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Abstract—In federated learning (FL), clients collectively train
a global machine learning model with their own local data.
Without sharing sensitive raw data, each client in FL only
sends updated weights to consider privacy and security concerns.
Most of existing FL works focus mainly on improving model
accuracy and training time, but only a few works focus on
FL incentive mechanisms. To build a high performance model
after FL training, clients need to provide high quality and
large amounts of data. However, in real FL scenarios, high-
quality clients are reluctant to participate in FL process without
reasonable compensation, because clients are self-interested and
other clients can be business competitors. Even participation
incurs some cost for contributing to the FL model with their
local dataset. To address this problem, we propose TIFF, a
novel tokenized incentive mechanism, where tokens are used as a
means of paying for the services of providing participants and the
training infrastructure. Without payment delays, participation
can be monetized as both providers and consumers, which
promotes continued long-term participation of high-quality data
parties. Additionally, paid tokens are reimbursed to each client
as consumers according to our newly proposed metrics (such
as token reduction ratio and utility improvement ratio), which
keeps clients engaged in FL process as consumers. To measure
data quality, accuracy is calculated in training without additional
overheads. We leverage historical accuracy records and random
exploration to select high-utility participants and to prevent
overfitting. Results show that TIFF provides more tokens to
normal providers by up to 6.9% and less tokens to malicious
providers by up to 18.1%, achieving improvement of the final
model accuracy by up to 7.4%, compared to the default approach.

Index Terms—Federated learning, Privacy-aware machine
learning, Incentive mechanism, Tokenized incentivization, Dis-
tributed deep learning

I. INTRODUCTION

To build high-quality machine learning (ML) models, a mas-
sive amount of training data needs to be collected from various
clients. With the growing usage of mobile and IoT devices,
these large number of devices have become one of the main
sources of user-generated data. This in turn enables ML models
to become better over time. In addition, research institutes,
government organizations, and industries can share their own
data with others to build ML models collaboratively to get more
complex yet accurate architectures. However, management of
these locally-generated data also makes problems because it
requires handling of private and secure data, which can leak
private information [1]. Traditional distributed ML training
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methods [2]–[4] require large-scale training data to be moved to
a central location such as the cloud-based servers [5]. However,
deploying these traditional approaches into the cloud leads to
cybersecurity risks and privacy concerns [6]. In order to meet
privacy requirements, privacy laws and regulations [7], [8] have
been enacted, which prevents data transfer to a centralized place.
Recently, federated learning (FL) [9] has become important
as a collaborative training approach to prevent the disclosure
of private information because it does not require direct data
transfer. Thus, ML models can be trained with a large number
of clients without exposing raw data, which only sends local
updates to a central server, referred to as an aggregator. In this
way, data privacy can be protected because participating clients
in the FL process do not need to send its own local data to
other central locations.

Although FL has shown great potential in promising privacy-
preserved ML, problems still exist in deploying FL. First,
successful FL can come from continued long-term participation
and availability of good-quality dataset [5]. One of the
difficulties lies in data heterogeneity [9], where each client may
have different data distribution. Unlike traditional distributed
learning, in FL, it is highly possible that data distribution is not
uniform [10], known as non-Identical Independent Distribution
(non-IID data heterogeneity). As a result, contribution to model
update by participating clients varies significantly according to
their participation frequency and local data quality. Therefore,
it is essential for clients to actively and reliably participate
in FL process with high-quality data. Most existing works
on FL [11]–[13] do not provide incentive mechanisms to
promote participation of clients because they assume that all
clients agreed to participate unconditionally and share their
data voluntarily. However, without satisfactory rewards that
compensate participating costs, each client is not willing to
participate in FL process [14], [15]. Especially, clients with
good quality data may be reluctant to share their local data with
others. For achieving good model performance, it is necessary
to incentivize local data owners to contribute large amounts
of high-quality data. This leads us to the main question -
How can we incentivize data owners with good quality data
to contribute consistently in the training process? Our work
focuses on providing the answer to this question.

While there have been recent works [5], [15], [16] to address
incentive mechanisms for FL, these works give incentives
to encourage high-quality clients to frequently and reliably
participate in FL process. These works conduct clients selection



based on quality estimation and prediction. However, the
existing research does not address how to promote long-term
participation of consumers, but only leverages historical quality
records based on loss, instead of directly measuring accuracy.
Besides, these works assume direct monetary transfer where
participating clients exchange budget in a one-to-one manner,
but there may be some delays before each client has enough
budget to pay back [15].

In this paper, we propose TIFF, a Tokenized Incentive
mechanism For Federated learning where tokens are a way
of paying for the services of providing participants1 and the
training infrastructure. A third organization may provide secure
and private aggregation and communication systems through
tokenized FL incentive framework. Then, each client as a
consumer should pay tokens to participate in training process
because they can use the final trained model to generate
revenue from commercialization of the model. Tokens can
be monetized by the third organization without delays between
training and commercialization of the trained model, where
providers or consumers can exchange tokens using token-based
pricing model, instead of direct monetary transfer between
clients. Apart from the above-mentioned instant payback,
the tokenized scheme can provide reasonable incentives to
motivate both continued long-term participation and high-
quality data contribution. Per training round, some of clients
can be chosen as providers that train their own local data and
send updates to an aggregator for updating a global model. To
encourage participation of data providers with good quality data,
tokens will be given to the selected providers proportionately
according to their contribution to model update. To promote
long-term active participation of providers, tokens will be
given to providers who more frequently participated in training
rounds. Moreover, as an incentive for continued participation
of consumers, paid tokens can be reimbursed to each consumer
when per-round accuracy of the model is not improved enough
compared to expectation.

Contributions. This paper makes the following contribu-
tions:

• We present TIFF, a novel token-based incentive mecha-
nism for FL systems, which uses tokens to monetize FL-
as-a-Service for participants and the training infrastructure.
Unlike direct monetary transfer, participating providers
are paid back without delays through token-based pricing
model.

• We design a method to incentivize high-quality data
providers and encourage long-term participation, which
gives free tokens using our newly created algorithm
based on their per-round contribution and participation
frequency.

• We introduce a reimbursement scheme to promote contin-
ued long-term participation of consumers where tokens
are reimbursed to consumers according to utility2 improve-

1We use terms ’clients’ and ’participants’ interchangeably in the paper.
2We use the term ‘utility’ to represent a function of the accuracy of the

trained global model, as the previous works [16], [17] define.

ment. To systemize amount of reimbursement tokens, we
propose token reduction ratio and utility improvement
ratio.

• We suggest how to select good providers per round using
both historical accuracy records and random exploration.

• We implement and evaluate the proposed FL incentive
mechanism to demonstrate that the proposed incentive
approach provides reasonable incentives for achieving
better model performance and increasing participation of
high-quality clients.

II. BACKGROUND

A. Federated Learning

With the development of artificial intelligence technologies
and growing size of data in modern applications, distributed
learning methods [2]–[4] have been explored and developed
to address newly created large-scale dataset in our daily life.
However, due to privacy legislation [7], [8], private data should
not be exposed or uploaded to a central server without any
privacy consideration. In recent years, federated learning (FL)
[9] has been proposed to collaboratively train a shared global
model without explicitly sharing their local data with others.
The basic concept of FL is to allow multiple clients to locally
train the global model and to update the global model by
iteratively aggregating model updates from these clients. FL
system consists of two main components such as the clients
and the aggregator. Before training starts, eligible clients need
to be registered to a parameter server called the aggregator.
The model training is processed synchronously in rounds by
the aggregator. At the beginning of each training round, the
aggregator randomly selects a subset of clients and distributes
the global model to clients in the subset. Then, each client
trains the model on its own local datasets and sends local
model updates to the aggregator for model aggregation. Let
us assume that N and Dk are the number of clients and local
dataset on client k. In each round t, each client k independently
trains its local model with its own local dataset Dk for local
epochs and updates its model parameters wk

t . Then, each client
k sends its own model weight difference ∆k

t , which is defined
as:

∆k
t = wk

t − wk
t−1 (1)

After the aggregator receives the weight difference from all
clients in the subset, the aggregator updates the global model
by the Federated Averaging (FedAVG) algorithm [9] with the
learning rate η as follows:

wt+1 = wt − η
N∑

k=1

1

N
∆k

t (2)

The above steps will be repeated until the trained model reaches
a target accuracy or the number of training rounds reaches the
predetermined round.

In practice, FL faces the challenge of data heterogeneity
[11]. In traditional distributed learning, data is collected at
a central location and the classes of the training dataset are
evenly distributed across clients, called Independent Identical
Distribution (IID). However, in FL, training dataset is not



uniformly distributed among clients [10] because training
data on a given client depends on the client’s experience and
preference, known as non-Identical Independent Distribution
(non-IID). Thus, contribution to model performance changes
according to discrepancy of data quality between clients [18].

B. Incentive Mechanism
Incentive mechanisms have been studied in other areas such

as crowdsensing [19], [20], but these works have not been
directly applied to FL area [5]. Game theory and auction can be
used as approaches to provide incentives for FL [14], [21]. Yu
et al. [15] address FL incentives as auctions where the payment
to data owners is determined by the auction mechanism that
models cost, contributions, and regret of data owners. FAIR [5]
proposes an auction-based incentive mechanism that models
interaction between the clients and the aggregator as reverse-
auction where each client submits bid information and the
aggregator calculates optimal set of clients for maximizing
model performance within limited budget. The Stackelberg
game [22] is one of game theories, which formulates the
hierarchical and competitive interactions between a leader and
follower [23], where the leader decides the action predicting
follower’s response and the follower chooses actions based on
the leader’s action while maximizing their own profits. Khan
et al. [21] addresses FL incentives as the Stackelberg game to
model the competitive interactions between the clients and the
aggregator, where clients focus on maximizing their resource
utility while the aggregator focuses on maximizing the model
performance.

III. INCENTIVIZED FEDERATED LEARNING

In this section, we describe the design of our tokenized
incentivization for federated learning (FL). The major idea here
is that tokens are provided based on accuracy improvement
and participation frequency as a means of encouraging reliable
participation of high-quality data providers. This can be
achieved by designing our system to fulfill the following
objectives:

• Compensating providers proportional to the quality of
their data - Data providers that can contribute more to
the training process (i.e., their participation speeds up
convergence or increases accuracy during training at a
faster rate), must be compensated properly as a means of
reward.

• Incentivizing long-term participation - Apart from good
quality providers, we must also encourage long-term
participation. We do so by rewarding tokens to clients
that have been selected as providers more frequently.
Eventually, additional tokens will be rewarded to clients
which have participated for longer periods.

• Reimbursing tokens for lower utility improvements - If the
improvement in model performance is not sufficient after
each training round, we reimburse some of the tokens
since the participants could not get the appropriate value
out of participation.

For the next few subsections, we will further elaborate on
the system design features that enable us to achieve these goals.

Clients Pool

Explored Providers Unexplored Providers

Cloud-based Aggregator

Token 
Manager Profiler Scheduler

Tokens Local Updates 
Accuracy Tokens

Local Updates 
Accuracy

Fig. 1: Overview of incentivized FL with tokens.
We provide stronger definitions of utility, participation rates,
token values, etc. and describe the algorithms that use them
to accomplish the goal of incentivizing participation of clients
such that the overall model performance is improved.
A. Overall Design

The overall architecture of the proposed tokenized FL
incentivization is presented in Figure 1. All clients in the
client pool can act as both consumer and provider. From a
consumer’s perspective, each client can benefit from a trained
global model. From a provider’s perspective, each client can
contribute to training the global model. First, if clients want to
participate in FL training process as consumers, they should buy
tokens from a secure institution (e.g., IBM, Google, Apple) that
orchestrates the FL process and provides a framework for FL.
We use tokens as a form of credit for providing incentives to the
providers. To the best of our knowledge, this is the first to use
tokenization for offering FL as a service. Then, clients in the
client pool can be chosen by an aggregator as providers. After
completing a round of training, the selected clients receive
tokens as incentives according to their contributions to the
model performance. We classify all participating clients into
two categories of providers: unexplored providers, and explored
providers. At first, all participating clients do not have accuracy
history because these clients are not trained, and these untrained
clients are called unexplored providers. Then, after training
starts, some of clients are selected as providers. These selected
clients train on their local data, and then send back the local
updates and test accuracies to the aggregator. Thus, these
trained clients have their accuracy history and are then called
explored providers.

Unlike existing FL systems, our proposed system includes
additional modules, residing at the aggregator side: token
manager, profiler, and scheduler. The role of the token manager
is to collect tokens from consumers and to pay back these
collected free tokens to providers and consumers. The token
manager keeps track of the tokens that have been distributed
and collected between consumers and providers. The token
manager issues tokens to providers according to contributions
and reimburses tokens to consumers depending on utility
improvement. The profiler monitors accuracy of all explored
providers to measure quality of their local data. When a group



Algorithm 1 Accuracy-based provider selection with random
exploration.
Input: n: Total number of providers, L: List of all providers,

E: List of explored providers, U : List of unexplored
providers, Accktest: local test accuracy of client k, NR:
Number of clients to be selected randomly in each
round, NA: Number of clients to be selected based on
accuracy rank in each round, r: Current round

1: Sort all providers in E according to Accktest
2: S = SortDesc([E])
3: R = Ranked list of providers in the sorted list S in

descending order
4: Qa = Deterministically selected NA clients for current

round r from E based on their ranks in R
5: B = Number of clients in U
6: if B > NR then
7: Qr = list of NR clients selected randomly from U for

training in current round r, Qr ⊆ U
8: else
9: Qr = list of NR clients selected randomly from L for

training in current round r, Qr ⊆ L
10: end if
11: Qs = Qa + Qr

12: for each data provider i ∈ Qs do
13: if i /∈ E then
14: Add i to E
15: end if
16: if i ∈ U then
17: Remove i from U
18: end if
19: end for
20: return Qs

of selected providers finish a round of training, the profiler
requests accuracy from the selected providers. Then, each
selected provider sends its own local accuracy to the profiler,
and the profiler stores the collected local accuracy into history
records. Moreover, the profiler measures the accuracy of the
trained global model per round, and then the measured global
accuracy is used for reimbursing tokens to consumers. In each
training round, the scheduler sorts providers in descending order
based on the accuracy history records and deterministically
selects providers. The accuracy history of each provider is
used for selecting high-quality providers. On top of that,
the scheduler also randomly selects unexplored providers
for training. The detailed description of provider selection
and reimbursement scheme will be given in the following
subsections.

B. Provider Selection with Accuracy History and Random
Exploration

Selecting providers out of all participating clients can
be conducted based on both accuracy history and random
exploration (Algorithm 1). At the beginning of each round,
clients are sorted based on accuracy history records and half

Algorithm 2 Incentivized FL training with tokens.
Input: LP : List of all providers, LC : List of all consumers,

R: Total training rounds
1: for each round r = 0 to R - 1 do
2: Token manager collects tokens from consumers for

training in round r
3: Scheduler selects providers for training in round r

according to both accuracy-based selection and random
exploration (Algorithm 1)

4: Each provider performs local training
5: Each provider sends local update and local accuracy

back to the aggregator
6: Aggregator calculates utility improvement in round r

using a global accuracy
7: Token manager reimburses tokens to consumers accord-

ing to utility improvement (Equation 7)
8: Token manager pays tokens back to the selected

providers according to local accuracy (Algorithm 3)
9: Token manager distributes remaining tokens to all

providers according to participation frequency (Algo-
rithm 4)

10: end for

of the number of selected clients (Qa) are chosen from the
explored clients. The accuracy-based provider selection allows
high-quality providers to contribute to training a global model.
Since local data quality is tracked in real-time by profiling
local accuracy of each provider, the selection scheme can
dynamically adapt to changing data conditions in a timely
manner. Remaining half of the selected clients (Qr) are chosen
from the unexplored clients by random exploration. The random
exploration can fairly explore untrained clients and allow
the scheduler to choose high-quality providers among them
in the next selection round. List of selected clients (Qs) is
combined from both accuracy-based selection (Qa) and random
exploration (Qr). However, when there is not enough number
of explored clients at early rounds, client selection is done
by random selection without accuracy-based selection. After
training of current round r, clients chosen from the unexplored
clients are moved from list of unexplored providers (E) to list
of explored providers (U ). When all providers are explored,
half of the number of selected clients (Qr) are still randomly
chosen from list of explored providers (E). We adopt this
approach to select from this diverse set of providers so that
overfitting issues are prevented. This is because if global model
is trained only with specific clients, it leads to training bias
[11].

C. Incentivized Federated Training with Tokens

Algorithm 2 gives a detailed procedure of how our proposed
incentive mechanism performs FL training with tokens. At the
beginning of each round, the token manager collects tokens
from consumers and the scheduler selects a set of providers
from the pool of candidate providers that agree to participate
in that training round. Then, the aggregator sends a global



Algorithm 3 Token distribution based on local accuracy.
Input: n: Total number of selected providers, L: List of

selected providers, R: Rank of provider s, Accs: Local
accuracy of provider s

1: D = n(n+1)
2

2: Sort the selected providers according to their local accuracy
Accs

3: S = SortDesc([L])
4: i = rank for current data provider
5: F = Total number of free tokens available
6: i = 0
7: for each data provider s = 0 to S - 1 do
8: Free tokens for s = (n− i)× F

D
i+ +

9: end for

model to those providers to perform local training. The tokens
paid by consumers are called free tokens (Tfree). As we
mentioned above, these free tokens are collected and managed
by the token manager. After the scheduler chooses providers
by accuracy-based selection and random exploration, each
selected provider conducts local training. With the training
completed, the selected providers send back their own local
updates and local accuracy to the aggregator. The profiler
at the aggregator measures a global accuracy and calculates
utility improvement. Utility improvement is presented as per-
round improvement of a global accuracy. Then the token
manger reimburses tokens to consumers according the utility
improvement. The detailed explanation of the reimbursement
algorithm is given in the next subsection. After reimbursement,
according to their local accuracy (Algorithm 3), tokens are
given to the selected providers that conduct local training
for the current round. Then remaining tokens are distributed
to all providers according to their participation frequencies
(Algorithm 4). In this way, regardless of contribution for model
training, providers are rewarded according to their continued
long-term participation in federated training.

For the next round, clients with high local accuracy records
are chosen by the scheduler for training a global model. The
local accuracy records can be a direct indicator of data quality
of clients. By selecting and rewarding reliable providers with
good data quality, the accuracy of the trained global model
can be improved. On the other hand, providers with bad data
quality are not frequently chosen and therefore less rewards
will be given to them. While loss is an indication of accuracy
improvement used by previous works [5], [24], we use accuracy
for reimbursement and scheduling. In previous works that used
loss, it causes additional overhead to measure accuracy from
selected clients. However, we found in our environment that
each selected client already calculates accuracy whenever they
conduct local training. Thus, we directly use the local accuracy
as a metric for accuracy improvement without additional
overhead. We also observed that high quality data providers
show better local accuracy than low quality data providers.

Algorithm 4 Token distribution based on participation fre-
quency.
Input: n: Total number of all providers, L: List of all providers,

R: Rank of provider s, rs: Number of participating
rounds of provider s

1: D = n(n+1)
2

2: Sort all providers according to the number of their
participating rounds rs

3: S = SortDesc([L])
4: i = rank for current data provider
5: F = Total number of free tokens available
6: i = 0
7: for each data provider s = 0 to S - 1 do
8: Free tokens for s = (n− i)× F

D
i+ +

9: end for

D. Reimbursement
To keep consumers continuously engaged in FL process,

tokens are reimbursed to consumers, depending on utility
improvement. The general idea here is that more tokens will be
returned back to consumers when the utility is less improved.
Utility improvement is calculated by the profiler module at
the aggregator side. Let us assume that Tret is the reimbursed
tokens and Iutil is the utility improvement. Thus, the number
of reimbursed tokens Tret is inversely proportional to the utility
improvement Iutil as:

Tret ∝
1

Iutil
(3)

Let us assume that Accr is a global accuracy of current round
r and Accmax is the maximum global accuracy achieved until
the current round r. The profiler keeps track of both Accr and
Accmax during training process. Then the utility improvement
of round r is calculated as:

Iutil = max(0.0,
(Accr −Accmax)

Accmax
) (4)

To calculate reimbursement tokens, we propose the two
following metrics: (1) utility improvement ratio Ir, and (2)
token reduction ratio Tr. Utility improvement ratio Ir and
token reduction ratio Tr are calculated as:

Ir =
Imax −min(Imax, Iutil)

Imax
(5)

Tr = Tmax × Ir (6)

Therefore, the reimbursed tokens Tret is calculated as:
Tret = Tfree × Tr (7)

In equations 5 and 6, Imax is the maximum amount of utility
improvement, and Tmax is the maximum portion of tokens
returned. Thus, utility improvement ratio Ir is ranged between
0 and Imax, and token reduction ratio Tr is ranged between 0
and Tmax as below:

Ir ∈ [0, Imax] (8)

Tr ∈ [0, Tmax] (9)



Imax and Tmax have values between 0 and 1 as below:
Imax ∈ [0, 1] (10)

Tmax ∈ [0, 1] (11)

Tmax and Imax work as knobs to control the amount of
reimbursement tokens. The maximum tokens of reimbursement
is limited by Tmax. For example, when Tmax is set to 1
and Ir is reached to 0, all pre-paid tokens are reimbursed to
consumers. Since different learning applications have different
learning progress, utility improvement ratio Ir can be curved
by Imax to provide a portion of incentive compensation. When
Imax is set to lower values, utility improvement ratio Ir is
higher. As a result, less tokens are reimbursed to consumers,
which guarantees reasonable incentives to providers in case
that learning curve is not steep enough.

E. Individual Rationality

Given the incentive mechanism, we can consider incentive
properties such as individual rationality. Individual rationality is
one of the necessary conditions that make clients more willing
to stay in federation process. Unlike the existing FL incentive
studies [5], [16], we guarantee individual rationality separately
for both consumer and provider perspectives. For the consumer
perspective, if there is no improvement of utility, paid token will
be reimbursed to clients. Thus, each consumer only pays tokens
when non-negative utility is obtained (i.e., Iutil > 0). For the
provider perspective, clients selected for a single training round
are rewarded based on accuracy contribution and participation
frequency. In this way, incentive should be given to clients, as
long as the clients participate in federated training. Therefore,
each provider should be rewarded when non-negative utility
(i.e., Iutil > 0) is satisfied after gradient aggregation.

F. Incentive Compatibility

The incentive mechanism is incentive compatible if each
data provider receives proper incentive according to their true
contribution. The profiler module collects accuracy results
from providers to declare their contribution differently. To
maximize utility, high quality data providers can be chosen
more frequently and be given more rewards as incentives than
others.

G. Budget Feasibility

The total compensation of tokens to participants does not
exceed the total sum of tokens paid from participants. With a
total budget B, Bi is assigned to i-th round of whole training
process with total rounds R. Their total sum should be equal
to or less than the total budget, i.e., B ≤

∑R
i=1Bi.

IV. EVALUATION

A. Experimental Setup

1) Testbed: Our evaluation testbed is built by deploying
50 clients on a CPU cluster, where each client has its own
exclusive CPU core for local training. We implement all codes
in the IBM FL framework [25] version 1.0.6 in our evaluation
because it is on the market and publicly available. Additionally,

it is highly modularized as python-based modules and supports
various ML frameworks such as TensorFlow [2], PyTorch [26],
and Keras [27]. In this paper, the Keras is chosen as a ML
library that provides FL model implementation (e.g., model
definition and model update) to the IBM FL framework.

2) Datasets: We use two image classification datasets for
evaluating TIFF: MNIST [28], and CIFAR-10 [29]. MNIST is
composed of handwritten digit images of 10 classes, each class
corresponding to a digit from 0 to 9. CIFAR-10 dataset contains
60,000 RGB images, which are 32x32 resolution images of
10 classes. Each class corresponds to different categories of
animals and objects.

For different data quality distributions, we use the following
two different kinds of providers with different data quality
levels: a) normal provider: the provider trains a model on the
training dataset with the original unchanged labels to normally
train the model. b) malicious provider: the provider trains
a model on the training dataset with the incorrect labels to
maliciously train the model.

3) Models: We use a simple CNN [30] model for evaluating
our proposed incentive algorithm, TIFF. The CNN model
consists of 5 layers: a 3x3 convolution layers with 32 channels
and ReLu activation, a 3x3 convolution layers with 64 channels
and ReLu activation, a MaxPooling layer of size 2x2, a fully-
connected layer with 128 units and ReLu activation, and a
fully-connected layer with 10 units and softmax activation.

4) Methodology: We use SGD [31] as the optimizer for
training local data in each local provider. We train a CNN
model on either MNIST dataset or CIFAR-10 dataset for total
100 rounds. We set the number of local epochs to 1. We run
experiments five times and report the averages.

5) Metrics: We measure final model accuracy, the number
of participating rounds, and the total sum of tokens as our
metrics.

B. Results for MNIST dataset

We evaluate and demonstrate the effectiveness and efficiency
of TIFF incentive mechanism. We compare the performance
of the proposed approach with the the Federated Averaging
(FedAVG) algorithm [9] that is one of the most widely used FL
algorithms [32]. In this baseline case, the FedAVG randomly
selects clients without considering data quality of participating
providers, and the free tokens are distributed equally to selected
providers per round, regardless of their contribution to the
learning progress.

Figure 2 shows the final model accuracy, the average round
of malicious and normal providers, and the average token of
malicious and normal providers with different noise levels.
The model is trained with 50 providers under different noise
level conditions: a) normal provider: each provider has its
original unchanged training dataset. b) malicious provider: each
provider has corrupted training dataset with random labels. The
noise level refers to the percentage of malicious providers that
have mislabeled data. We consider three noise levels such as
10%, 20%, and 30%. For very heterogeneous (non-IID) class
distributions, each client of MNIST has a local dataset with
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Fig. 2: Comparison results for different noise levels on MNIST.
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Fig. 3: Comparison results for different provider numbers on MNIST.

2 classes. Each client has 1000 tokens and pays 10 tokens
per round to participate in FL process as a consumer, thus
providing 500 new free tokens in each training round. For all
noise levels, 10 clients are selected as providers for training a
single round. When a client is selected as a provider per round,
the number of participating rounds of the client is increased
by one. After running 100 rounds, we measure the accuracy,
rounds numbers, and amount of tokens of each provider. Then,
we average rounds numbers and amount of tokens in both
groups of providers (i.e., malicious and normal providers).

The Figure 2a shows accuracy results with different noise
levels. The baseline reaches final model accuracy of 95.0%,
85.5%, and 71.5%, whereas TIFF reaches final model accuracy
of 93.5%, 87.4%, and 76.8%. In general, accuracy decreases
as noise level increases as expected, because training with
malicious parties has a negative effect on model training. TIFF
improves the final accuracy by up to 7.4%, as compared with
the the baseline. Specifically, the accuracy of 20% and 30%
noise levels increases by 2.3% and 7.4%, respectively. This is
because our incentive method selects high-quality providers
more frequently based on accuracy contribution, while low-
quality providers have less chances to be selected. However, it
does not give performance improvement in the case of 10%
noise level. The baseline already reaches very high accuracy
(i.e., 95.0%), and thus there is no room to improve accuracy by
accuracy-based selection scheme. Thus, our incentive approach,
TIFF, is more effective in terms of accuracy in more noisy
environment.

The Figures 2b and 2c show average participating rounds of
malicious and normal providers. Overall, the numbers of rounds
are similar regardless noise levels. In the case of malicious
providers, the baseline shows average rounds between 20.2 and
21.3, whereas TIFF shows average rounds between 12.0 and
13.9. Thus, our incentive scheme reduces average rounds of
malicious provider by up to 40.9%, which indicates that when
the data quality of providers are not good, these providers have

much lower chances to be chosen than high-quality providers by
our accuracy-based selection. In the case of normal providers,
the baseline shows average rounds between 19.7 and 19.9,
while TIFF shows average rounds between 20.7 and 23.4,
providing improvement of up to 17.4%.

The Figures 2d and 2e show average tokens of malicious
and normal providers. In the baseline case, there is not a large
difference between malicious and normal providers: malicious
providers have average tokens between 929 and 995, and normal
providers have average tokens between 1001 and 1030. On the
other hand, TIFF shows up to 37% of difference between
malicious and normal providers: malicious providers have
average tokens between 793 and 926, and normal providers
have average tokens between 1008 and 1088. Our incentive
scheme reduces average tokens of malicious providers by up
to 14.7% and increases average tokens of normal providers by
up to 5.7%. Thus, it indicates that low-quality providers have
much lower incentives than high-quality providers.

Figure 3 shows the final model accuracy, the average round
of malicious and normal providers, and the average token of
malicious and normal providers with different provider numbers.
At the beginning of each round, the scheduler module at the
aggregator chooses providers from the client pool to perform
local training on each provider. In the Figure 3, we select
different numbers of providers (i.e., 10, 12, and 14 providers)
among 50 providers per each round and train the model with
the chosen providers, until the predefined number of rounds
(i.e., 100 rounds) is reached. The model is trained under the
above-mentioned different noise conditions such as normal
and malicious providers, but noise level is fixed as 30%. Each
consumer pays 10 tokens per round and total 500 free tokens
is reimbursed and distributed to consumers and providers as
earlier experiments.

The Figure 3a shows accuracy results with different numbers
of providers. The baseline reaches final model accuracy of
71.5%, 75.3%, and 79.3%, whereas our proposed incentive



work reaches final model accuracy of 76.8%, 78.1%, and 81.0%.
TIFF improves the final accuracy by up to 7.4%, as compared
to the the baseline. The accuracy of 10, 12, and 14 providers
increases by 7.4%, 3.7%, and 2.1%, respectively. Regardless
of numbers of providers, our incentive method provides better
accuracy than the baseline by selecting high-quality providers
more than low-quality providers.

The Figures 3b and 3c show average participating rounds
of malicious and normal providers. Generally, rounds numbers
increases as number of providers increases, because more
numbers of clients are chosen for training a single round. In
the case of malicious providers, the baseline shows average
rounds between 20.2 and 28.4, whereas TIFF shows average
rounds between 12.0 and 16.9, reducing average rounds of
malicious provider by up to 40.9%. In the case of normal
providers, the baseline shows average rounds between 19.9
and 27.8, while TIFF shows average rounds between 23.4 and
32.8, providing improvement of up to 17.8%, as compared
with the baseline approach.

The Figures 3d and 3e show average tokens of malicious
and normal providers. In the baseline case, there is not a large
difference between malicious and normal providers: malicious
providers have average tokens between 916 and 929, and
normal providers have average tokens between 1030 and 1035.
On the other hand, our incentive work shows up to 48% of
difference between malicious and normal providers: malicious
providers have average tokens between 750 and 799, and normal
providers have average tokens between 1085 and 1106. Average
tokens of malicious providers is reduced by up to 18.1%, while
average tokens of normal providers is increased by up to 6.9%.
This result means that our incentive approach provides more
incentives to high-quality providers than low-quality providers,
regardless of the number of per-round providers.

We evaluate the scheduling and calculation overhead by
comparing total completion time of the baseline and the
incentive cases. The average runtime of the baseline approach
is 3495 seconds, while the average runtime of the incentive
approach is 3596 seconds. It means that our incentive approach
causes little computation overhead such as 2.9%.

Therefore, TIFF selects high-quality providers frequently
giving more tokens as incentives than low-quality providers
through accuracy-based selection and random exploration,
which allows reasonable rewards and improves model per-
formance of the trained global model.

We evaluate the impact of varying class distribution per
client on final model accuracy, and show the result in Figure 4.
We distribute the dataset to clients so that each client has equal
number of images from 2 classes and 4 classes, respectively.
We train the CNN model on MNIST dataset and 14 providers
are chosen per round. As we expected, 4-class per client shows
higher accuracy than 2-class per client. This is because different
non-IID distribution affects final model accuracy [11]. Higher
data heterogeneity (i.e., 2-class per client) causes more accuracy
drop. The Figure 4a shows accuracy results with 10% noise
level. In the case of 2-class per client, our token-based incentive
approach improves final accuracy by 25.8%, while in the case
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Fig. 4: Accuracy with varying class distribution per client on
MNIST.
of 4-class per client, the incentive approach improves final
accuracy by 11.5%, as compared with baseline. Similarly, as
shown in Figures 4b and 4c, 2-class per client with 20% and
30% noise levels shows better improvement compared to 4-
class per client. Overall, our incentive approach is effective
regardless of the degree of non-IID-ness. While we do not
present results in this paper, we observe similar patterns in
terms of participating rounds and tokens of both malicious and
normal provider groups.

C. Results for CIFAR-10 dataset

We evaluate our proposed incentive mechanism to check
if the mechanism can be applied to other dataset. Figure 5
shows the final model accuracy, the average round of malicious
and normal providers, and the average token of malicious and
normal providers with different noise levels. The model is
trained with different noise levels of data providers: 20%, 30%,
and 40% of malicious providers. As we did on MNIST dataset,
we run 100 rounds of training on CIFAR-10 and measure
the model accuracy, rounds and tokens of each provider, and
then calculate the average values of rounds and tokens in both
provider groups (i.e., malicious and normal providers).

As shown in Figure 5a, the baseline shows final model
accuracy of 59.5%, 57.5%, and 53.4%, whereas TIFF mecha-
nism shows final model accuracy of 61.0%, 59.0%, and 56.3%,
which improves the final accuracy by 2.5%, 2.6%, and 5.4%,
respectively, as compared to the the baseline. As we expected,
noise level has negative effects on the final accuracy, because
it is possible that poor quality of dataset can be chosen more
frequently when noise level increases. However, since TIFF
selects clients based on local accuracy of each client, it shows
more improvement when noise level increases.

We measure average participating rounds of malicious and
normal providers as Figures 5b and 5c. In the case of malicious
providers, the baseline shows average rounds between 19.5 and
19.7, whereas TIFF shows average rounds between 13.0 and
13.9, reducing average rounds number of malicious providers by
up to 34.0%. In the case of normal providers, the baseline shows
average rounds between 20.0 and 20.2, while our incentive
scheme shows average rounds between 21.5 and 24.7, providing
improvement of up to 22.1%.

The Figures 5d and 5e show average tokens of malicious
and normal providers. In the baseline case, there is not a
large difference between malicious and normal providers:
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Fig. 5: Comparison results for different noise levels on CIFAR-10.
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Fig. 6: Comparison results for different provider numbers on CIFAR-10.

malicious providers have average tokens between 973 and
985, and normal providers have average tokens between 1004
and 1012. On the other hand, our incentive work shows
difference between malicious and normal providers: malicious
providers have average tokens between 813 and 863, and
normal providers have average tokens between 1034 and 1124.
Thus, TIFF scheme provides more tokens to normal providers
than malicious providers, by choosing normal providers more
frequently according to data quality.

The Figure 6a shows accuracy results with different numbers
of providers: 10, 12, and 14. The baseline reaches final model
accuracy of 53.4%, 54.2%, and 57.0%, while TIFF reaches
final model accuracy of 56.3%, 56.4%, and 60.8%, achieving
improvement of up to 5.4%.

The Figures 6b and 6c show average participating rounds of
malicious and normal providers. As we expected, the number
of participating rounds increases as the number of providers
selected per round increases. In the case of malicious providers,
the baseline shows average rounds between 19.7 and 28.0,
whereas our incentive scheme shows average rounds between
13.0 and 18.6, reducing average rounds of malicious provider
by up to 34.0% (i.e., 10 providers). In the case of normal
providers, the baseline shows average rounds between 20.2
and 28.0, while our incentive scheme shows average rounds
between 24.7 and 34.3, providing improvement of up to 22.4%
(i.e., 14 providers).

The Figures 6d and 6e show average tokens of malicious
and normal providers. In the baseline case, there is not a large
difference between malicious and normal providers: malicious
providers have average tokens between 985 and 999, and normal
providers have average tokens between 1000 and 1012. On the
other hand, our incentive work shows meaningful differences
between malicious and normal providers: malicious providers
have average tokens between 789 and 813, and normal providers
have average tokens between 1119 and 1140. This result
suggests that our incentive approach guarantees incentives

to high-quality providers than low-quality providers, regardless
of the number of per-round providers.

V. RELATED WORK

Some works have proposed to optimize performance in terms
of model accuracy and training time for federated learning (FL),
which mainly focuses on heterogeneity in data distribution and
system resources. McMahan et al., who first termed FL, suggest
FederatedAveraging (FedAvg) using iterative model averaging
[9]. Google focuses on reducing client-to-server communication
overheads leveraging lossy compression [33]. There have been
works for FL scheduling to address heterogeneity. To address
resource heterogeneity of FL systems, FedCS [34] drops slow
devices to minimize straggler problems. Bonawitz et al. propose
large-scaled FL systems, which selects more clients (e.g., 130%)
than the required number of clients and throws out slow clients
[12]. Some researchers start to study on both resource and data
heterogeneity for improving performance of FL. FedProx [13]
addresses resource heterogeneity by updating partial results and
data heterogeneity by adding a proximal term to provide stable
convergence. TiFL [11] suggests tier-based parties according
training latency to reduce straggler effect and introduces credits
to avoid overfitting. Oort [24] suggests guided participants
selection based on training latency and importance sampling
to provide trade-off between resource and data heterogeneity.
However, the above-mentioned works assume that participating
clients agreed to share their local data and local resources
voluntarily without reasonable incentives.

Recently, a few works on FL incentive have been proposed.
FAIR [5] suggests a quality-aware incentive mechanism to
motivate participation of high-quality clients. An incentive
mechanism for public goods feature is introduced to maximize
the social welfare and achieve budget balance [16]. Another
work [15] proposes a context-aware incentive mechanism to
promote participation of high-quality data owners by reducing
temporal mismatch between contributions and rewards. Above-



mentioned works usually focus on how to give incentives to
only providers based on quality estimation, but do not consider
how to encourage sustained long-term partitions as perspectives
of both consumers and providers. Furthermore, these works
require direct monetary transfer between parties, however, there
may be some delays before the federation has enough budget for
payment back to each client [15]. Unlike the above-mentioned
studies, our work introduces a token-based incentive mechanism
to provide instant monetization through our own token-based
pricing model. Our work additionally suggests reimbursement
to promote participation of parties as a consumer perspective,
as well as a provider perspective.

VI. CONCLUSION

In this study, we have proposed TIFF, a novel tokenized
incentive mechanism for federated learning (FL) that uses
tokens to monetize the contribution of participating clients
and the training infrastructure, which effectively motivates
the long-term participation of high-quality data providers.
Unlike existing studies, we introduce incentivization to both
providers and consumers and profiles data quality using
accuracy measurement without additional overheads, instead of
using loss measurement. Through our newly proposed metrics
(i.e., token reduction ratio and utility improvement ratio) based
on utility measurement, clients are reimbursed as consumers.
Through historical accuracy records and random exploration,
high-quality clients are frequently selected as providers with
reasonable rewards, while preventing overfitting. The result
shows that TIFF approach reduces the number of rounds and
tokens of malicious providers by up to 40.9% and 18.1%, while
increasing the number of rounds and tokens of normal providers
by up to 17.8% and 6.9%, as compared with the baseline. Thus,
TIFF shows up to 48% difference of tokens between normal
and malicious providers, resulting in improvement of the final
accuracy by up to 7.4%, as compared with the baseline.
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