhead. Charliecloud employs Docker or other image
builder tools such as Buildah [47], umoci [48], and the in-
built ch-grow to build an image, and then extracts all the
contents of that image into an unpacked file tree format.
As a result, instead of existing as compressed layers (as in
Docker and Podman) or as a single file (as in Singularity),
Charliecloud images are stored as a file tree. Applications
can be run from the file tree by pivot rooting [49] into it,
as shown in Figure 1d. Charliecloud also provides a means
of constructing and running compressed SquashFS images

akin to Singularity, which is expected to perform similar
to Singularity. Unlike Docker, which isolates everything,
Charliecloud only uses separate namespaces for mount and
user, whereas the network and process namespaces are
shared with the underlying OS. Because of this minimal
isolation, Charliecloud is intended to be used in a trusted
environment (similar to an HPC allocation).

Discussion: Although Docker and Podman are designed
for cloud systems, and not necessarily for HPC environ-
ments, they are well-established and widely-used container
solutions and their efficacy in HPC should be explored. This
is further underscored by the observation that HPC-focused
container solutions also support Docker images. Moreover,
systems such as Charliecloud can employ Docker as needed.

We note that Shifter [12] is another prominent HPC con-
tainer solution in the HPC field. We did create and evaluate
an approximated setup of Shifter from available resources.
However, Shifter’s close dependence on difficult-to-recreate
NERSC’s supercomputers and their job scheduling setup, the
results from our Shifter study did not yield useful insights
for general HPC containers. Therefore, we do not include
these observations in this paper.

C. HPC Parallel File Systems

HPC PFSs are designed to distribute file data across
multiple servers so that multiple clients can access a file
system simultaneously at extreme scales. Typically, HPC
PFS consists of clients that read or write data to the file
system, data servers that store the data, metadata servers
that manage the metadata and placement of data on the
data servers, and networks to connect these components.
Data may be distributed (divided into stripes) across multiple
data servers to enable parallel reads and writes. This level
of parallelism is transparent to the clients, which access
the PFS similar to accessing a local file system. Therefore,
important functions of a PFS include avoiding potential
conflict among multiple clients and ensuring data integrity
and system redundancy. The most common HPC PFS in-
clude Lustre, GlusterFS, BeeGFS, and IBM Spectrum Scale,
with Lustre being one of the most extensively used in HPC
environments.

Lustre Clients

. . .

Management Server (MGS) Metadata Server (MDS)
Management
Target (MGT)

Metadata
Target (MDT)

. . .

Object Storage Servers (OSS) &
Object Storage Targets (OSTs)

direct, parallel file access

Lustre Network (LNet)

Figure 2: An overview of Lustre architecture.

1) Lustre File System: Figure 2 shows the high-level
overview of Lustre architecture. Lustre has a client-server
network architecture and is designed for high performance
and scalability. The Management Server (MGS) is responsi-
ble for storing the configuration information for the entire
Lustre file system. This persistent information is stored
on the Management Target (MGT). The Metadata Server
(MDS) manages all the namespace operations for the file
system. The namespace metadata, such as directories, file
names, file layout, and access permissions are stored in a
Metadata Target (MDT). Every Lustre file system must have
a minimum of one MDT. Object Storage Servers (OSSs)
provide the storage for the file contents. Each file is stored
on one or more Object Storage Target (OST)s mounted
on the OSS. Applications access the file system data via
Lustre clients that interact with OSSs directly for parallel file
accesses. The internal high-speed data networking protocol
for the Lustre file system is abstracted and is managed by
the Lustre Network (LNet) layer.

III. ANALYSIS FRAMEWORK

A. Lustre Deployment

We use a Lustre cluster of ten nodes with one MDS,
seven OSSs and two clients for our study. Each node runs
CentOS 7 with an AMD FX-8320E eight-core 3.2 GHz
processor, 16 GB of RAM, and a 512 GB SSD. All nodes
are interconnected with 10 Gbps Ethernet. Furthermore, each
OSS has five OSTs, each supporting 10 GB of attached
storage. The setup offers a 350 GB Lustre store for our
analysis.

B. Container Deployment

For deploying Docker and Podman on our HPC setup,
we utilized the clients’ local storage because Lustre does
not support OverlayFS (as discussed in Section II-B). For
Singularity and Charliecloud, the analysis was mainly done
with Lustre. However, we used both Lustre and clients’
local storage for startup time tests and the final multi-node
throughput tests. We benchmark CPU, memory, and file I/O
performance of the containers with Sysbench [29]. We also
studied Lustre I/O throughput under containerized real-world
HPC workloads including HaccIO [30] and IOR [31].

C. Analysis Framework

We build a framework, seen in Figure 3, to encapsulate
all the required operations of building the container images,
running them, and collecting and analyzing the metrics.

Figure 3: Architecture of our analysis framework.

The framework takes as input the container solution
to analyze and the type of benchmark to run. When the
framework is first deployed, it invokes the container image
build process. The built images are stored on the local file
system or on Lustre, based on the container deployment. The
framework incorporates the collection of sar [50] metrics
on the client for the benchmarks. On the Lustre server
nodes (MDS and OSS), the framework collects the sar
metrics, as well as OSS and MDS specific statistics from the
individual nodes. The framework collects metrics on CPU
and memory utilization, network usage, and reads and writes
on the storage devices.

When the analysis framework is activated, it executes
the needed servers on the Lustre nodes that will listen
for GET requests from the client. The GET requests are
sent from the client nodes at the start and stop of each
benchmark run to trigger the start and stop of metrics
collection on the Lustre nodes, respectively. After activating
metrics collection, the container with the benchmark code
is started and the benchmark is run. At the end of each
run of the benchmark, the used container is removed from
memory and disk, and the caches are cleared. For each
new benchmark run, a new container is spawned from the
corresponding image to avoid reuse of any cached data or
old paused containers to avoid data pollution. All Sysbench
benchmarks are cut off at 30 seconds (selected based on
our observation of the typical benchmark runs on our target
cluster) and are forcibly stopped if they do not complete in
this time period. However, the HaccIO and IOR benchmarks
are run to completion. The metrics collected from each of
the nodes for each run are all gathered at a central location
for analysis.

IV. ANALYSIS

A. Workloads Description

Our experimental setup comprises a Lustre file system
deployment of seven OSSs, and one MDS. Container oper-
ations were done through two client nodes to validate both
single and multi-node setups. Our single-node workloads

employed Sysbench to benchmark memory performance,
CPU performance, and sequential and random file I/O
throughput. All Sysbench benchmarks are run with eight
threads and measurements are averaged across ten runs.

The CPU workload from Sysbench repeatedly calculates
prime numbers up to 1,000,000 to stress load the CPU until
the specified timeout is reached. It then reports the number
of repetitions broken down by thread during the benchmark
run, and the average latency for each repetition.

The memory workload consists of repeatedly allocating
a 1K block, performing sequential/random reads/writes (de-
pending on the options passed to Sysbench), and deallocat-
ing the block. This is repeated until the timeout is reached
or 100 GB of data is read or written. The benchmark then
reports the amount of data read or written, and the total and
per thread average time taken to complete the benchmark.

The file I/O benchmark consists of preparing 20 GB of
data split across 128 files filled with random data, and then
performing the sequential or random synchronous file I/O
operations on the file depending on the particular file I/O
benchmark being run. Sysbench reports the amount of data
read and written during the benchmark run.

We use sar to collect system statistics during the Sys-
bench benchmark runs.

In addition, we also tested a real-world multi-node setup
using HaccIO [30] and IOR [31] running simultaneously
from two different client nodes. The HaccIO benchmark sim-
ulates the I/O patterns of the Hardware Assisted Cosmology
Code [51], simulating a typical workload for HPC systems.
It is run with a number of particles set to 4,096,000 for all
the runs. In the IOR benchmark, each MPI process writes a
block of 256 MB of data in parallel and reads it back with
the processes shifted so that each process is not reading the
same block it wrote. We look at the I/O throughput reported
by these benchmark suites as well as the statistics reported
by Lustre to study relative performance.

B. Research Questions

In analyzing and comparing the studied container solu-
tions, we try to answer the following research questions:

Q1. How would performance compare among different
container solutions running in an HPC environment?

Q2. How would the Lustre file system performance
differ for different container solutions?

C. Container Startup Time

Figure 4 shows the time to startup for the studied container
solutions. The higher startup time in Docker and Podman
is due to the overhead of building the container from the
multiple image layers, setting up the read-write layer, and
setting up the monitoring of the containers. Charliecloud and
Singularity do not use layers to build their containers, nor

centos ubuntu alpine
Containers

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Se
co

nd
s

Docker
Podman
Singularity (local)
Singularity (Lustre)
Charliecloud (local)
Charliecloud (lustre)

Figure 4: OS image startup times under the studied con-
tainer solutions.

do they setup a read-write layer by default. In addition, they
usually expect the job schedulers to handle the monitoring.
As a result, their startup times are lower compared to that
of Docker.

D. Observations on The Client

1) Resource usage spikes in container startup: Starting
CPU utilization is higher for Docker and Podman as seen
in Figure 5a. Docker and Podman uses additional com-
putational resources for spawning containers and starting
up monitoring, and thus have additional CPU overhead at
startup. This is likely because of the additional work from
starting containers from multi-layered images, which also
explains their longer startup time.

There is also a noticeable spike in data received over
network for Singularity as seen in Figure 5b. This spike
is because the Singularity image is stored as a single file on
Lustre. This results in Singularity having to load a huge
amount of data (and not just the startup portion) from
the image at startup time, which in turn slows the startup
process.

Figure 5c shows that Charliecloud has a spike in the data
transmitted from the client node over the network. This is
likely because Charliecloud has to make a larger number of
MDS and OSS requests since it is a bare tree structure, not
shared layers or a single file, and thus will need to access a
lot of individual files from the image tree from Lustre from
the outset.

Figure 5d shows a spike in blocks written for Docker,
which is likely caused by the creation of the read-write
layer when starting the container. This spike for Docker is
significantly higher than that for Podman, which also does
the same thing. This indicates that Podman uses far fewer
resources for the startup process.

2) CPU and Memory Utilization: Figures 6 and 7 show
box plots of the CPU and memory utilization, respectively,
for the CPU (sbcpu), memory (sbmem), and I/O (sbfileio)
workloads across 10 runs. All four container solutions be-
have fairly similarly in how they use CPU and memory for
the studied workloads.

3) File I/O Throughput: Table I shows the average read
and write throughput on the client node for Sysbench.

0 1 2 3 4
Seconds

0

2

4

6

8

Pe
rc

en
t C

PU
 U

til
iza

tio
n Docker

Podman
Singularity
Charliecloud

(a) Observed spike in CPU uti-
lization for Docker and Pod-
man during Sysbench sequen-
tial read-write.

0 1 2 3 4
Seconds

0

25000

50000

75000

100000

125000

KB
 re

ce
iv

ed
 p

er
 se

co
nd

Docker
Podman
Singularity
Charliecloud

(b) Observed spike in data re-
ceived over network for Singu-
larity during Sysbench mem-
ory random read1.

0 1 2 3 4
Seconds

0

200

400

600

KB
 tr

an
sm

itt
ed

 p
er

 se
co

nd Docker
Podman
Singularity
Charliecloud

(c) Observed spike in data
transmitted over network for
Charliecloud during Sysbench
memory random read1.

0 1 2 3 4
Seconds

0
2000
4000
6000
8000

10000
12000

Bl
oc

ks
 w

rit
te

n
pe

r s
ec

on
d Docker

Podman
Singularity
Charliecloud

(d) Observed spike in blocks
written for Docker during Sys-
bench sequential read-write.

Figure 5: Resource usage spikes observed during container startup for the Sysbench benchmarks.

Benchmarks Docker Podman Singularity Charliecloud
read write read write read write read write

Sequential Read 226.691 0 224.137 0 222.045 0 226.13 0
Sequential Write 0 87.447 0 86.808 0 90.655 0 90.447
Sequential Read-Write 0 89.387 0 89.044 0 91.498 0 94.357
Random Read 124.404 0 128.498 0 131.483 0 123.033 0
Random Write 0 39.029 0 38.76 0 39.787 0 39.949
Random Read-Write 29.012 19.339 28.515 19.007 29.605 19.733 29.198 19.465

Table I: Throughput (MB/s) for container solutions for File I/O workloads.

sbcpu sbfileio_sync_rndrw sbmem_wrrnd
Metrics

0

25

50

75

CP
U

ut
iliz

at
io

n
(%

)

Docker
Podman
Singularity
Charliecloud

Figure 6: CPU utilization for different workloads.

sbcpu sbfileio_sync_rndrw sbmem_wrrnd
Metrics

20

40

60

M
em

or
y

ut
iliz

at
io

n
(%

)

Docker
Podman
Singularity
Charliecloud

Figure 7: Memory utilization for different workloads.

Singularity and Charliecloud slightly outperform Docker
and Podman in read and write throughput in most cases.
Singularity performs worst for sequential read, and Char-
liecloud gives the worst performance for random read. But
the performance differences are fairly small and do not
seem to indicate significant container overhead during the
benchmark run. This observation holds true for performance
of real world benchmarks shown in Section IV-F even though
there are observed differences in the performance of the
underlying Lustre PFS .

1The memory read benchmark itself does not do any file or network I/O.

E. Behavior of Lustre File System

Average Docker Podman Sing Char
read bytes/OSS (MB) 317.8 314.71 370.52 352.72
write bytes/OSS (MB) 83.26 81.86 84.97 83.85
of requests/OSS 9920 9760 10179 10072
req waittime/OSS (µs) 36.59 36.55 36.06 36.37
of requests in MDS 120768 118764 123235 121772
req waittime in MDS (µs) 24.87 24.91 24.89 24.45
open calls in MDS 128 128 131 200

Table II: Average Lustre activity per run of the Sysbench
random read/write file I/O benchmark (Sing - Singularity,
Char - Charliecloud).

Table II shows the Lustre statistics for the Sysbench
Random Read-Write file I/O benchmark. Singularity has the
highest amount of data read per OSS. This is mainly due
to the fact that Singularity has to read larger blocks of the
contents from its container image from Lustre, in addition
to the read operation of the benchmark itself. Docker and
Podman read container images from the client’s local file
system. So they do not exhibit such an overhead. Singular-
ity reads larger blocks compared to Charliecloud. This is
because Singularity’s container image is a large single file
and would load more data at a time, whereas Charliecloud
reads smaller amounts of data since Charliecloud has to only
read individual files from its unpacked file tree.

For the same reasons, Singularity also shows a higher
average number of requests on the MDS and OSSs. How-
ever, this is in contrast to the multi-node real world sce-
nario where Charliecloud has comparatively higher number
of OSS and MDS requests as discussed in Section IV-F.
In either case, the higher number of metadata and data
operations because of container overhead could potentially

lead to more metadata and I/O contention on the MDS and
OSSs when working with a large number of I/O intensive
containerized applications in an HPC environment.

F. Real-World Benchmarks: HaccIO and IOR

As a final step, we also obtain the I/O metrics across
ten HaccIO and IOR runs on the Lustre file system run
through each container solution in a multi-node setup. We
run HaccIO and IOR separately on each client node to mimic
a heterogeneous workload on Lustre. The number of MPI
processes are varied to see how the throughput changes with
increased parallelism in the workloads. In the workload, both
HaccIO and IOR are run simultaneously in the multi-node
setup with two, four, and eight MPI processes each.

2 4 8
of Processes

100

200

300

400

500

of

 re
qu

es
ts

 p
er

 O
SS

Docker
Podman
Singularity
Charliecloud

Figure 8: Box plot of number of requests per OSS across
ten runs, averaged across seven OSSs, for HaccIO and IOR
benchmark with different number of MPI processes.

2 4 8
of Processes

0

1000

2000

of

 re
qu

es
ts

 o
n

M
DS

Docker
Podman
Singularity
Charliecloud

Figure 9: Box plot of number of requests across ten runs in
MDS for HaccIO and IOR benchmark with different number
of MPI processes.

Figures 8 and 9 show that Charliecloud, with increasing
numbers of processes, has the highest amount of activity on
OSSs and MDS. This is significantly higher than any other
container solution, due to the unpacked file tree structure
of its container image. This means that Charliecloud has to
read multiple small files individually. These reads multiply
as we increase the number of MPI processes, since they
are all independent of each other. As a result, Charliecloud
has to do a lot of reads in addition to just the work of
IOR, leading to a higher number of requests on the Lustre

Docker Podman Sing (Lus) Char (Lus) Sing (Loc) Char (Loc)
Containers

400

500

600

700

800

900

Th
ro

ug
hp

ut
 M

B/
s

Writes
Reads

Figure 10: Box plot showing read and write throughput
for IOR during multi-node run. (Sing: Singularity, Char:
Charliecloud, Lus: image stored on Lustre, Loc: image
stored on client’s local storage).

metadata and storage server nodes. A Singularity image on
the other hand is stored as just one file, and does not incur
such an overhead. Therefore, Singularity scales better with
increasing parallelism. For a single process, Charliecloud
fares better, as it makes fewer requests to the OSSs and
MDS for image data reads compared to Singularity. This
is seen in Table II, which shows that Charliecloud is more
efficient than Singularity in Lustre operations, though their
read and write throughput are similar as seen in Table I.
However, such is not the case in a multi-process setup, where
Singularity behaves better from the Lustre perspective.

We also performed another test of HaccIO and IOR in
the multi-node setup by increasing the number of particles
in HaccIO to 8,192,000 and changing the number of 256M
size blocks written by each MPI process from one to four.
This means that each run has eight MPI processes and the
total IOR data written and read is 8 GB. This experiment
allows a better look at the I/O throughput. Additionally,
we perform a run of Singularity and Charliecloud from the
local storage, similar to the Docker and Podman, to help
see if there is difference in throughput between running the
same container from local storage and PFS. We focus on the
IOR read and write throughput results. Figure 10 shows that
Singularity and Charliecloud do not exhibit any differences
in their throughput when we compare storing the container
image on Lustre versus the local file system. This indicates
that running these container images from a distributed file
system instead of a local file system does not affect their
observed I/O performance.

G. Discussion

In answering our first research question of how the per-
formance of the studied container solutions differ, the most
important observation is the significant difference in startup
times among the studied container solutions, as well as the
spikes seen in the various metrics during container startup.
Here, Charliecloud offers the best startup performance.
Besides startup, the container solutions do not show any
major differences in non I/O related metrics. To gauge I/O
performance, it is clear that the Lustre based Singularity and

Charliecloud are comparable, and sometimes better, when it
comes to performance, in comparison to the local storage
based Docker and Podman. This applies for both single-node
as well as multi-node scenarios. In the multi-node scenario,
the Lustre based tests showed comparable I/O performance
to that of local storage tests.

In exploring our second research question of how would
the Lustre file system performance differ for different con-
tainer solutions, we are able to observe a large difference
in the number of file and metadata requests that occur
with Singularity and Charliecloud compared to Docker and
Podman. This difference gets more pronounced with in-
creasing number of processes, especially for Charliecloud.
It is clear that the way Charliecloud is built (using a whole
uncompressed Linux file tree) causes it to create a large
number of MDS and OSS requests stemming from the
large number of individual file requests for the tree format.
This overhead increases with increasing levels of parallelism
because each additional process needs to individually access
the container related files. Singularity seems to be the better
option for running containers on HPC file systems because
of its single file nature, which greatly reduces the MDS
and OSS requests needed for just the container functionality
as parallelism increases. This is an important finding, and
should be considered if the users expect to have an HPC
environment with a large number of parallel jobs running
from containers atop Lustre; using the wrong container
solution could potentially lead to resource contention and
bottlenecks on the MDS and OSS servers. The Charliecloud
documentation does make note of the fact that there could be
high metadata load when running the uncompressed images
from a shared file system. However, we are the first to
explicitly measure the extent of the problem and how it
aggravates with increasing parallelism.

V. RELATED WORK

Many works have performed analyses of container solu-
tions focusing on resource usage and performance. Kovacs et
al. [52] offer basic comparisons on a smaller scale between
different container solutions. On a larger scale, Rudyy et
al. [7] compare Docker, Shifter, and Singularity in an HPC
environment, focusing on scalability and portability between
different architectures. Younge et al. [21] specifically focus
on comparing Singularity and Docker in a Cray system
environment. Torrez et al. [53] talk about the performance
similarities of Singularity, Charliecloud, and Shifter at the
CPU, memory, and application level in HPC. Wharf [54]
explores storing Docker container images in a distributed
file system such that different layers can be shared among
users. In contrast to these works, this paper focuses on the
effect of file I/O operations from different container images
stored on Lustre and local storage.

Arango et al. [22] compare CPU, memory, GPU, and
disk I/O performance for LXC, Docker, and Lustre. In

comparison, our work provides a much closer look at
the details of a distributed file system’s behavior under
container operations. Le et al. [23] conduct a performance
comparison for scientific simulation benchmarks between
Singularity and bare-metal runs on the Comet supercomputer
at SDSC [55]. Beltre et al. [56] and Saha et al. [57] evaluate
the use of containerization in cloud infrastructure for HPC
and the effects of different interconnects. These works are
complementary to ours, wherein our work aims to fill the
gap in knowledge about the behavior of different container
solutions I/O on a parallel file system such as Lustre.

Huang et al. [25] perform a comparison of Lustre and
GlusterFS as backing stores for a cloud system and conclude
that Lustre is superior in performance and throughput. That
is another motivation for using Lustre as the HPC file system
for our analysis. Zhao et al. [24] offer a comparison of
representative file systems for scientific applications and
make the case for distributed metadata management. Pan et
al. [26] are able to provide a framework for integrating PFS
into cloud settings for use with HPC applications hosted in
the cloud. All of these works evaluate file systems for the
cloud setting, but do not cover the effect of containers on
Lustre, which is analyzed in this paper.

VI. CONCLUSION

We have presented an empirical analysis of container
solutions for HPC environments. We study four container
solutions: Docker, Podman, Singularity, and Charliecloud on
the widely popular Lustre file system. We present a frame-
work for managing the analysis of the different container
solutions, incorporating multiple benchmarks, and integrat-
ing the metrics collection from the clients as well as the
multiple Lustre server nodes. Our evaluation shows startup
time overhead for Docker and Podman, as well as network
overhead at startup time for Singularity and Charliecloud.
Our I/O evaluations show that with increasing parallelism,
Charliecloud incurs large overhead on Lustre’s MDS and
OSS. Moreover, we find that the observed throughput of
containers on Lustre is at par with containers running from
local storage. This is promising. In future work, we plan to
extend our analysis to HPC object stores, such as Ceph, and
other parallel file systems, such as BeeGFS.

ACKNOWLEDGMENT

This work is sponsored in part by the National Sci-
ence Foundation under grants CCF-1919113, CNS-1405697,
CNS- 1615411, CNS-1565314/1838271.

REFERENCES

[1] “14 Tech Companies Embracing Container Technology.”
https://learn.g2.com/container-technology. Accessed: Novem-
ber 30 2019.

[2] E. Gawehn, J. A. Hiss, and G. Schneider, “Deep Learning
in Drug Discovery,” Molecular Informatics, vol. 35, no. 1,
2016.

[3] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Den-
zler, N. Carvalhais, and Prabhat, “Deep learning and process
understanding for data-driven Earth system science,” Nature,
vol. 566, no. 7743, pp. 195–204, 2019.

[4] G. González and C. L. Evans, “Biomedical Image Processing
with Containers and Deep Learning: An Automated Analysis
Pipeline,” BioEssays, vol. 41, no. 6, p. 1900004, 2019.

[5] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard,
S. Tuecke, B. Blaiszik, M. J. Franklin, and I. Foster, “DLHub:
Model and Data Serving for Science,” in Proceedings of
2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2019.

[6] P. Xu, S. Shi, and X. Chu, “Performance Evaluation of Deep
Learning Tools in Docker Containers,” in Proceedings of the
3rd International Conference on Big Data Computing and
Communications (BIGCOM), Aug. 2017.

[7] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago,
R. Sirvent, and M. Vázquez, “Containers in HPC: A Scal-
ability and Portability Study in Production Biological Simu-
lations,” in Proceedings of 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2019.

[8] W. Shin, C. D. Brumgard, B. Xie, S. S. Vazhkudai,
D. Ghoshal, S. Oral, and L. Ramakrishnan, “Data Jockey:
Automatic Data Management for HPC Multi-tiered Storage
Systems,” in Proceedings of 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2019.

[9] C. Seamons, “Building complex software inside containers
(poster),” in 2019 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC),
ACM, Nov. 2019.

[10] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific containers for mobility of compute,” PloS one,
vol. 12, no. 5, p. e0177459, 2017.

[11] “Podman.” https://podman.io/. Accessed: November 30 2019.

[12] L. Gerhardt, W. Bhimji, M. Fasel, J. Porter, M. Mustafa,
D. Jacobsen, V. Tsulaia, and S. Canon, “Shifter: Containers
for hpc,” in J. Phys. Conf. Ser., vol. 898, 2017.

[13] R. Priedhorsky and T. Randles, “Charliecloud: unprivileged
containers for user-defined software stacks in HPC,” in Pro-
ceedings of the 2017 International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC), (Denver, Colorado), ACM, Nov. 2017.

[14] A. K. Paul, O. Faaland, A. Moody, E. Gonsiorowski,
K. Mohror, and A. R. Butt, “Understanding hpc application
i/o behavior using system level statistics,” 2019.

[15] B. Wadhwa, A. K. Paul, S. Neuwirth, F. Wang, S. Oral,
A. R. Butt, J. Bernard, and K. Cameron, “iez: Resource
contention aware load balancing for large-scale parallel file
systems,” in Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2019.

[16] A. K. Paul, R. Chard, K. Chard, S. Tuecke, A. R. Butt,
and I. Foster, “Fsmonitor: Scalable file system monitoring
for arbitrary storage systems,” in 2019 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 1–11,
IEEE, 2019.

[17] A. K. Paul, B. Wang, N. Rutman, C. Spitz, and A. R. Butt,
“Efficient metadata indexing for hpc storage systems.,” in
CCGRID, p. 10, 2020.

[18] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. De Rose, “Performance evaluation of
container-based virtualization for high performance comput-
ing environments,” in Proceedings of the 21st Euromicro In-
ternational Conference on Parallel, Distributed, and Network-
Based Processing., IEEE, 2013.

[19] C. Ruiz, E. Jeanvoine, and L. Nussbaum, “Performance
Evaluation of Containers for HPC,” in Proceedings of the
2015 European Conference on Parallel Processing, 2015.

[20] J. Sparks, “Enabling Docker for HPC,” Concurrency and
Computation: Practice and Experience, Dec. 2018.

[21] A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell,
“A tale of two systems: Using containers to deploy hpc ap-
plications on supercomputers and clouds,” in Proceedings of
the 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Dec. 2017.

[22] C. Arango, R. Dernat, and J. Sanabria, “Performance Eval-
uation of Container-based Virtualization for High Perfor-
mance Computing Environments,” arXiv:1709.10140 [cs],
Sept. 2017.

[23] “Performance Analysis of Applications using Singularity
Container on SDSC Comet,” in Proceedings of the Practice
and Experience in Advanced Research Computing 2017 on
Sustainability, Success and Impact (PEARC)., (New Orleans,
LA, USA).

[24] D. Zhao, X. Yang, I. Sadooghi, G. Garzoglio, S. Timm,
and I. Raicu, “High-Performance Storage Support for Sci-
entific Applications on the Cloud,” in Proceedings of the 6th
Workshop on Scientific Cloud Computing, (Portland, Oregon,
USA), June 2015.

[25] W.-C. Huang, C.-C. Lai, C.-A. Lin, and C.-M. Liu, “File
System Allocation in Cloud Storage Services with GlusterFS
and Lustre,” in Proceedings of 2015 IEEE International Con-
ference on Smart City/SocialCom/SustainCom (SmartCity),
Dec. 2015.

[26] “Integrating High Performance File Systems in a Cloud
Computing Environment,” in 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis,
(Salt Lake City, UT).

[27] A. K. Paul, A. Goyal, F. Wang, S. Oral, A. R. Butt, M. J.
Brim, and S. B. Srinivasa, “I/O load balancing for big data
HPC applications,” in International Conference on Big Data,
pp. 233–242, IEEE, 2017.

[28] A. K. Paul, S. Tuecke, R. Chard, A. R. Butt, K. Chard, and
I. Foster, “Toward scalable monitoring on large-scale storage
for software defined cyberinfrastructure,” in Proceedings of
the 2nd Joint International Workshop on Parallel Data Stor-
age & Data Intensive Scalable Computing Systems, pp. 49–
54, 2017.

[29] “Sysbench.” https://github.com/akopytov/sysbench. Ac-
cessed: November 30 2019.

[30] “Coral benchmarks: Haccio.” https://asc.llnl.gov/
CORAL-benchmarks/#hacc. Accessed: November 30
2019.

[31] “LLNL - IOR Benchmark.” https://asc.llnl.gov/sequoia/
benchmarks/IORsummaryv1.0.pdf. Accessed: March 11
2019.

[32] “OpenSFS and EOFS - Lustre file system.” http://lustre.org/.
Accessed: March 23 2019.

[33] “Parallel Virtual File Systems on Microsoft Azure Part 2.”
https://bit.ly/2OGat4k. Accessed: November 30 2019.

[34] “Top 500 List.” https://www.top500.org/lists/2019/11/. Ac-
cessed: November 30 2019.

[35] “Frontier.” https://www.olcf.ornl.gov/frontier/#4. Accessed:
2020-03-03.

[36] “Kernel virtual machine.” https://www.linux-kvm.org/page/
Main Page. Accessed: November 30 2019.

[37] “cgroups - linux man pages.” http://man7.org/linux/
man-pages/man7/cgroups.7.html. Accessed: November 30
2019.

[38] “namespaces - linux man pages.” http://man7.org/linux/
man-pages/man7/namespaces.7.html. Accessed: November
30 2019.

[39] “Docker.” https://www.docker.com/. Accessed: November 19
2019.

[40] “LXC.” https://linuxcontainers.org/lxc/. Accessed: November
25 2019.

[41] “Use the OverlayFS storage driver.” https://docs.docker.com/
storage/storagedriver/overlayfs-driver/. Accessed: November
25 2019.

[42] “Lustre graph driver for docker.” https://github.com/
bacaldwell/lustre-graph-driver.

[43] “What is Podman?.” https://podman.io/whatis.html. Ac-
cessed: November 25 2019.

[44] “conmon.” https://github.com/containers/conmon. Accessed:
November 25 2019.

[45] “User namespaces support in Podman.” https:
//www.projectatomic.io/blog/2018/05/podman-userns/.
Accessed: November 25 2019.

[46] “SquashFS.” https://github.com/plougher/squashfs-tools. Ac-
cessed: November 25 2019.

[47] “Buildah.” https://buildah.io/. Accessed: May 19 2020.

[48] A. S. et al., “umoci - standalone tool for manipulating
container images,” 2016.

[49] “pivot root(2): change root file system - Linux man page.”
Accessed. March 22 2020.

[50] “sar(1) - Linux man page.” https://linux.die.net/man/1/sar.

[51] S. Habib, “Cosmology and Computers: HACCing the Uni-
verse,” in Proceedings of 2015 International Conference on
Parallel Architecture and Compilation (PACT), Oct. 2015.

[52] Kovács, “Comparison of different Linux containers,” in
Proceedings of the 40th International Conference on Telecom-
munications and Signal Processing (TSP), July 2017.

[53] A. Torrez, T. Randles, and R. Priedhorsky, “Hpc container
runtimes have minimal or no performance impact,” in 2019
IEEE/ACM International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), pp. 37–42, 2019.

[54] C. Zheng, L. Rupprecht, V. Tarasov, D. Thain, M. Mohamed,
D. Skourtis, A. S. Warke, and D. Hildebrand, “Wharf: Sharing
Docker Images in a Distributed File System,” in Proceedings
of the 2018 ACM Symposium on Cloud Computing (SoCC),
(CA, USA), pp. 174–185, Oct. 2018.

[55] “San Diego Supercomputer Center.” https://www.sdsc.edu/.
Accessed: November 30 2019.

[56] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and R. E.
Grant, “Enabling HPC Workloads on Cloud Infrastructure
Using Kubernetes Container Orchestration Mechanisms,” in
Proceedings of the 2019 IEEE/ACM International Workshop
on Containers and New Orchestration Paradigms for Isolated
Environments in HPC (CANOPIE-HPC), Nov. 2019.

[57] P. Saha, A. Beltre, P. Uminski, and M. Govindaraju, “Eval-
uation of Docker Containers for Scientific Workloads in the
Cloud,” in Proceedings of the Practice and Experience on
Advanced Research Computing (PEARC), July 2018.

